renewable levulinic acid production catalyzed by...

49
UNIVERSITI TEKNOLOGI MALAYSIA RENEWABLE LEVULINIC ACID PRODUCTION CATALYZED BY IRON MODIFIED HY ZEOLITE AND FUNCTIONALIZED IONIC LIQUID NUR AAINAA SYAHIRAH BINTI RAMLI

Upload: others

Post on 29-Dec-2019

7 views

Category:

Documents


0 download

TRANSCRIPT

  • UNIVERSITI TEKNOLOGI MALAYSIA

    RENEWABLE LEVULINIC ACID PRODUCTION CATALYZED BY IRON

    MODIFIED HY ZEOLITE AND FUNCTIONALIZED IONIC LIQUID

    NUR AAINAA SYAHIRAH BINTI RAMLI

  • i

    .

    RENEWABLE LEVULINIC ACID PRODUCTION CATALYZED BY IRON

    MODIFIED HY ZEOLITE AND FUNCTIONALIZED IONIC LIQUID

    JULY 2015

    Faculty of Chemical Engineering

    Universiti Teknologi Malaysia

    A thesis submitted in fulfilment of the

    requirements for the award of the degree of

    Doctor of Philosophy (Chemical Engineering)

    NUR AAINAA SYAHIRAH BINTI RAMLI

  • iii

    Verily, with every hardship comes ease (Holy Qur'an 94:6)

    DEDICATION

  • iv

    I would like to take this opportunity to express my gratitude firstly to Allah

    S.W.T for His blessings and guidance. Alhamdulillah this long journey has come to

    an end, where I have gained a lot of experience that are useful to me, not only from

    conducting research and experiments, but also other tasks that I have performed and

    accomplished throughout my stay here, directly or indirectly.

    First and foremost, my sincere and gratefulness goes to my supervisor, Prof.

    Dr. Nor Aishah Saidina Amin for her priceless guidance and suggestions in

    supervising my research. Besides, she taught me lots in preparing international

    journal papers. In the future, this knowledge will be very useful for me especially

    when I involve in the academic world. Aside from that, I would like to extend my

    warmest thanks to Chemical Reaction Engineering Group (CREG, UTM) members

    for their support and valuable inputs regarding the research. Special thanks for those

    who have helped me in the experimental works. To Prof. Dr. Taufiq Yun Hin

    (UPM), Prof. Dr. Salasiah Endud (UTM), Mr Ismail, Mr. Latfi, and Mrs. Zainab,

    thank you very much for assisting me in the analysis of products and characterization

    of catalysts.

    I also wish to express my gratitude and utmost appreciation to my beloved

    parents, my father Mr. Ramli Mohd Ali and my mom Mrs. Saripah Marwan for being

    with me through this journey. Last but not least, I would also like to gratefully

    acknowledge the financial support in the form of MyPhD scholarship by the Ministry

    of Education (MOE).

    ACKNOWLEDGEMENT

  • v

    Levulinic acid is a versatile platform chemical that can be derived from

    biomass as an alternative to fossil fuel resources. In this study, a series of

    heterogeneous iron modified HY zeolites (Fe/HY zeolite): 5% Fe/HY, 10% Fe/HY,

    15% Fe/HY, and homogeneous functionalized ionic liquids (FIL): 1-butyl-3-

    methylimidazolium tetrachloroferrate ([BMIM][FeCl4]), 1-sulfonic acid-3-

    methylimidazolium chloride ([SMIM][Cl]), 1-sulfonic acid-3-methylimidazolium

    tetrachloroferrate ([SMIM][FeCl4]), were synthesized, characterized, and tested as a

    catalyst for glucose conversion to levulinic acid. The properties of Fe/HY zeolite

    were characterized using x-ray diffraction (XRD), field emission scanning electron

    microscopy - energy dispersive x-ray (FESEM-EDX), x-ray fluorescence (XRF),

    Fourier transform infrared spectroscopy (FTIR), nitrogen (N2) physisorption, thermal

    gravimetric analysis (TGA), temperature programmed desorption of ammonia (NH3-

    TPD), and pyridine-FTIR. The synthesized FIL were characterized using carbon,

    hydrogen, nitrogen, and sulfur (CHNS) elemental analysis and carbon-13 and proton

    nuclear magnetic resonance (13

    C and 1H NMR). The acidic properties of FIL were

    examined using pyridine-FTIR, Hammett function, and acid-base titration.

    Experimental results indicated that the selective Fe/HY zeolite and FIL for levulinic

    acid production from glucose were 10% Fe/HY and [SMIM][FeCl4], with 62% yield

    at 180 °C for 3 h, and 68% yield at 150 °C for 4 h, respectively. For Fe/HY zeolite,

    catalyst with large surface area, high concentration of acid sites and appropriate ratio

    of Brønsted to Lewis acids seemed suitable for levulinic acid production. It was also

    discovered FIL which contained both Brønsted and Lewis acid sites, offered a good

    catalytic performance. Optimization of levulinic acid yield from glucose and oil

    palm fronds (OPF) were conducted using the response surface methodology (RSM).

    At optimum conditions, 61.8% and 19.6% of levulinic acid yields were attained from

    glucose and OPF, respectively, over 10% Fe/HY zeolite. Meanwhile, by using

    [SMIM][FeCl4] 69.2% and 24.8% of levulinic acid yields were produced from

    glucose and OPF, respectively. Both catalysts can be reused without significant loss

    of catalytic activity. Kinetic studies of glucose conversion to levulinic acid were

    performed using both 10% Fe/HY zeolite and [SMIM][FeCl4]. The kinetic

    parameters obtained were lower and comparable with previous catalysts employed in

    glucose conversion to levulinic acid. This study demonstrated the potential of

    proposed catalysts to be used in a biorefinery for processing renewable feedstocks at

    mild process conditions.

    ABSTRACT

  • vi

    Asid levulinik adalah bahan kimia asas serba guna yang dapat dihasilkan

    daripada biojisim sebagai alternatif kepada sumber bahan api fosil. Dalam kajian ini,

    satu siri zeolit HY terubahsuai ferum heterogen (zeolit Fe/HY): 5% Fe/HY, 10%

    Fe/HY, 15% Fe/HY, dan cecair ionik kumpulan fungsian homogen (FIL): 1-butil-3-

    metilimidazolium tetrakloroferat ([BMIM][FeCl4]), 1-asid sulfonik-3-

    metilimidazolium klorida, ([SMIM][Cl]), 1-asid sulfonik-3-metilimidazolium

    tetrakloroferat ([SMIM][FeCl4]), disintesis, dicirikan, dan diuji sebagai pemangkin

    untuk penukaran glukosa kepada asid levulinik. Pencirian sifat-sifat zeolit Fe/HY

    dilakukan menggunakan pembelauan sinar-x (XRD), mikroskopi elektron pengimbas

    pancaran medan - sebaran sinar-x (FESEM-EDX), pendarfluor sinar-x (XRF),

    spektroskopi inframerah transformasi Fourier (FTIR), penjerapan fizik nitrogen (N2),

    analisis gravimetri terma (TGA), penyahjerapan berprogram suhu ammonia (NH3-

    TPD), dan FTIR-piridina. FIL yang telah disintesis dicirikan menggunakan analisis

    unsur karbon, hidrogen, nitrogen, dan sulfur (CHNS) dan resonans magnet nukleus

    karbon-13 dan proton (13

    C dan 1H NMR). Sifat berasid bagi FIL dikaji

    menggunakan FTIR-piridina, fungsi Hammett, dan pentitratan asid-bes. Keputusan

    eksperimen menunjukkan bahawa zeolit Fe/HY dan FIL yang selektif bagi

    penghasilan asid levulinik daripada glukosa adalah 10% Fe/HY dan [SMIM][FeCl4],

    masing-masing dengan hasil sebanyak 62% pada suhu 180 °C selama 3 j, dan hasil

    sebanyak 65% pada 150 °C selama 4 j. Untuk zeolit Fe/HY, pemangkin dengan luas

    permukaan yang besar, kepekatan yang tinggi bagi tapak asid dan nisbah yang sesuai

    untuk asid Lewis hingga Brønsted tampak sesuai untuk penghasilan asid levulinik.

    Kajian juga menemukan FIL yang mengandungi kedua-dua tapak asid Lewis dan

    Brønsted memberikan prestasi pemangkinan yang baik. Pengoptimuman hasil asid

    levulinik daripada glukosa dan pelepah sawit (OPF) telah dilakukan menggunakan

    kaedah gerak balas permukaan (RSM). Pada keadaan optimum, hasil asid levulinik

    sebanyak 61.8% dan 19.6% masing-masing telah dicapai daripada glukosa dan OPF,

    menggunakan 10% zeolit Fe/HY. Sementara itu, dengan menggunakan

    [SMIM][FeCl4], sebanyak 64.2% dan 24.3% asid levulinik masing-masing telah

    dihasilkan daripada glukosa dan OPF. Kedua-dua pemangkin dapat digunakan

    semula tanpa kehilangan aktiviti katalitik yang signifikan. Kajian kinetik penukaran

    glukosa kepada asid levulinik telah dilakukan menggunakan kedua-dua 10% zeolit

    Fe/HY dan [SMIM][FeCl4]. Parameter kinetik yang diperoleh adalah lebih rendah

    dan setanding dengan pemangkin sebelumnya yang digunakan dalam penukaran

    glukosa kepada asid levulinik. Kajian ini menunjukkan potensi pemangkin yang

    dicadangkan sesuai digunakan dalam loji biopenapisan minyak untuk memproses

    stok suapan boleh diperbaharu pada keadaan proses yang sederhana.

    ABSTRAK

  • vii

    TABLE OF CONTENTS

    CHAPTER

    TITLE PAGE

    DECLARATION ii

    DEDICATION iii

    ACKNOWLEDGEMENT iv

    ABSTRACT v

    ABSTRAK vi

    TABLE OF CONTENTS vii

    LIST OF TABLES xii

    LIST OF FIGURES xv

    LIST OF ABBREVATIONS xxiv

    LIST OF SYMBOLS xxvi

    LIST OF APPENDICES xxvii

    1 INTRODUCTION 1

    1.1 Research Background 1

    1.2 Problem Statement 5

    1.3 Research Hypotheses 9

    1.4 Research Objectives 10

    1.5 Scopes of Research 11

    1.6 Research Significance 12

    1.7 Thesis Outline 13

    file:///C:/Users/Windows%207/Desktop/template%20for%20thesis/7th%20marh%20draft%20thesis.docx%23_Toc413588196file:///C:/Users/Windows%207/Desktop/template%20for%20thesis/7th%20marh%20draft%20thesis.docx%23_Toc413588197file:///C:/Users/Windows%207/Desktop/template%20for%20thesis/7th%20marh%20draft%20thesis.docx%23_Toc413588198file:///C:/Users/Windows%207/Desktop/template%20for%20thesis/7th%20marh%20draft%20thesis.docx%23_Toc413588199file:///C:/Users/Windows%207/Desktop/template%20for%20thesis/7th%20marh%20draft%20thesis.docx%23_Toc413588200

  • viii

    2 LITERATURE REVIEW 14

    2.1 Lignocellulosic Biomass Feedstock 14

    2.1.1 Fractionation of Lignocellulosic Biomass Feedstock 15

    2.1.2 Oil Palm Fronds 18

    2.2 Levulinic Acid 20

    2.2.1 Levulinic Acid Production 22

    2.2.2 Levulinic Acid Applications and Derivatives 26

    2.2.3 Mechanism and Scheme for Levulinic Acid Production 28

    2.2.4 Homogeneous Acid Catalysis 33

    2.2.5 Heterogeneous Acid Catalysis 37

    2.3 Modified Zeolite 42

    2.3.1 Zeolite and Modified Zeolite 42

    2.3.2 Zeolite for Levulinic Acid Production 44

    2.4 Functionalized Ionic Liquid Catalyst 49

    2.4.1 Ionic Liquid and Functionalized Ionic Liquid 49

    2.4.2 Ionic Liquid for Biomass Processing 51

    2.4.3 Ionic Liquid for Levulinic Acid Production 53

    2.5 Factors Influencing the Levulinic Acid Production 59

    2.6 Characterizations of Catalyst 66

    2.7 Optimization by Response Surface Methodology 68

    2.8 Kinetic Study of Glucose Conversion to Levulinic Acid 70

    2.9 Summary of the Chapter 79

    3 RESEARCH METHODOLOGY 81

    3.1 Overall Research Methodology 81

    3.2 Materials 88

    3.3 Fe/HY Zeolite Catalyst 89

  • ix

    3.3.1 Catalyst Preparation 89

    3.3.2 Catalyst Characterizations 90

    3.4 Functionalized Ionic Liquid Catalyst 93

    3.4.1 Catalyst Preparation 93

    3.4.2 Catalyst Characterization 96

    3.5 Characterization of Oil Palm Fronds 98

    3.6 Catalytic Runs 99

    3.6.1 Fe/HY Zeolite Catalyst 99

    3.6.2 Functionalized Ionic Liquid Catalyst 100

    3.7 Optimization of Levulinic Acid Production from Glucose

    and Oil Palm Fronds Conversions 101

    3.7.1 Design of Experiments 101

    3.7.2 Data Analysis and Optimization 104

    3.8 Kinetic Study of Glucose Conversion to Levulinic Acid 106

    3.9 Product Analysis 109

    4 LEVULINIC ACID PRODUCTION OVER IRON

    MODIFIED HY ZEOLITE CATALYST 112

    4.1 Introduction 112

    4.2 Catalyst Preparation 113

    4.3 Catalyst Characterizations 114

    4.3.1 X-Ray Diffraction (XRD) 114

    4.3.2 Field Emission Scanning Electron Microscopy -

    Electron Dispersive X-ray (FESEM-EDX) and X-ray

    Fluorescence (XRF) 117

    4.3.3 Nitrogen (N2) Physisorption 119

    4.3.4 Fourier Transform Infrared Spectroscopy (FTIR) 122

    4.3.5 Thermal Gravimetric Analysis (TGA) 123

  • x

    4.3.6 Temperature Programmed Desorption of Ammonia

    (NH3-TPD) 125

    4.3.7 Pyridine Adsorption 128

    4.4 Glucose Conversion to Levulinic Acid 129

    4.4.1 Catalyst Screening and Performance 129

    4.4.2 Optimization of Levulinic Acid Production from

    Glucose Conversion 150

    4.5 Oil Palm Fronds Conversion to Levulinic Acid 160

    4.5.1 Oil Palm Fronds Characterization 160

    4.5.2 Catalyst Testing 162

    4.5.3 Optimization of Levulinic Acid Production from Oil

    Palm Fronds Conversion 167

    4.6 Summary of the Chapter 177

    5 LEVULINIC ACID PRODUCTION OVER

    FUNTIONALIZED IONIC LIQUID CATALYST 179

    5.1 Introduction 179

    5.2 Catalyst Preparation 180

    5.3 Catalyst Characterization 182

    5.3.1 CHNS Elemental Analysis 182

    5.3.2 1H and 13C Nuclear Magnetic Resonance (NMR) 182

    5.3.3 Pyridine FTIR 183

    5.3.4 Hammett (Ho) Acidity Function 184

    5.3.5 Acid Base Titration 184

    5.4 Glucose Conversion to Levulinic Acid 184

    5.4.1 Catalyst Screening and Performance 184

    5.4.2 Optimization of Levulinic Acid Production from

    Glucose Conversion 198

  • xi

    5.5 Oil Palm Fronds Conversion to Levulinic Acid 207

    5.5.1 Catalyst Testing 207

    5.5.2 Optimization of Levulinic Acid Production from Oil

    Palm Fronds Conversion 213

    5.6 Summary of the Chapter 222

    6 KINETIC STUDY OF GLUCOSE CONVERSION TO

    LEVULINIC ACID 224

    6.1 Introduction 224

    6.2 Fe/HY zeolite 227

    6.2.1 Effect of External and Internal Diffusions 228

    6.2.2 Effect of Reaction Temperature 230

    6.2.3 Kinetic Study 233

    6.3 Functionalized Ionic Liquid 239

    6.3.1 Effect of Reaction Temperature 239

    6.3.2 Kinetic Study 242

    6.4 Comparison with Previous Kinetic Models 247

    6.5 Summary of the Chapter 254

    7 CONCLUSION 255

    7.1 Conclusions 255

    7.2 Recommendations 258

    REFERENCES 260

    Appendices A - H 282 – 305

  • xii

    LIST OF TABLES

    TABLE NO.

    TITLE PAGE

    2.1 Composition of selected lignocellulosic biomass

    feedstock (Rackemann and Doherty, 2011). 16

    2.2 Source of lignocellulosic biomass waste in Malaysia

    (Goh et al., 2010). 19

    2.3 Chemical compositions of oil palm parts (wt%) (Shibata

    et al., 2008). 20

    2.4 Properties of levulinic acid (Timokhin et al., 1999). 21

    2.5 Properties of 5-HMF (Mukherjee et al., 2015). 21

    2.6 Homogenous acid catalysis for the production of

    levulinic acid and the intermediate compound; 5-HMF. 35

    2.7 Heterogeneous acid catalysis for the production of

    levulinic acid and the intermediate compound; 5-HMF. 38

    2.8 The use of zeolites for catalytic production of levulinic

    acid and the intermediate product; 5-HMF. 45

    2.9 The use of ionic liquids for catalytic production of

    levulinic acid and the intermediate product; 5-HMF. 55

    2.10 Kinetic study of glucose conversion to levulinic acid. 74

    2.11 Kinetic study of fructose conversion to levulinic acid. 76

    2.12 Kinetic study of cellulose/lignocellulosic biomass

    conversion to levulinic acid. 77

  • xiii

    2.13 Kinetic study of 5-HMF conversion to levulinic acid. 78

    3.1 Experimental range and factor level of process variables

    tested for glucose conversion using the selected Fe/HY

    zeolite catalyst. 102

    3.2 Experimental range and factor level of process variables

    tested for glucose conversion using the selected FIL

    catalyst. 102

    3.3 Experimental range and factor level of process variables

    tested for OPF conversion using the selected Fe/HY

    zeolite catalyst. 103

    3.4 Experimental range and factor level of process variables

    tested for OPF conversion using the selected FIL catalyst. 103

    3.5 Experimental design of four parameters based on Box-

    Behnken design. 103

    4.1 Composition of elements present in HY and Fe/HY

    zeolite catalysts from EDX. 117

    4.2 Composition of elements present in HY and Fe/HY

    zeolite catalysts from XRF. 117

    4.3 Surface area and porosity of HY zeolite and Fe/HY

    zeolite catalysts. 121

    4.4 Acidity of HY zeolite and Fe/HY zeolite catalysts. 127

    4.5 Comparison of different catalysts for glucose conversion

    to levulinic acid. 141

    4.6 Reusability of 10% Fe/HY zeolite for glucose conversion

    to levulinic acid. 147

    4.7 Experimental data set and corresponding experimental

    and predicted levulinic acid yields from glucose using

    10% Fe/HY zeolite catalyst. 150

    4.8 Analysis of variance (ANOVA) for quadratic model of

    levulinic acid yield from glucose using 10% Fe/HY

    zeolite catalyst. 152

  • xiv

    4.9 OPF compositions from TGA and LAP methods. 161

    4.10 Levulinic acid production using various lignocellulosic

    biomass feedstocks and catalysts. 166

    4.11 Experimental data set and corresponding experimental

    and predicted levulinic acid yields from OPF using 10%

    Fe/HY zeolite catalyst. 167

    4.12 Analysis of variance (ANOVA) for quadratic model of

    levulinic acid yield from OPF using 10% Fe/HY zeolite

    catalyst. 169

    5.1 Comparison of different ionic liquids as catalyst for

    glucose conversion reaction. 196

    5.2 Experimental data set and corresponding experimental

    and predicted levulinic acid yield from glucose using

    [SMIM][FeCl4] catalyst. 198

    5.3 Analysis of variance (ANOVA) for quadratic model of

    levulinic acid yield from glucose using [SMIM][FeCl4]

    catalyst. 200

    5.4 Levulinic acid production using various lignocellulosic

    biomass feedstocks and catalysts. 210

    5.5 Experimental data set and corresponding experimental

    and predicted levulinic acid yields from OPF using

    [SMIM][FeCl4] catalyst. 213

    5.6 Analysis of variance (ANOVA) for quadratic model of

    levulinic acid yield from OPF using [SMIM][FeCl4]

    catalyst. 215

    6.1 Kinetic parameters of glucose conversion using 10%

    Fe/HY zeolite catalyst. 237

    6.2 Kinetic parameters of glucose conversion using

    [SMIM][FeCl4] catalyst. 246

    6.3 Kinetic study of glucose conversion to levulinic acid. 251

  • xv

    LIST OF FIGURES

    FIGURE NO.

    TITLE PAGE

    1.1 World consumption of fossil resources 1990–2040

    (Girisuta, 2007). 2

    1.2 Top building block chemicals derived from biomass

    feedstock (Werpy et al., 2004). 3

    1.3 Potential uses of levulinic acid (Rackemann and Doherty,

    2011). 4

    1.4 Reaction scheme for the conversion of lignocellulosic

    biomass to levulinic acid (Girisuta, 2007). 5

    2.1 Conversion of biomass derived feedstock for production

    of various biofuels and chemicals (Alonso et al., 2010). 15

    2.2 Location and arrangement of cellulose, hemicellulose,

    and lignin in lignocellulosic biomass (Murphy and

    McCarthy, 2005). 16

    2.3 A cellulose chain (A) and hydrogen bonds present in

    cellulose (B) (Olivier-Bourbigou et al., 2010). 17

    2.4 Various parts of oil palm. 19

    2.5 Levulinic acid structure. 20

    2.6 5-HMF structure. 21

    2.7 Simplified schematic stage of a biomass refinery concept

    (Girisuta, 2007). 23

  • xvi

    2.8 Levulinic acid production routes; petrochemical refinery

    and biomass refinery. Adapted from Lucia et al. (2006). 24

    2.9 Chemical conversion of cellulose to levulinic acid in the

    Biofine process (Hayes et al., 2008). 25

    2.10 Levulinic acid derivatives (Girisuta, 2007). 26

    2.11 5-HMF derivatives (Gallezot, 2012). 28

    2.12 Simplified reaction pathway of glucose conversion to

    levulinic acid. 29

    2.13 Proposed mechanism of fructose conversion to 5-HMF

    (Caratzoulas and Vlachos, 2011). 30

    2.14 Proposed mechanism for conversion of 5-HMF to

    levulinic acid (Girisuta, 2007; Horvat et al., 1985). 31

    2.15 Reaction scheme of lignocellulosic biomass conversion to

    levulinic acid (Rackemann and Doherty, 2011). 32

    2.16 Decomposition of cellulose to glucose. 33

    2.17 Basic zeolite structure. 42

    2.18 Commonly used anions and cations in ionic liquids. 50

    2.19 General steps for ionic liquid-catalyst recycle process for

    biomass derived carbohydrate conversion to 5-HMF and

    levulinic acid. Adapted from Chinnappan et al., 2014;

    Tao et al., 2011b; and Tao et al., 2014. 58

    2.20 Comparison of molecular dimensions of typical feedstock

    and product involved in levulinic acid production (Kruger

    et al., 2012). 63

    2.21 Flow chart of RSM study. Adapted from Wan Omar and

    Saidina Amin (2011). 69

    2.22 Reaction scheme for kinetic models of levulinic acid

    production. 71

    2.23 General overview of research. 80

    3.1 Overall research methodology (Part 1 – 4). 82

    file:///C:/Users/Windows%207/Desktop/phd%20Aainaa/thesis%20Aainaa/template%20for%20thesis/Nur%20Aainaa.docx%23_Toc422869790

  • xvii

    3.2 Research methodology - Part 1a. 83

    3.3 Research methodology - Part 1b. 84

    3.4 Research methodology - Part 2. 85

    3.5 Research methodology - Part 3. 86

    3.6 Research methodology - Part 4. 87

    3.7 OPF. 88

    3.8 Materials involved in the preparation of Fe/HY zeolite

    catalyst; HY zeolite (a), solution of HY zeolite and FeCl3

    mixture (b). 90

    3.9 Materials involved in the preparation of [BMIM][FeCl4];

    [BMIM][Cl] (a), mixture of [BMIM][Cl] and FeCl3.6H2O

    (b). 94

    3.10 Materials involved in the preparation of [SMIM][Cl];

    mixture of 1-methylimidazole and CH2Cl2 (a), after

    addition of SO3HCl, and layers formed before

    decantation of CH2Cl2. 95

    3.11 Materials involved in the preparation of

    ([SMIM][FeCl4]); [SMIM][Cl] (a), mixture of

    [SMIM][Cl] and FeCl3.6H2O (b). 95

    3.12 Experimental setup for Fe/HY zeolite catalytic testing. 99

    3.13 Experimental setup for catalytic testing of FIL. 100

    3.14 Reaction scheme for glucose conversion to levulinic acid. 107

    4.1 Fe/HY zeolite catalysts; 5% Fe/HY zeolite (a), 10%

    Fe/HY zeolite (b), and 15% Fe/HY zeolite (c). 114

    4.2 XRD patterns of HY zeolite and Fe/HY zeolite catalysts

    (* - peaks assigned to FAU structure, ↓ - peak assigned to

    Fe2O3). 115

    4.3 FESEM images of HY zeolite and Fe/HY zeolite

    catalysts at 3,500× and 5,000× magnifications. 118

    4.4 N2 adsorption-desorption isotherm of HY zeolite and

    Fe/HY zeolite catalysts. 120

  • xviii

    4.5 FTIR spectra of HY zeolite and Fe/HY zeolite catalysts. 123

    4.6 TGA (a) and DTG (b) curves of HY zeolite and Fe/HY

    zeolite catalysts. 124

    4.7 NH3-TPD profiles of HY zeolite and Fe/HY zeolite

    catalysts. 126

    4.8 FTIR spectra of pyridine adsorbed on HY zeolite and

    Fe/HY zeolite catalysts. 129

    4.9 Product yields versus reaction temperature for 5% Fe/HY

    zeolite (a), 10% Fe/HY zeolite (b), and 15% Fe/HY

    zeolite (c) catalysts (1 g glucose, 1 g Fe/HY zeolite

    catalyst, 50 mL water, 3 h). 130

    4.10 Glucose conversion and levulinic acid selectivity versus

    reaction temperature for 5% Fe/HY zeolite (a), 10%

    Fe/HY zeolite (b), and 15% Fe/HY zeolite (c) catalysts (1

    g glucose, 1 g Fe/HY zeolite catalyst, 50 mL water, 3 h). 132

    4.11 Levulinic acid yield distribution with number of acid sites

    (a) and ratio of Brønsted to Lewis acid sites (b) for HY

    zeolite and Fe/HY zeolite catalysts (1 g glucose, 1 g

    zeolite catalyst, 50 mL water, 3 h, 180 °C). 135

    4.12 Levulinic acid yield versus hierarchical factor (a), and

    relative microporosity versus relative mesoporosity (b) (1

    g glucose, 1 g zeolite catalyst, 50 mL water, 3 h, 180 °C). 137

    4.13 Effect of reaction time (a) and catalyst loading (b) on

    glucose conversion, levulinic acid yield, and levulinic

    acid selectivity using 10% Fe/HY zeolite catalyst. 139

    4.14 Effect of glucose to water ratio on levulinic acid yield

    using 10% Fe/HY zeolite catalyst (1:1 of glucose:10%

    Fe/HY zeolite, 50 mL water, 3 h, 170 °C). 140

    4.15 Proposed reaction mechanism of levulinic acid

    production from glucose over Fe/HY zeolite catalyst.

    Adapted from Utami and Amin, 2013; Zhao et al., 2007;

  • xix

    Román-Leshkov et al., 2010; Caratzoulas and Vlachos,

    2011. 143

    4.16 Proposed reaction mechanism of glucose conversion to

    levulinic acid over Fe/HY zeolite catalysts. (1) Glucose

    isomerizes to fructose, (2) monosaccharide to 1,2-enediol,

    (3) 1,2-enediol dehydrates to 5-HMF and (4) 5-HMF

    rehydrates to levulinic acid and formic acid. Adapted

    from Agirrezabal-Telleria et al., 2014; Jow et al., 1987;

    Lourvanij and Rorrer, 1993; Kruger et al., 2012. 145

    4.17 Reusability of 10% Fe/HY zeolite for glucose conversion. 147

    4.18 Fresh (a) and regenerated (b) 10% Fe/HY zeolite

    catalysts. 147

    4.19 XRD patterns (a), FTIR spectra (b), and FESEM images

    (c) of fresh and regenerated 10% Fe/HY zeolite catalyst. 149

    4.20 Parity plot of levulinic acid yield from glucose

    conversion using 10% Fe/HY zeolite catalyst. 153

    4.21 Pareto chart of levulinic acid yield from glucose

    conversion using 10% Fe/HY zeolite catalyst. 153

    4.22 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and reaction time. 156

    4.23 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and glucose loading. 157

    4.24 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and 10% Fe/HY zeolite

    loading. 157

    4.25 Response fitted surface area plots of levulinic acid yield

    versus reaction time and glucose loading. 158

    4.26 Response fitted surface area plots of levulinic acid yield

    versus reaction time and 10% Fe/HY zeolite loading. 158

    4.27 Response fitted surface area plots of levulinic acid yield

    versus glucose loading and 10% Fe/HY zeolite loading. 159

  • xx

    4.28 TGA curve of OPF. 161

    4.29 Effect of reaction time on levulinic acid yield from OPF

    conversion using 10% Fe/HY zeolite catalyst. 163

    4.30 Reusability of 10% Fe/HY zeolite catalyst for levulinic

    acid production from OPF conversion. 164

    4.31 Parity plot of levulinic acid yield from OPF conversion

    using 10% Fe/HY zeolite catalyst. 170

    4.32 Pareto chart of levulinic acid yield from OPF conversion

    using 10% Fe/HY zeolite catalyst. 171

    4.33 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and reaction time. 173

    4.34 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and 10% Fe/HY zeolite

    loading. 174

    4.35 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and OPF loading. 174

    4.36 Response fitted surface area plots of levulinic acid yield

    versus reaction time and 10% Fe/HY zeolite loading. 175

    4.37 Response fitted surface area plots of levulinic acid yield

    versus reaction time and OPF loading. 175

    4.38 Response fitted surface area plots of levulinic acid yield

    versus OPF loading and 10% Fe/HY zeolite loading. 176

    5.1 The prepared FIL catalysts; [BMIM][FeCl4] (a),

    [SMIM][Cl] (b), and [SMIM][FeCl4] (c). 180

    5.2 The addition of ions involved in the preparation of

    [BMIM][FeCl4] (a), [SMIM][Cl] (b), and [SMIM][FeCl4]

    (c). 181

    5.3 Pyridine-FTIR spectra of FIL catalysts. 183

    5.4 Effect of reaction temperature and time on glucose

    conversion using [BMIM][FeCl4] (a), [SMIM][Cl] (b),

    and [SMIM][FeCl4] (c) as catalysts. ■170 °C, ▲150 °C,

  • xxi

    ●130 °C, ×110 °C (0.1 g glucose, 10 g FIL catalyst, 10

    mL water). 186

    5.5 Effect of reaction temperature and time on 5-HMF (a)

    and levulinic acid (b) yield using [BMIM][FeCl4] as

    catalyst ■ 170 °C, ▲150 °C, ●130 °C, ×110 °C (0.1 g

    glucose, 10 g FIL catalyst, 10 mL water). 189

    5.6 Effect of reaction temperature and time on 5-HMF (b)

    and levulinic acid (b) yield using [SMIM][Cl] as catalyst

    ■ 170 °C, ▲150 °C, ●130 °C, ×110 °C (0.1 g glucose, 10

    g FIL catalyst, 10 mL water). 190

    5.7 Effect of reaction temperature and time on 5-HMF (a)

    and levulinic acid (b) yield using [SMIM][FeCl4] as

    catalyst ■ 170 °C, ▲150 °C, ●130 °C, ×110 °C (0.1 g

    glucose, 10 g FIL catalyst, 10 mL water). 191

    5.8 Effect of glucose loading on glucose conversion and 5-

    HMF and levulinic acid yield using [SMIM][FeCl4] as

    catalyst (10 g FIL catalyst, 10 mL water, 150 °C, 4 h). 193

    5.9 Effect of catalyst loading (a) and ratio of water to catalyst

    loading (b) on glucose conversion and 5-HMF and

    levulinic acid yield using [SMIM][FeCl4] as catalyst (10

    mL water, 150 °C, 4 h (a), 5 g FIL catalyst, 150 °C, 4 h

    (b)). 194

    5.10 Reusability of [SMIM][FeCl4] for glucose conversion

    reaction. 197

    5.11 Fresh (a), and regenerated (b) [SMIM][FeCl4] catalysts. 197

    5.12 Parity plot of levulinic acid yield from glucose using

    [SMIM][FeCl4] catalyst. 201

    5.13 Pareto chart of levulinic acid yield from glucose using

    [SMIM][FeCl4] catalyst. 201

    5.14 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and reaction time. 204

  • xxii

    5.15 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and glucose loading. 204

    5.16 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and [SMIM][FeCl4] loading. 205

    5.17 Response fitted surface area plots of levulinic acid yield

    versus reaction time and [SMIM][FeCl4] loading. 205

    5.18 Response fitted surface area plots of levulinic acid yield

    versus reaction time and glucose loading. 206

    5.19 Response fitted surface area plots of levulinic acid yield

    versus glucose loading and [SMIM][FeCl4] loading. 206

    5.20 Reusability of [SMIM][FeCl4] catalyst for levulinic acid

    production from OPF. 208

    5.21 Proposed reaction scheme of levulinic acid production

    using [SMIM][FeCl4] as catalyst. 212

    5.22 Parity plot of levulinic acid yield from OPF using

    [SMIM][FeCl4] catalyst. 216

    5.23 Pareto chart of levulinic acid yield from OPF using

    [SMIM][FeCl4] catalyst. 216

    5.24 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and reaction time. 218

    5.25 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and OPF loading. 219

    5.26 Response fitted surface area plots of levulinic acid yield

    versus reaction temperature and [SMIM][FeCl4] loading. 219

    5.27 Response fitted surface area plots of levulinic acid yield

    versus reaction time and [SMIM][FeCl4] loading. 220

    5.28 Response fitted surface area plots of levulinic acid yield

    versus reaction time and OPF loading. 220

    5.29 Response fitted surface area plots of levulinic acid yield

    versus OPF loading and [SMIM][FeCl4] loading. 221

    6.1 Reaction scheme for glucose conversion to levulinic acid. 225

  • xxiii

    6.2 Effect of (a) agitation speed; ■ 0 rpm, ● 50 rpm, ▲ 100

    rpm, □ 200 rpm, ○ 300 rpm, and (b) 10% Fe/HY zeolite

    particle sizes; (● 0.18 mm, ▲ 0.21 mm, □ 0.25 mm, ○

    0.30 mm) on glucose conversion. 230

    6.3 Glucose decomposition using 10% Fe/HY zeolite - effect

    of reaction temperature ■ 120 °C, ▲ 140 °C, ● 160 °C, *

    180 °C, ○ 200 °C. 232

    6.4 5-HMF decomposition using 10% Fe/HY zeolite - effect

    of reaction temperature on 5-HMF conversion and LA

    yield. ■ 120 °C, ▲ 140 °C, ● 160 °C, * 180 °C, ○ 200

    °C. 233

    6.5 Typical concentration profile of glucose decomposition

    using 10% Fe/HY zeolite at 180 °C. ▲ Glucose, ● 5-

    HMF, □ LA. 234

    6.6 -ln(1-X) versus time for (a) glucose conversion and (b) 5-

    HMF conversion using 10% Fe/HY zeolite. ■ 120 °C, ▲

    140 °C, ● 160 °C, * 180 °C, ○ 200 °C. 236

    6.7 Arrhenius plots of ln k versus 1/T using 10% Fe/HY

    zeolite. 238

    6.8 Glucose decomposition using [SMIM][FeCl4] - effect of

    reaction temperature. ■ 110 °C, ▲ 130 °C, ● 150 °C, *

    170 °C. 241

    6.9 5-HMF decomposition using [SMIM][FeCl4] - effect of

    reaction temperature. ■ 110 °C, ▲ 130 °C, ● 150 °C, *

    170 °C. 242

    6.10 Typical concentration profile of glucose decomposition

    using [SMIM][FeCl4] at 170 °C. ▲ Glucose, ● 5-HMF, □

    levulinic acid. 243

    6.11 -ln(1-X) versus time for glucose conversion and 5-HMF

    conversion using [SMIM][FeCl4]. ■ 110 °C, ▲ 130 °C, ●

    150 °C, * 170 °C. 245

    6.12 Arrhenius plots of ln k versus 1/T using [SMIM][FeCl4]. 247

  • xxiv

    LIST OF ABBREVATIONS

    5-HMF - 5-hydroxymethyl furfural

    [BMIM][Cl] - 1-butyl-3-methyl imidazolium chloride

    [BMIM][FeCl4] - 1-butyl-3-methyl tetrachloroferrate

    [SMIM][Cl] - 1-sulfonic acid-3-methyl imidazolium chloride

    [SMIM][FeCl4] - 1-sulfonicacid-3-methylimidazolium

    tetrachloroferrate

    AlCl3 - Aluminium (III) chloride

    ANOVA - Analysis of variance

    BET - Brunauer Emmett Teller

    BJH - Barrett Joyner Halenda

    CH2Cl2 - Dichloromethane

    CrCl2 - Chromium (II) chloride

    CrCl3 - Chromium (III) chloride

    DMF - Dimethyl formamide

    DMSO - Dimethyl sulfoxide

    DNS - 3,5-dinitrosalicylic acid

    FeCl2 - Iron (II) chloride

    FeCl3 - Iron (III) chloride

    Fe2O3 - Iron (III) oxide

    FIL - Functionalized ionic liquid

    GVL - γ-valerolactone

    HF - Hierarchical factor

    HPLC - High performance liquid chromatography

    HY - Faujasite type zeolite

  • xxv

    FESEM - Field emission scanning electron microscopy

    FTIR - Fourier transform infrared spectroscopy

    H2SO4 - Sulfuric acid

    HCl - Hydrochloric acid

    HBr - Hydrobromic acid

    IR - Infrared

    KBr - Potassium bromide

    LAP - Laboratory analytical procedure

    MIBK - Methyl isobutyl ketone

    MnCl2 - Manganese (II) chloride

    NaOH - Sodium hydroxide

    NH3 - Ammonia

    NH3-TPD - Temperature programmed desorption of ammonia

    NH4Cl - Ammonium chloride

    OPF - Oil palm fronds

    RSM - Response surface methodology

    Si - Silica

    SnCl4 - Tin (IV) chloride

    SO3H - Sulfonic acid

    SO3HCl - Chloro sulfonic acid

    TGA - Thermal gravimetric analysis

    TOF - Turnover frequency

    UV - Ultraviolet

    XRD - X-ray diffraction

    XRF - X-ray fluorescence

    XPS - X-ray photoelectron spectroscopy

  • xxvi

    LIST OF SYMBOLS

    ° - Degree

    °C - Degree Celcius

    % - Percentage

    A - Pre-exponential factor

    Å - Angstrom

    Ea - Activation energy

    g - Gram

    h - Hour

    Ho - Hammett acidity function

    J - Joules

    K - Kelvin

    k - Reaction rate constant

    min - Minutes

    mL - Mililiter

    mM - Milimolar

    ppm - Parts per million

    R2 - Coefficient of determination

    µm - Micrometer

  • xxvii

    LIST OF APPENDICES

    APPENDIX

    TITLE PAGE

    A List of publications 282

    B LAP procedure 284

    C Fe/HY zeolite characterization 288

    D Functionalized ionic liquid characterization 290

    E Calibration curve 294

    F Preliminary testing using HY zeolite 296

    G Response surface methodology 297

    H Kinetic study 298

  • 260

    REFERENCES

    Abdilla, R. M., Rasrendra, C. B., Fachri, B. A. and Heeres, H. J. (2013). A kinetic

    study on the acid-catalyzed conversion of D-fructose to 5-

    hydroxymethylfurfural and levulinic acid in aqueous solution. Unpublished

    work.

    Aboul-Fotouh, S. M. (2004). Production of antiknock additive in gasoline (methyl

    tert- butyl ether, MTBE) using zeolite catalysts. Acta Chimica Slovenica,

    51(2), 293–304.

    Agirrezabal-Telleria, I., Gandarias, I. and Arias, P. L. (2014). Heterogeneous acid-

    catalysts for the production of furan-derived compounds (furfural and

    hydroxymethylfurfural) from renewable carbohydrates: A review. Catalysis

    Today, 234, 42-58.

    Al-Zaidi, B. Y. S. (2011). The effect of modification techniques on the performance

    of zeolite -Y catalysts in hydrocarbon cracking reactions. Ph.D. Thesis, The

    University of Manchester, United Kingdom.

    Alonso, D. M., Bond, J. Q. and Dumesic, J. A. (2010). Catalytic conversion of

    biomass to biofuels. Green Chemistry, 12(9), 1493-1513.

    Alonso, D. M., Gallo, J. M. R., Mellmer, M. A., Wettstein, S. G. and Dumesic, J. A.

    (2013). Direct conversion of cellulose to levulinic acid and gamma-

    valerolactone using solid acid catalysts. Catalysis Science & Technology,

    3(4), 927-931.

    Amarasekara, A. and Wiredu, B. (2014). Acidic ionic liquid catalyzed one-pot

    conversion of cellulose to ethyl levulinate and levulinic acid in ethanol-water

    solvent system. BioEnergy Research, 7(4), 1237-1243.

  • 261

    An, H., Kang, L., Gao, W., Zhao, X. and Wang, Y. (2013). Synthesis and

    characterization of novel Brønsted-Lewis acidic ionic liquids. Green and

    Sustainable Chemistry, 3, 32-37.

    Asghari, F. S. and Yoshida, H. (2007). Kinetics of the decomposition of fructose

    catalyzed by hydrochloric acid in subcritical water:  Formation of 5-

    hydroxymethylfurfural, levulinic, and formic acids. Industrial & Engineering

    Chemistry Research, 46(23), 7703-7710.

    Bao, Q., Qiao, K., Tomida, D. and Yokoyama, C. (2008). Preparation of 5-

    hydroymethylfurfural by dehydration of fructose in the presence of acidic

    ionic liquid. Catalysis Communications, 9(6), 1383-1388.

    Baugh, K. D. and McCarty, P. L. (1988). Thermochemical pretreatment of

    lignocellulose to enhance methane fermentation: I. Monosaccharide and

    furfurals hydrothermal decomposition and product formation rates.

    Biotechnology and Bioengineering, 31(1), 50-61.

    Bevilaqua, D. B., Rambo, M. K. D., Rizzetti, T. M., Cardoso, A. L. and Martins, A.

    F. (2013). Cleaner production: levulinic acid from rice husks. Journal of

    Cleaner Production, 47, 96-101.

    Bidart, C., Jiménez, R., Carlesi, C., Flores, M. and Berg, Á. (2011). Synthesis and

    usage of common and functionalized ionic liquids for biogas upgrading.

    Chemical Engineering Journal, 175, 388-395.

    Bozell, J. J., Moens, L., Elliott, D. C., Wang, Y., Neuenscwander, G. G., Fitzpatrick,

    S. W., Bilski, R. J. and Jarnefeld, J. L. (2000). Production of levulinic acid

    and use as a platform chemical for derived products. Resources, Conservation

    and Recycling, 28(3–4), 227-239.

    Cai, H., Li, C., Wang, A., Xu, G. and Zhang, T. (2012). Zeolite-promoted hydrolysis

    of cellulose in ionic liquid, insight into the mutual behavior of zeolite,

    cellulose and ionic liquid. Applied Catalysis B: Environmental, 123–124,

    333-338.

    Caratzoulas, S. and Vlachos, D. G. (2011). Converting fructose to 5-

    hydroxymethylfurfural: a quantum mechanics/molecular mechanics study of

    the mechanism and energetics. Carbohydrate Research, 346(5), 664-672.

  • 262

    Cha, J. Y. and Hanna, M. A. (2002). Levulinic acid production based on extrusion

    and pressurized batch reaction. Industrial Crops and Products, 16(2), 109-

    118.

    Chambon, F., Rataboul, F., Pinel, C., Cabiac, A., Guillon, E. and Essayem, N.

    (2011). Cellulose hydrothermal conversion promoted by heterogeneous

    Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to

    produce lactic acid. Applied Catalysis B: Environmental, 105(1–2), 171-181.

    Chamnankid, B., Ratanatawanate, C. and Faungnawakij, K. (2014). Conversion of

    xylose to levulinic acid over modified acid functions of alkaline-treated

    zeolite Y in hot-compressed water. Chemical Engineering Journal, 258, 341-

    347.

    Chang, C., Cen, P. and Ma, X. (2007). Levulinic acid production from wheat straw.

    Bioresource Technology, 98(7), 1448-1453.

    Chang, C., Ma, X. and Cen, P. (2006). Kinetics of levulinic acid formation from

    glucose decomposition at high temperature. Chinese Journal of Chemical

    Engineering, 14(5), 708-712.

    Chang, C., Ma, X. and Cen, P. (2009). Kinetic studies on wheat straw hydrolysis to

    levulinic acid. Chinese Journal of Chemical Engineering, 17(5), 835-839.

    Chen, H., Yu, B. and Jin, S. (2011). Production of levulinic acid from steam

    exploded rice straw via solid superacid. Bioresource Technology, 102(3),

    3568-3570.

    Chinnappan, A., Jadhav, A. H., Kim, H. and Chung, W.-J. (2014). Ionic liquid with

    metal complexes: An efficient catalyst for selective dehydration of fructose to

    5-hydroxymethylfurfural. Chemical Engineering Journal, 237, 95-100.

    Choudhary, V., Mushrif, S. H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N.

    S., Frenkel, A. I., Sandler, S. I. and Vlachos, D. G. (2013). Insights into the

    interplay of Lewis and Brønsted acid catalysts in glucose and fructose

    conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.

    Journal of the American Chemical Society, 135(10), 3997-4006.

  • 263

    Chun, C., Xiaojian, M. and Peilin, C. (2009). Kinetics studies on wheat straw

    hydrolysis to levulinic acid. Biotechnology and Bioengineering, 17(5), 835-

    839.

    Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C. and

    Davis, J. H. (2002). Novel Brønsted acidic ionic liquids and their use as dual

    solvent−catalysts. Journal of the American Chemical Society, 124(21), 5962-

    5963.

    De, S., Dutta, S. and Saha, B. (2011). Microwave assisted conversion of

    carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium

    chloride catalyst in water. Green Chemistry, 13(10), 2859-2868.

    Ding, D., Wang, J., Xi, J., Liu, X., Lu, G. and Wang, Y. (2014). High-yield

    production of levulinic acid from cellulose and its upgrading to [gamma]-

    valerolactone. Green Chemistry, 16(8), 3846-3853.

    Dussan, K., Girisuta, B., Haverty, D., Leahy, J. J. and Hayes, M. H. B. (2013).

    Kinetics of levulinic acid and furfural production from Miscanthus

    Giganteus. Bioresource Technology, 149, 216-224.

    Emeis, C. A. (1993). Determination of integrated molar extinction coefficients for

    infrared absorption bands of pyridine adsorbed on solid acid catalysts.

    Journal of Catalysis, 141(2), 347-354.

    Fagan, R. D., Grethlein, H. E., Converse, A. O. and Porteous, A. (1971). Kinetics of

    the acid hydrolysis of cellulose found in paper refuse. Environmental Science

    & Technology, 5(6), 545-547.

    Fan, C., Guan, H., Zhang, H., Wang, J., Wang, S. and Wang, X. (2011). Conversion

    of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid

    heteropolyacid salt. Biomass and Bioenergy, 35(7), 2659-2665.

    Fang, Q. and Hanna, M. A. (2002). Experimental studies for levulinic acid

    production from whole kernel grain sorghum. Bioresource Technology, 81(3),

    187-192.

    Fernandes, D. R., Rocha, A. S., Mai, E. F., Mota, C. J. A. and Teixeira da Silva, V.

    (2012). Levulinic acid esterification with ethanol to ethyl levulinate

  • 264

    production over solid acid catalysts. Applied Catalysis A: General, 425–426,

    199-204.

    Fu, D. and Mazza, G. (2011). Aqueous ionic liquid pretreatment of straw.

    Bioresource Technology, 102(13), 7008-7011.

    Galletti, A. M. R., Antonetti, C., Luise, V. D., Licursi, D. and Nasso, N. N. o. D.

    (2012). Levulinic acid production from waste biomass. BioResources, 7(2),

    1824–1835.

    Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chemical

    Society Reviews, 41(4), 1538-1558.

    Garrido Pedrosa, A. M., Souza, M. J. B., Melo, D. M. A. and Araujo, A. S. (2006).

    Cobalt and nickel supported on HY zeolite: Synthesis, characterization and

    catalytic properties. Materials Research Bulletin, 41(6), 1105-1111.

    Girisuta, B. (2007). Levulinic acid from lignocellulosic biomass. Ph.D. Thesis,

    University of Groningen, Netherland.

    Girisuta, B., Danon, B., Manurung, R., Janssen, L. P. B. M. and Heeres, H. J. (2008).

    Experimental and kinetic modelling studies on the acid-catalysed hydrolysis

    of the water hyacinth plant to levulinic acid. Bioresource Technology, 99(17),

    8367-8375.

    Girisuta, B., Dussan, K., Haverty, D., Leahy, J. J. and Hayes, M. H. B. (2013). A

    kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic

    acid. Chemical Engineering Journal, 217, 61-70.

    Girisuta, B., Janssen, L. P. B. M. and Heeres, H. J. (2006a). Green chemicals: A

    kinetic study on the conversion of glucose to levulinic acid. Chemical

    Engineering Research and Design, 84(5), 339-349.

    Girisuta, B., Janssen, L. P. B. M. and Heeres, H. J. (2006b). A kinetic study on the

    decomposition of 5-hydroxymethylfurfural into levulinic acid. Green

    Chemistry, 8(8), 701-709.

    Girisuta, B., Janssen, L. P. B. M. and Heeres, H. J. (2007). Kinetic study on the acid-

    catalyzed hydrolysis of cellulose to levulinic acid. Industrial & Engineering

    Chemistry Research, 46(6), 1696-1708.

  • 265

    Goh, C. S., Tan, K. T., Lee, K. T. and Bhatia, S. (2010). Bio-ethanol from

    lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource

    Technology, 101(13), 4834-4841.

    Gonzalez-Rivera, J., Galindo-Esquivel, I. R., Onor, M., Bramanti, E., Longo, I. and

    Ferrari, C. (2014). Heterogeneous catalytic reaction of microcrystalline

    cellulose in hydrothermal microwave-assisted decomposition: effect of

    modified zeolite Beta. Green Chemistry, 16(3), 1417-1425.

    Guo, H., Qi, X., Li, L. and Smith Jr, R. L. (2012). Hydrolysis of cellulose over

    functionalized glucose-derived carbon catalyst in ionic liquid. Bioresource

    Technology, 116(0), 355-359.

    Gurgul, J., Łątka, K., Hnat, I., Rynkowski, J. and Dzwigaj, S. (2013). Identification

    of iron species in FeSiBEA by DR UV–vis, XPS and Mössbauer

    spectroscopy: Influence of Fe content. Microporous and Mesoporous

    Materials, 168(0), 1-6.

    Hajimirzaee, S., Ainte, M., Soltani, B., Behbahani, R. M., Leeke, G. A. and Wood, J.

    (2015). Dehydration of methanol to light olefins upon zeolite/alumina

    catalysts: Effect of reaction conditions, catalyst support and zeolite

    modification. Chemical Engineering Research and Design, 93, 541-553.

    Hassan, H. and Hameed, B. H. (2011). Oxidative decolorization of Acid Red 1

    solutions by Fe–zeolite Y type catalyst. Desalination, 276(1–3), 45-52.

    Hayes, D. J., Fitzpatrick, S., Hayes, M. H. B. and Ross, J. R. H. (2008). The Biofine

    process – Production of levulinic acid, furfural, and formic acid from

    lignocellulosic feedstocks Biorefineries-Industrial Processes and Products

    (pp. 139-164): Wiley-VCH Verlag GmbH.

    Heeres, H., Handana, R., Chunai, D., Borromeus Rasrendra, C., Girisuta, B. and Jan

    Heeres, H. (2009). Combined dehydration/(transfer)-hydrogenation of C6-

    sugars (D-glucose and D-fructose) to [gamma]-valerolactone using ruthenium

    catalysts. Green Chemistry, 11(8), 1247-1255.

    Hegner, J., Pereira, K. C., DeBoef, B. and Lucht, B. L. (2010). Conversion of

    cellulose to glucose and levulinic acid via solid-supported acid catalysis.

    Tetrahedron Letters, 51(17), 2356-2358.

  • 266

    Hendriks, A. T. W. M. and Zeeman, G. (2009). Pretreatments to enhance the

    digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10-

    18.

    Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J.

    W. and Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and

    enzymes for biofuels production. Science, 315(5813), 804-807.

    Horvat, J., Klaić, B., Metelko, B. and Šunjić, V. (1985). Mechanism of levulinic acid

    formation. Tetrahedron Letters, 26(17), 2111-2114.

    Hu, L., Sun, Y. and Lin, L. (2011). Efficient conversion of glucose into 5-

    hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid.

    Industrial & Engineering Chemistry Research, 51(3), 1099-1104.

    Hu, L., Sun, Y., Lin, L. and Liu, S. (2012). 12-Tungstophosphoric acid/boric acid as

    synergetic catalysts for the conversion of glucose into 5-

    hydroxymethylfurfural in ionic liquid. Biomass and Bioenergy, 47, 289-294.

    Hu, L., Wu, Z., Xu, J., Sun, Y., Lin, L. and Liu, S. (2014). Zeolite-promoted

    transformation of glucose into 5-hydroxymethylfurfural in ionic liquid.

    Chemical Engineering Journal, 244, 137-144.

    Hu, X., Wang, S., Westerhof, R. J. M., Wu, L., Song, Y., Dong, D. and Li, C.-Z.

    (2015). Acid-catalyzed conversion of C6 sugar monomer/oligomers to

    levulinic acid in water, tetrahydrofuran and toluene: Importance of the

    solvent polarity. Fuel, 141, 56-63.

    Huber, G. W., Iborra, S. and Corma, A. (2006). Synthesis of transportation fuels

    from biomass:  Chemistry, catalysts, and engineering. Chemical Reviews,

    106(9), 4044-4098.

    Jadhav, A. H., Kim, H. and Hwang, I. T. (2012). Efficient selective dehydration of

    fructose and sucrose into 5-hydroxymethylfurfural (HMF) using dicationic

    room temperature ionic liquids as a catalyst. Catalysis Communications, 21,

    96-103.

    Jae, J., Tompsett, G. A., Foster, A. J., Hammond, K. D., Auerbach, S. M., Lobo, R.

    F. and Huber, G. W. (2011). Investigation into the shape selectivity of zeolite

    catalysts for biomass conversion. Journal of Catalysis, 279(2), 257-268.

  • 267

    Jeong, G.-T., Ra, C., Hong, Y.-K., Kim, J., Kong, I.-S., Kim, S.-K. and Park, D.-H.

    (2014). Conversion of red-algae Gracilaria verrucosa to sugars, levulinic

    acid and 5-hydroxymethylfurfural. Bioprocess and Biosystems Engineering,

    38(2), 207-217.

    Jiménez-Morales, I., Moreno-Recio, M., Santamaría-González, J., Maireles-Torres,

    P. and Jiménez-López, A. (2014a). Mesoporous tantalum oxide as catalyst for

    dehydration of glucose to 5-hydroxymethylfurfural. Applied Catalysis B:

    Environmental, 154–155, 190-196.

    Jiménez-Morales, I., Teckchandani-Ortiz, A., Santamaría-González, J., Maireles-

    Torres, P. and Jiménez-López, A. (2014b). Selective dehydration of glucose

    to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate.

    Applied Catalysis B: Environmental, 144, 22-28.

    Jin, F. and Enomoto, H. (2011). Rapid and highly selective conversion of biomass

    into value-added products in hydrothermal conditions: chemistry of

    acid/base-catalysed and oxidation reactions. Energy & Environmental

    Science, 4(2), 382-397.

    Jing, Q. and LÜ, X. (2008). Kinetics of non-catalyzed decomposition of glucose in

    high-temperature liquid water. Chinese Journal of Chemical Engineering,

    16(6), 890-894.

    Jing, Z. (2006). Preparation and magnetic properties of fibrous gamma iron oxide

    nanoparticles via a nonaqueous medium. Materials Letters, 60(17–18), 2217-

    2221.

    Joshi, S. S., Zodge, A. D., Pandare, K. V. and Kulkarni, B. D. (2014). Efficient

    conversion of cellulose to levulinic acid by hydrothermal treatment using

    zirconium dioxide as a recyclable solid acid catalyst. Industrial &

    Engineering Chemistry Research, 53(49), 18796-18805.

    Jow, J., Rorrer, G. L., Hawley, M. C. and Lamport, D. T. A. (1987). Dehydration of

    d-fructose to levulinic acid over LZY zeolite catalyst. Biomass, 14(3), 185-

    194.

  • 268

    Kang, M., Kim, S. W., Kim, J.-W., Kim, T. H. and Kim, J. S. (2013). Optimization

    of levulinic acid production from Gelidium amansii. Renewable Energy, 54,

    173-179.

    Kruger, J. S., Choudhary, V., Nikolakis, V. and Vlachos, D. G. (2013). Elucidating

    the roles of zeolite H-BEA in aqueous-phase fructose dehydration and HMF

    rehydration. ACS Catalysis, 3(6), 1279-1291.

    Kruger, J. S., Nikolakis, V. and Vlachos, D. G. (2012). Carbohydrate dehydration

    using porous catalysts. Current Opinion in Chemical Engineering, 1(3), 312-

    320.

    Kupiainen, L., Ahola, J. and Tanskanen, J. (2011). Kinetics of glucose

    decomposition in formic acid. Chemical Engineering Research and Design,

    89(12), 2706-2713.

    Lai, D.-m., Deng, L., Guo, Q.-x. and Fu, Y. (2011). Hydrolysis of biomass by

    magnetic solid acid. Energy & Environmental Science, 4(9), 3552-3557.

    Lai, L. and Zhang, Y. (2010). The effect of imidazolium ionic liquid on the

    dehydration of fructose to 5-hydroxymethylfurfural, and a room temperature

    catalytic system. ChemSusChem, 3(11), 1257-1259.

    Lashdaf, M., Tiitta, M., Venäläinen, T., Österholm, H. and Krause, A. O. I. (2004).

    Ruthenium on beta zeolite in cinnamaldehyde hydrogenation. Catalysis

    Letters, 94(1-2), 7-14.

    Lee, S. K., Jang, Y. N., Bae, I. K., Chae, S. C., Ryu, K. W. and Kim, J. K. (2009).

    Adsorption of toxic gases on iron-incorporated Na-A zeolites synthesized

    from melting slag. Materials Transactions, 50(10), 2476-2483.

    Leofanti, G., Tozzola, G., Padovan, M., Petrini, G., Bordiga, S. and Zecchina, A.

    (1997). Catalyst characterization: characterization techniques. Catalysis

    Today, 34, 307-327.

    Li, C., Zhang, Z. and Zhao, Z. K. (2009a). Direct conversion of glucose and cellulose

    to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation.

    Tetrahedron Letters, 50(38), 5403-5405.

  • 269

    Li, H. and Yang, S. (2014). Catalytic transformation of fructose and sucrose to HMF

    with proline-derived ionic liquids nder mild conditions. International Journal

    of Chemical Engineering, 2014, 1-7.

    Li, H., Zhang, Q., Liu, X., Chang, F., Zhang, Y., Xue, W. and Yang, S. (2013a).

    Immobilizing Cr3+

    with SO3H-functionalized solid polymeric ionic liquids as

    efficient and reusable catalysts for selective transformation of carbohydrates

    into 5-hydroxymethylfurfural. Bioresource Technology, 144, 21-27.

    Li, L., Shen, Q., Li, J., Hao, Z., Xu, Z. P. and Lu, G. Q. M. (2008). Iron-exchanged

    FAU zeolites: Preparation, characterization and catalytic properties for N2O

    decomposition. Applied Catalysis A: General, 344(1–2), 131-141.

    Li, Q., He, Y.-C., Xian, M., Jun, G., Xu, X., Yang, J.-M. and Li, L.-Z. (2009b).

    Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-

    methyl imidazolium diethyl phosphate pretreatment. Bioresource

    Technology, 100(14), 3570-3575.

    Li, Y., Liu, H., Song, C., Gu, X., Li, H., Zhu, W., Yin, S. and Han, C. (2013b). The

    dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by

    acidic ion-exchange resin in ionic liquid. Bioresource Technology, 133(0),

    347-353.

    Li, Z., Xie, K. and Slade, R. C. T. (2001). Studies of the interaction between CuCl

    and HY zeolite for preparing heterogeneous CuI catalyst. Applied Catalysis

    A: General, 209(1–2), 107-115.

    Lim, K. O., Zainal, Z. A., Quadir, G. A. and Abdullah, M. Z. (2000). Plant based

    energy potential and biomass utilization in Malaysia. International Energy

    Journal, 1(2), 77-88.

    Lima, S., Neves, P., Antunes, M. M., Pillinger, M., Ignatyev, N. and Valente, A. A.

    (2009). Conversion of mono/di/polysaccharides into furan compounds using

    1-alkyl-3-methylimidazolium ionic liquids. Applied Catalysis A: General,

    363(1–2), 93-99.

    Liu, F., Boissou, F., Vignault, A., Lemee, L., Marinkovic, S., Estrine, B., De Oliveira

    Vigier, K. and Jerome, F. (2014). Conversion of wheat straw to furfural and

  • 270

    levulinic acid in a concentrated aqueous solution of betaine hydrochloride.

    RSC Advances, 4(55), 28836-28841.

    Liu, Y., Lin, L., Sui, X. Y., Zhuang, J. P. and Pang, C. S. (2012). Characterization of

    ZSM-5 during conversion of glucose to levulinic acid. Applied Mechanics

    and Materials, 260–261, 1206–1209.

    Lourvanij, K. and Rorrer, G. L. (1993). Reactions of aqueous glucose solutions over

    solid-acid Y-zeolite catalyst at 110-160 oC. Industrial & Engineering

    Chemistry Research, 32(1), 11-19.

    Lucia, L. A., Argyropoulos, D. S., Adamopoulos, L. and Gaspar, A. R. (2006).

    Chemicals and energy from biomass. Canadian Journal of Chemistry, 84,

    960-970.

    Ma, J., Weng, D., Wu, X., Si, Z. and Wu, Z. (2013). Highly dispersed iron species

    created on alkali-treated zeolite for ammonia SCR. Progress in Natural

    Science: Materials International, 23(5), 493-500.

    Malester, I. A., Green, M. and Shelef, G. (1992). Kinetics of dilute acid hydrolysis of

    cellulose originating from municipal solid wastes. Industrial & Engineering

    Chemistry Research, 31(8), 1998-2003.

    Mao, L., Zhang, L., Gao, N. and Li, A. (2013). Seawater-based furfural production

    via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. Green

    Chemistry, 15(3), 727-737.

    Misson, M., Haron, R., Kamaroddin, M. F. A. and Amin, N. A. S. (2009).

    Pretreatment of empty palm fruit bunch for production of chemicals via

    catalytic pyrolysis. Bioresource Technology, 100(11), 2867-2873.

    Moliner, M., Román-Leshkov, Y. and Davis, M. E. (2010). Tin-containing zeolites

    are highly active catalysts for the isomerization of glucose in water.

    Proceedings of the National Academy of Sciences of the United States of

    America, 107(6164-6168).

    Moreau, C., Durand, R., Aliès, F., Cotillon, M., Frutz, T. and Théoleyre, M.-A.

    (2000). Hydrolysis of sucrose in the presence of H-form zeolites. Industrial

    Crops and Products, 11(2–3), 237-242.

  • 271

    Moreau, C., Durand, R., Peyron, D., Duhamet, J. and Rivalier, P. (1998). Selective

    preparation of furfural from xylose over microporous solid acid catalysts.

    Industrial Crops and Products, 7(2–3), 95-99.

    Moreau, C., Durand, R., Razigade, S., Duhamet, J., Faugeras, P., Rivalier, P., Ros, P.

    and Avignon, G. (1996). Dehydration of fructose to 5-hydroxymethylfurfural

    over H-mordenites. Applied Catalysis A: General, 145(1–2), 211-224.

    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and

    Ladisch, M. (2005). Features of promising technologies for pretreatment of

    lignocellulosic biomass. Bioresource Technology, 96(6), 673-686.

    Mu, M., Chen, L., Liu, Y., Fang, W. and Li, Y. (2014). An efficient Fe2O3/HY

    catalyst for Friedel-Crafts acylation of m-xylene with benzoyl chloride.

    [10.1039/C4RA04984E]. RSC Advances, 4(70), 36951-36958.

    Mukherjee, A., Dumont, M.-J. and Raghavan, V. (2015). Review: Sustainable

    production of hydroxymethylfurfural and levulinic acid: Challenges and

    opportunities. Biomass and Bioenergy, 72, 143-183.

    Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I. and Mae, K. (2014). Effective

    production of levulinic acid from biomass through pretreatment using

    phosphoric acid, hydrochloric acid, or ionic liquid. Industrial & Engineering

    Chemistry Research, 53(29), 11611-11621.

    Murphy, J. D. and McCarthy, K. (2005). Ethanol production from energy crops and

    wastes for use as a transport fuel in Ireland. Applied Energy, 82(2), 148-166.

    Niwa, M., Katada, N. and Okumura, K. (2010). Characterization and design of

    zeolite catalysts: Solid acidity, shape selectivity and loading properties: New

    York: Springer Belin Heidelberg.

    Novodarszki, G., Retfalvi, N., Dibo, G., Mizsey, P., Csefalvay, E. and Mika, L. T.

    (2014). Production of platform molecules from sweet sorghum. RSC

    Advances, 4(4), 2081-2088.

    Ohara, M., Takagaki, A., Nishimura, S. and Ebitani, K. (2010). Syntheses of 5-

    hydroxymethylfurfural and levoglucosan by selective dehydration of glucose

    using solid acid and base catalysts. Applied Catalysis A: General, 383, 149-

    155.

  • 272

    Olivier-Bourbigou, H., Magna, L. and Morvan, D. (2010). Ionic liquids and catalysis:

    Recent progress from knowledge to applications. Applied Catalysis A:

    General, 373(1–2), 1-56.

    Omari, K. W., Besaw, J. E. and Kerton, F. M. (2012). Hydrolysis of chitosan to yield

    levulinic acid and 5-hydroxymethylfurfural in water under microwave

    irradiation. Green Chemistry, 14(5), 1480-1487.

    Ordomsky, V. V., van der Schaaf, J., Schouten, J. C. and Nijhuis, T. A. (2012). The

    effect of solvent addition on fructose dehydration to 5-hydroxymethylfurfural

    in biphasic system over zeolites. Journal of Catalysis, 287, 68-75.

    Otomo, R., Yokoi, T., Kondo, J. N. and Tatsumi, T. (2014). Dealuminated Beta

    zeolite as effective bifunctional catalyst for direct transformation of glucose

    to 5-hydroxymethylfurfural. Applied Catalysis A: General, 470, 318-326.

    Pasquale, G., Vázquez, P., Romanelli, G. and Baronetti, G. (2012). Catalytic

    upgrading of levulinic acid to ethyl levulinate using reusable silica-included

    Wells-Dawson heteropolyacid as catalyst. Catalysis Communications, 18,

    115-120.

    Peng, H., Zhou, Y., Liu, J., Zhang, H., Xia, C. and Zhou, X. (2013). Synthesis of

    novel amino-functionalized ionic liquids and their application in carbon

    dioxide capture. RSC Advances, 3(19), 6859-6864.

    Peng, L., Lin, L., Zhang, J., Zhuang, J., Zhang, B. and Gong, Y. (2010). Catalytic

    conversion of cellulose to levulinic acid by metal chlorides. Molecules, 15(8),

    5258-5272.

    Plechkova, N. V. and Seddon, K. R. (2008). Applications of ionic liquids in the

    chemical industry. Chemical Society Reviews, 37(1), 123-150.

    Qi, L., Mui, Y. F., Lo, S. W., Lui, M. Y., Akien, G. R. and Horváth, I. T. (2014).

    Catalytic conversion of fructose, glucose, and sucrose to 5-

    (hydroxymethyl)furfural and levulinic and formic acids in γ-valerolactone as

    a green solvent. ACS Catalysis, 4(5), 1470-1477.

    Qi, X., Watanabe, M., Aida, T. M. and L. Smith Jr, R. (2009). Sulfated zirconia as a

    solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural.

    Catalysis Communications, 10(13), 1771-1775.

  • 273

    Qu, Y., Huang, C., Song, Y., Zhang, J. and Chen, B. (2012). Efficient dehydration of

    glucose to 5-hydroxymethylfurfural catalyzed by the ionic liquid,1-

    hydroxyethyl-3-methylimidazolium tetrafluoroborate. Bioresource

    Technology, 121, 462-466.

    Rac, V., Rakić, V., Stošić, D., Otman, O. and Auroux, A. (2014). Hierarchical ZSM-

    5, Beta and USY zeolites: Acidity assessment by gas and aqueous phase

    calorimetry and catalytic activity in fructose dehydration reaction.

    Microporous and Mesoporous Materials, 194, 126-134.

    Rackemann, D. W. and Doherty, W. O. (2011). The conversion of lignocellulosics to

    levulinic acid. Biofuels, Bioproducts and Biorefining, 5(2), 198-214.

    Ramli, N. A. S. and Amin, N. A. S. (2014a). Catalytic conversion of oil palm fronds

    to levulinic acid in ionic liquid. Applied Mechanics and Materials, 625, 361-

    365.

    Ramli, N. A. S. and Amin, N. A. S. (2014b). Catalytic hydrolysis of cellulose and oil

    palm biomass in ionic liquid to reducing sugar for levulinic acid production.

    Fuel Processing Technology, 128, 490-498.

    Raspolli Galletti, A. M., Antonetti, C., Ribechini, E., Colombini, M. P., Nassi o Di

    Nasso, N. and Bonari, E. (2013). From giant reed to levulinic acid and

    gamma-valerolactone: A high yield catalytic route to valeric biofuels. Applied

    Energy, 102, 157-162.

    Ren, H., Girisuta, B., Zhou, Y. and Liu, L. (2015). Selective and recyclable

    depolymerization of cellulose to levulinic acid catalyzed by acidic ionic

    liquid. Carbohydrate Polymers, 117, 569-576.

    Ren, H., Zhou, Y. and Liu, L. (2013). Selective conversion of cellulose to levulinic

    acid via microwave-assisted synthesis in ionic liquids. Bioresource

    Technology, 129(0), 616-619.

    Rogers, R. D. and Seddon, K. R. (2003). Ionic liquids-Solvents of the future?

    Science, 302(5646), 792-793.

    Roman-Leshkov, Y., Barrett, C. J., Liu, Z. Y. and Dumesic, J. A. (2007). Production

    of dimethylfuran for liquid fuels from biomass-derived carbohydrates.

    Nature, 447(7147), 982-985.

  • 274

    Román-Leshkov, Y., Moliner, M., Labinger, J. A. and Davis, M. E. (2010).

    Mechanism of glucose isomerization using a solid lewis acid catalyst in

    water. Angewandte Chemie International Edition, 49(47), 8954-8957.

    Rose, I. C., Epstein, N. and Watkinson, A. P. (2000). Acid-catalyzed 2-furaldehyde

    (furfural) decomposition kinetics. Industrial & Engineering Chemistry

    Research, 39(3), 843-845.

    Saeman, J. F. (1945). Kinetics of wood saccharification - Hydrolysis of cellulose and

    decomposition of sugars in dilute acid at high temperature. Industrial &

    Engineering Chemistry, 37(1), 43-52.

    Saunders, G. J. and Kendall, K. (2002). Reactions of hydrocarbons in small tubular

    SOFCs. Journal of Power Sources, 106(1-2), 258-263.

    Serrano-Ruiz, J. C., Pineda, A., Balu, A. M., Luque, R., Campelo, J. M., Romero, A.

    A. and Ramos-Fernández, J. M. (2012). Catalytic transformations of biomass-

    derived acids into advanced biofuels. Catalysis Today, 195(1), 162-168.

    Shen, J. and Wyman, C. E. (2012). Hydrochloric acid-catalyzed levulinic acid

    formation from cellulose: data and kinetic model to maximize yields. AIChE

    Journal, 58(1), 236-246.

    Shen, Y., Sun, J., Yi, Y., Wang, B., Xu, F. and Sun, R. (2014). 5-

    Hydroxymethylfurfural and levulinic acid derived from monosaccharides

    dehydration promoted by InCl3 in aqueous medium. Journal of Molecular

    Catalysis A: Chemical, 394, 114-120.

    Shi, J., Liu, W., Wang, N., Yang, Y. and Wang, H. (2014). Production of 5-

    hydroxymethylfurfural from mono- and disaccharides in the presence of ionic

    liquids. Catalysis Letters, 144(2), 252-260.

    Shibata, M., Varman, M., Tono, Y., Miyafuji, H. and Saka, S. (2008).

    Characterization in chemical composition of the oil palm (Elaeis guineesis).

    Journal of the Japan Institute of Energy, 87(2008), 383-388.

    Shimizu, K.-i., Uozumi, R. and Satsuma, A. (2009). Enhanced production of

    hydroxymethylfurfural from fructose with solid acid catalysts by simple

    water removal methods. Catalysis Communications, 10(14), 1849-1853.

  • 275

    Shwan, S., Jansson, J., Olsson, L. and Skoglundh, M. (2014). Effect of post-synthesis

    hydrogen-treatment on the nature of iron species in Fe-BEA as NH3-SCR

    catalyst. Catalysis Science & Technology, 4(9), 2932-2937.

    Son, P., Nishimura, S. and Ebitani, K. (2012). Synthesis of levulinic acid from

    fructose using Amberlyst-15 as a solid acid catalyst. Reaction Kinetics,

    Mechanisms and Catalysis, 106(1), 185-192.

    Swatloski, R. P., Spear, S. K., Holbrey, J. D. and Rogers, R. D. (2002). Dissolution

    of cellose with ionic liquids. Journal of the American Chemical Society,

    124(18), 4974-4975.

    Tadesse, H. and Luque, R. (2011). Advances on biomass pretreatment using ionic

    liquids: An overview. Energy & Environmental Science, 4(10), 3913-3929.

    Tahir, M. and Amin, N. S. (2013a). Photocatalytic CO2 reduction and kinetic study

    over In/TiO2 nanoparticles supported microchannel monolith photoreactor.

    Applied Catalysis A: General, 467, 483-496.

    Tahir, M. and Amin, N. S. (2013b). Photocatalytic reduction of carbon dioxide with

    water vapors over montmorillonite modified TiO2 nanocomposites. Applied

    Catalysis B: Environmental, 142–143, 512-522.

    Tan, M., Zhao, L. and Zhang, Y. (2011). Production of 5-hydroxymethyl furfural

    from cellulose in CrCl2/Zeolite/BMIMCl system. Biomass and Bioenergy,

    35(3), 1367-1370.

    Tao , F., Song, H. and Chou, L. (2010). Hydrolysis of cellulose by using catalytic

    amounts of FeCl2 in ionic liquids. ChemSusChem, 3(11), 1298-1303.

    Tao, F., Song, H. and Chou, L. (2011a). Catalytic conversion of cellulose to

    chemicals in ionic liquid. Carbohydrate Research, 346(1), 58-63.

    Tao, F., Song, H. and Chou, L. (2011b). Hydrolysis of cellulose in SO3H-

    functionalized ionic liquids. Bioresource Technology, 102(19), 9000-9006.

    Tao, F., Song, H. and Chou, L. (2012). Efficient conversion of cellulose into furans

    catalyzed by metal ions in ionic liquids. Journal of Molecular Catalysis A:

    Chemical, 357, 11-18.

  • 276

    Tao, F., Zhuang, C., Cui, Y.-Z. and Xu, J. (2014). Dehydration of glucose into 5-

    hydroxymethylfurfural in SO3H-functionalized ionic liquids. Chinese

    Chemical Letters, 25(5), 757-761.

    Tarabanko, V. E., Chernyak, M. Y., Aralova, S. V. and Kuznetsov, B. N. (2002).

    Kinetics of levulinic acid formation from carbohydrates at moderate

    temperatures. Reaction Kinetics and Catalysis Letters, 75(1), 117-126.

    Thibault-Starzyk, F., Stan, I., Abelló, S., Bonilla, A., Thomas, K., Fernandez, C.,

    Gilson, J.-P. and Pérez-Ramírez, J. (2009). Quantification of enhanced acid

    site accessibility in hierarchical zeolites – The accessibility index. Journal of

    Catalysis, 264(1), 11-14.

    Thomazeau, C., Olivier-Bourbigou, H., Magna, L., Luts, S. and Gilbert, B. (2003).

    Determination of an acidic scale in room temperature ionic liquids. Journal of

    the American Chemical Society, 125(18), 5264-5265.

    Thompson, D. R. and Grethlein, H. E. (1979). Design and evaluation of a plug flow

    reactor for acid hydrolysis of cellulose. Industrial & Engineering Chemistry

    Product Research and Development, 18(3), 166-169.

    Timokhin, B. V., Baransky, V. A. and Eliseeva, G. D. (1999). Levulinic acid in

    organic synthesis. Russian Chemical Reviews, 68(1), 73-84.

    Triwahyono, S., Yamada, T. and Hattori, H. (2003). IR study of acid sites on WO3–

    ZrO2 and Pt/WO3–ZrO2. Applied Catalysis A: General, 242(1), 101-109.

    Turapan, S., Kongkachuichay, P. and Worathanakul, P. (2012). Synthesis and

    characterization of Fe/SUZ-4

    zeolite. Procedia Engineering, 32, 191-197.

    Utami, S. P. and Amin, N. S. (2013). Optimization of glucose conversion to 5-

    hydroxymethylfulfural using [BMIM]Cl with ytterbium triflate. Industrial

    Crops and Products, 41, 64-70.

    Van de Vyver, S., Thomas, J., Geboers, J., Keyzer, S., Smet, M., Dehaen, W.,

    Jacobs, P. A. and Sels, B. F. (2011). Catalytic production of levulinic acid

    from cellulose and other biomass-derived carbohydrates with sulfonated

    hyperbranched poly(arylene oxindole)s. Energy & Environmental Science,

    4(9), 3601-3610.

  • 277

    van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J. and

    de Vries, J. G. (2013). Hydroxymethylfurfural, a versatile platform chemical

    made from renewable resources. Chemical Reviews, 113(3), 1499-1597.

    van Zandvoort, I., Wang, Y., Rasrendra, C. B., van Eck, E. R. H., Bruijnincx, P. C.

    A., Heeres, H. J. and Weckhuysen, B. M. (2013). Formation, molecular

    structure, and morphology of humins in biomass conversion: Influence of

    feedstock and processing conditions. ChemSusChem, 6(9), 1745-1758.

    Verboekend, D., Groen, J. C. and Pérez-Ramírez, J. (2010). Interplay of properties

    and functions upon introduction of mesoporosity in ITQ-4 zeolite. Advanced

    Functional Materials, 20(9), 1441-1450.

    Verboekend, D. and Perez-Ramirez, J. (2011). Design of hierarchical zeolite

    catalysts by desilication. Catalysis Science & Technology, 1(6), 879-890.

    Victor, A., Pulidindi, I. N. and Gedanken, A. (2014). Levulinic acid production from

    Cicer arietinum, cotton, Pinus radiata and sugarcane bagasse. RSC Advances,

    4(84), 44706-44711.

    Wan Omar, W. N. N. and Saidina Amin, N. A. (2011). Optimization of

    heterogeneous biodiesel production from waste cooking palm oil via response

    surface methodology. Biomass and Bioenergy, 35(3), 1329-1338.

    Wang, M., Li, B., Zhao, C., Qian, X., Xu, Y. and Chen, G. (2010). Recovery of

    [BMIM]FeCl4 from homogeneous mixture using a simple chemical method.

    Korean Journal of Chemical Engineering, 27(4), 1275-1277.

    Wang, P., Yu, H., Zhan, S. and Wang, S. (2011a). Catalytic hydrolysis of

    lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid.

    Bioresource Technology, 102(5), 4179-4183.

    Wang, S., Du, Y., Zhang, P., Cheng, X. and Qu, Y. (2014a). One-pot synthesis of 5-

    hydroxymethylfurfural directly from cottonseed hull biomass using

    chromium (III) chloride in ionic liquid. Korean Journal of Chemical

    Engineering, 31(12), 2286-2290.

    Wang, S., Du, Y., Zhang, W., Cheng, X. and Wang, J. (2014b). Catalytic conversion

    of cellulose into 5-hydroxymethylfurfural over chromium trichloride in ionic

    liquid. Korean Journal of Chemical Engineering, 31(10), 1786-1791.

  • 278

    Wang, X., Li, H., Cao, Y. and Tang, Q. (2011b). Cellulose extraction from wood

    chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl).

    Bioresource Technology, 102(17), 7959-7965.

    Weerachanchai, P., Leong, S. S. J., Chang, M. W., Ching, C. B. and Lee, J.-M.

    (2012). Improvement of biomass properties by pretreatment with ionic liquids

    for bioconversion process. Bioresource Technology, 111, 453-459.

    Weingarten, R., Cho, J., Xing, R., Conner, W. C. and Huber, G. W. (2012). Kinetics

    and reaction engineering of levulinic acid production from aqueous glucose

    solutions. ChemSusChem, 5(7), 1280-1290.

    Weingarten, R., Kim, Y. T., Tompsett, G. A., Fernández, A., Han, K. S., Hagaman,

    E. W., Conner Jr, W. C., Dumesic, J. A. and Huber, G. W. (2013).

    Conversion of glucose into levulinic acid with solid metal(IV) phosphate

    catalysts. Journal of Catalysis, 304, 123-134.

    Weingarten, R., Tompsett, G. A., Conner Jr, W. C. and Huber, G. W. (2011). Design

    of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The

    role of Lewis and Brønsted acid sites. Journal of Catalysis, 279(1), 174-182.

    Werpy, T., Petersen, G., Program, U. S. D. o. E. O. o. t. B., Laboratory, P. N. N. and

    Laboratory, N. R. E. (2004). Top Value Added Chemicals from Biomass:

    Results of screening for potential candidates from sugars and synthesis gas:

    [U.S. Department of Energy [Office of] Energy Efficiency and Renewable

    Energy.

    Xavier, N. M., Lucas, S. D. and Rauter, A. P. (2009). Zeolites as efficient catalysts

    for key transformations in carbohydrate chemistry. Journal of Molecular

    Catalysis A: Chemical, 305(1–2), 84-89.

    Xiao, S., Liu, B., Wang, Y., Fang, Z. and Zhang, Z. (2014). Efficient conversion of

    cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl

    sulfoxide–ionic liquid mixtures. Bioresource Technology, 151, 361-366.

    Xiong, Y., Zhang, Z., Wang, X., Liu, B. and Lin, J. (2014). Hydrolysis of cellulose in

    ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst.

    Chemical Engineering Journal, 235, 349-355.

  • 279

    Xue, Z., Zhang, T., Ma, J., Miao, H., Fan, W., Zhang, Y. and Li, R. (2012).

    Accessibility and catalysis of acidic sites in hierarchical ZSM-5 prepared by

    silanization. Microporous and Mesoporous Materials, 151, 271-276.

    Ya'aini, N. and Amin, N. A. S. (2013). Catalytic conversion of lignocellulosic

    biomass to levulinic acid in ionic liquid. Bioresources, 8(4), 5761-5772.

    Ya’aini, N., Amin, N. A. S. and Asmadi, M. (2012). Optimization of levulinic acid

    from lignocellulosic biomass using a new hybrid catalyst. Bioresource

    Technology, 116, 58-65.

    Ya’aini, N., Amin, N. A. S. and Endud, S. (2013). Characterization and performance

    of hybrid catalysts for levulinic acid production from glucose. Microporous

    and Mesoporous Materials, 171, 14-23.

    Yan, L., Laskar, D. D., Lee, S.-J. and Yang, B. (2013). Aqueous phase catalytic

    conversion of agarose to 5-hydroxymethylfurfural by metal chlorides. RSC

    Advances, 3(46), 24090-24098.

    Yan, L., Yang, N., Pang, H. and Liao, B. (2008). Production of levulinic acid from

    bagasse and paddy straw by liquefaction in the presence of hydrochloride

    acid. CLEAN – Soil, Air, Water, 36(2), 158-163.

    Yang, F., Fu, J., Mo, J. and Lu, X. (2013a). Synergy of Lewis and Brønsted acids on

    catalytic hydrothermal decomposition of hexose to levulinic acid. Energy &

    Fuels, 27(11), 6973-6978.

    Yang, Z., Kang, H., Guo, Y., Zhuang, G., Bai, Z., Zhang, H., Feng, C. and Dong, Y.

    (2013b). Dilute-acid conversion of cotton straw to sugars and levulinic acid

    via 2-stage hydrolysis. Industrial Crops and Products, 46, 205-209.

    Yi, J., He, T., Jiang, Z., Li, J. and Hu, C. (2013). AlCl3 catalyzed conversion of

    hemicellulose in corn stover. Chinese Journal of Catalysis, 34(11), 2146-

    2152.

    Yin, X., You, Q. and Jiang, Z. (2011). Optimization of enzyme assisted extraction of

    polysaccharides from Tricholoma matsutake by response surface

    methodology. Carbohydrate Polymers, 86(3), 1358-1364.

  • 280

    Yuan, Z., Xu, C., Cheng, S. and Leitch, M. (2011a). Catalytic conversion of glucose

    to 5-hydroxymethyl furfural using inexpensive co-catalysts and solvents.

    Carbohydrate Research, 346(13), 2019-2023.

    Yuan, Z., Xu, C. C., Cheng, S. and Leitch, M. (2011b). Catalytic conversion of

    glucose to 5-hydroxymethylfurfural using inexpensive co-catalysts and

    solvents. Carbohydrate Research, 346(2011), 2019-2023.

    Zakaria, Z. Y., Linnekoski, J. and Amin, N. A. S. (2012). Catalyst screening for

    conversion of glycerol to light olefins. Chemical Engineering Journal, 207–

    208, 803-813.

    Zeng, S. S., Lin, L. and Liu, D. (2012). Study on synthesis of levulinic acid with

    solid acid SO42-

    /TiO2-ZrO2 as catalyst. Modern Food Science and

    Technology, 28(8), 964-968.

    Zeng, W., Cheng, D.-g., Zhang, H., Chen, F. and Zhan, X. (2010). Dehydration of

    glucose to levulinic acid over MFI-type zeolite in subcritical water at

    moderate conditions. Reaction Kinetics, Mechanisms and Catalysis, 100(2),

    377-384.

    Zhang, J., Cao, Y., Li, H. and Ma, X. (2014). Kinetic studies on chromium-catalyzed

    conversion of glucose into 5-hydroxymethylfurfural in alkylimidazolium

    chloride ionic liquid. Chemical Engineering Journal, 237, 55-61.

    Zhang, Z., Wang, Q., Xie, H., Liu, W. and Zhao, Z. (2011). Catalytic Conversion of

    Carbohydrates into 5-Hydroxymethylfurfural by Germanium(IV) Chloride in

    Ionic Liquids. ChemSusChem, 4(1), 131-138.

    Zhang, Z. and Zhao, Z. K. (2009). Solid acid and microwave-assisted hydrolysis of

    cellulose in ionic liquid. Carbohydrate Research, 344(15), 2069-2072.

    Zhang, Z. and Zhao, Z. K. (2010). Microwave-assisted conversion of lignocellulosic

    biomass into furans in ionic liquid. Bioresource Technology, 101(3), 1111-

    1114.

    Zhao, H., Holladay, J. E., Brown, H. and Zhang, C. (2007). Metal chlorides in ionic

    liquid solvents convert sugars to 5-hydroxymethylfurfural. Science,

    316(5831), 1597-1600.

  • 281

    Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olubajo, O. and Person, V. N. (2009).

    Regenerating cellulose from ionic liquids for an accelerated enzymatic

    hydrolysis. Journal of Biotechnology, 139(1), 47-54.

    Zhao, Y., Li, Z. and Xia, C. (2011). Alkyl sulfonate functionalized ionic liquids:

    Synthesis, properties, and their application in esterification. Chinese Journal

    of Catalysis, 32(3–4), 440-445.

    Zheng, J., Zeng, Q., Yi, Y., Wang, Y., Ma, J., Qin, B., Zhang, X., Sun, W. and Li, R.

    (2011). The hierarchical effects of zeolite composites in catalysis. Catalysis

    Today, 168(1), 124-132.

    Zhou, C.-H., Xia, X., Lin, C.-X., Tong, D.-S. and Beltramini, J. (2011). Catalytic

    conversion of lignocellulosic biomass to fine chemicals and fuels. Chemical

    Society Reviews, 40(11), 5588-5617.

    Zhou, C., Yu, X., Ma, H., He, R. and Vittayapadung, S. (2013). Optimization on the

    conversion of bamboo shoot shell to levulinic acid with environmentally

    benign acidic ionic liquid and response surface analysis. Chinese Journal of

    Chemical Engineering, 21(5), 544-550.

    Zolfigol, M. A., Khazaei, A., Moosavi-Zare, A. R. and Zare, A. (2010). Ionic liquid

    3-methyl-1-sulfonic acid imidazolium chloride as a novel and highly efficient

    catalyst for the very rapid synthesis of bis(indolyl)methanes under solvent-

    free conditions. Organic Preparations and Procedures International, 42(1),

    95-102.