reinforcement for plates course ct4150 lecture12 5 jan. 2010

33
Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Upload: craig-engram

Post on 14-Dec-2015

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Reinforcement for Plates

Course CT4150

Lecture12

5 Jan. 2010

Page 2: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Normal forces in concrete plates

• Only rebars in the x and y directions

• Equilibrium of a plate part

Page 3: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

• Equations

• Design

Choose such that nsx+nsy is minimal

(lower bound theorem)

2cos

sin cos

xx sx c

yy sy c

xy c

n n n

n n n

n n

Page 4: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

• Solution

Page 5: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 1• Situation

nxx=1200, nyy=-200, nxy=-400 kN/m

fy = 500 N/mm², f’c= 30 N/mm²Thickness = 100 mm• Reinforcement

nsx= 1200+400 = 1600 kN/m

nsy= -200+400 = 200• Concrete

nc= -2x400 = -800 kN/m

Page 6: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Asx=1600/500 = 3.20 mm = 3200 mm²/m

212–280 = 2/4x12²x1000/280 = 3231 OK

Asy=200/500 = 0.40 mm = 400 mm²/m

26–500 = 2/4x6²x1000/500 = 452 OK

c = 800/100 = 8 N/mm² < f’c OK

(safety factors omitted)

Page 7: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 2• Deep beam 4.7x7.5 m, 2 supports, opening 1.5x1.5 m,

point load 3000 kN, fcd = 16.67 N/mm², fyd = 435 N/mm²

Page 8: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

• Forces nxx, nyy, nxy (linear elastic analysis)

• Principal stresses

Page 9: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

• Reinforcement requirements (software)

Page 10: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010
Page 11: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

• Reinforcement (engineer)

Page 12: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Moments in concrete plates• Only rebars in the x and y directions• Equilibrium of a plate part

• Result (Yield contour)2 min{( )( ), ( )( )}xy px xx py yy px xx py yym m m m m m m m m

Page 13: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010
Page 14: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 3

• Moments in a point

mxx = 13, myy = -8, mxy = 5 kNm/m• Moment capacities

mpx = 17, mpy = 0, m’px =0, m’py = 10• Is the capacity sufficient?

• Yes

25 ?min{(17 13)(0 8), (0 13)(10 8)}

25 ?min{32,26}

Page 15: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Design of moment reinforcement

• Carry the moments with the least amount of reinforcement.

• So, minimize mpx+ mpy+ m’px+ m’py

• 5 constraints• mpx, mpy, m’px, m’py ≥ 0•

Solution 1 (Wood-Armer moments)•

• Crack direction 45º to the reinforcing bars

px xx xy px xx xy

py yy xy py yy xy

m m m m m m

m m m m m m

2 min{( )( ), ( )( )}xy px xx py yy px xx py yym m m m m m m m m

Page 16: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Solution 2 (when mpx would be < 0)

Solution 3 (when mpy would be < 0)2

0

xypx xx

yy

py

mm m

n

m

2

0px

xypy yy

xx

m

mm m

m

Page 17: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Solution 4 (when m’px would be < 0)

Solution 5 (when m’py would be < 0)

2

0px

xypy yy

xx

m

mm m

m

2

0

xypx xx

yy

py

mm m

m

m

Page 18: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Solution 6 (when mpx and mpy would be < 0)

Solution 7 (when m’px and m’py would be < 0)

0

0

px

py

m

m

0

0

px

py

m

m

Page 19: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 4

• Moments in a point (as in example 1)

mxx = 13, myy = -8, mxy = 5 kNm/m• Moment capacities

mpx = 13+5²/8 = 16.13 m’px = 0

mpy = 0 m’py = 8+5²/13 = 9.92• Amount of reinforcement is proportional to16.13+0+0+9.92 = 26• Amount of reinforcement in example 317+0+0+10 = 27 (larger, so not optimal)

Page 20: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 5

• Plate bridge, simply supported

• 4 x 8 m, point load 80 kN, thick 0.25 m

Page 21: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 5 continued

• Decomposition of the load

Page 22: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 5 Torsion moment

12

18

10 kNm/m

xy

xy

m a Va T

m F

xyV mxyV m

1

2T

1

2T

1

2T Fa

x

Page 23: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 5 All moments

• Moments in the bridge middle

• Moments at the bridge support

14 1

2

18

240 kNm/m

0

10 kNm/m

xx

yy

xy

F am F

am

m F

18

0

0

10 kNm/m

xx

yy

xy

m

m

m F

Page 24: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 5 FEM moments

Page 25: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010
Page 26: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010
Page 27: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 5 Reinforcement

Middle Support Designed

2

40 10 50 kNm/m 0 10 10 50

0 10 10 0 10 10 10

40 10 0 0 10 10 10

100 2.5 0 10 10 10

40

px px px

py py py

px px px

py py py

m m m

m m m

m m m

m m m

Page 28: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Example 5 Upper bound check

Result

> 1OK

4 4 506 6 1.22

5 5 80pxF m

Page 29: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

Computed requirements

Page 30: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010
Page 31: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010
Page 32: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010
Page 33: Reinforcement for Plates Course CT4150 Lecture12 5 Jan. 2010

ConclusionsThe design procedure used is1 Compute the force flow linear elastically2 Choose the dimensions plastically

The reason for the linear elastic analysis in the firststep is that it shows us how an as yet imperfectdesign can be improved. A plastic (or nonlinear)analysis in step 1 would shows us how thestructure would collapse; but that is not what wewant to know in design.

This procedure is applied to design many types ofstructure for the ULS.