regular article the proteome of maritime pine wood forming ... et al proteomics 2005.pdf · regular...

21
REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1 *, Céline Lalanne 1 *, Grégoire Le Provost 1 *, Hélène Ferry-Dumazet 2 , Jorge Paiva 1, 3 , Phillipe Chaumeil 1 , Jean-Marc Frigerio 1 , Jean Brach 1 , Aurélien Barré 2 , Antoine de Daruvar 2, 4 , Stéphane Claverol 5 , Marc Bonneu 5 , Nicolas Sommerer 6 , Luc Negroni 7 and Christophe Plomion 1 1 UMR 1202 BIOGECO, INRA, Equipe de Génétique, Cestas, France 2 Centre de Bioinformatique de Bordeaux, Université V. Segalen Bordeaux 2, Bordeaux, France 3 Plant Cell Biotechnology Lab. IBET/ITQB, Oeiras, Portugal 4 UMR 5162, Génomique Fonctionnelle des Trypanosomatides, CNRS – Université Bordeaux 2, Bordeaux, France 5 Pôle Protéomique, Plateforme Génomique Fonctionnelle Bordeaux, Université V. Segalen Bordeaux 2, Bordeaux, France 6 Unité de Recherches Protéomique, UR 1199, INRA, Montpellier, France 7 UMR de Génétique Végétale, INRA/UPS/CNRS/INA-PG, Gif-sur-Yvette, France Wood is one of our most important natural resources. Surprisingly, we know hardly anything about the details of the process of wood formation. The aim of this work was to describe the main proteins expressed in wood forming tissue of a conifer species (Pinus pinaster Ait.). Using high resolution 2-DE with linear pH gradient ranging from 4 to 7, a total of 1039 spots were detected. Out of the 240 spots analyzed by MS/MS, 67.9% were identified, 16.7% presented no homology in the data- bases, and 15.4% corresponded to protein mixtures. Out of the 57 spots analyzed by MALDI-MS, only 15.8% were identified. Most of the 175 identified proteins play a role in either defense (19.4%), carbohydrates (16.6%) and amino acid (14.9%) metabolisms, genes and proteins expression (13.1%), cytoskeleton (8%), cell wall biosynthesis (5.7%), secondary (5.1%) and primary (4%) metabolisms. A summary of the identified proteins, their putative functions, and behavior in different types of wood are presented. This information was introduced into the PROTICdb database and is accessible at http://cbib1.cbib.u-bordeaux2.fr/Protic/Protic/home/index.php. Finally, the average protein amount was compared with their respective transcript abundance as quantified through EST counting in a cDNA-library constructed with mRNA extracted from wood forming tissue. Received: September 6, 2004 Revised: November 17, 2004 Accepted: December 14, 2004 Keywords: Mass spectrometry / Pinus pinaster Ait. / Proteome analysis / Wood Proteomics 2005, 5, 3731–3751 3731 1 Introduction In perennial plants, the successive addition of secondary xylem tissue differentiated from the vascular cambium gives rise to a unique tissue called wood. Wood is composed of non-conducting and conducting elements implicated in the long distance transport of water and nutriments in trees. In conifers, wood is comprised of two main cell types: tracheids and ray parenchyma. This simplicity hides the fact that it is also a highly variable raw material. Field experiments have shown genetic factors can influence the activity of the vas- cular cambium and the differentiation of newly divided cells, ultimately influencing wood and end-use properties [1–3]. The ageing process constitutes another important source of variation affecting the characteristics of secondary xylem (reviewed in Zobel and Sprague [4]). Wood derived from a young cambium is referred as juvenile wood (JW), while Correspondence: Dr. Christophe Plomion, UMR 1202 BIOGECO, INRA, Equipe de Génétique, 69 route d’Arcachon, F-33610 Cestas Cédex, France E-mail: [email protected] Fax: 133-5-5712-2881 Abbreviations: SAM-S, S-adenosylmethionine synthetase; JW, juvenile wood; MW, mature wood; EW, early wood; LW, late wood; OW, opposite wood; CW, compression wood * These authors contributed equally. 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de DOI 10.1002/pmic.200401197

Upload: others

Post on 13-Mar-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

REGULAR ARTICLE

The proteome of maritime pine wood forming tissue

Jean-Marc Gion1*, Céline Lalanne1*, Grégoire Le Provost1*, Hélène Ferry-Dumazet2,Jorge Paiva1, 3, Phillipe Chaumeil1, Jean-Marc Frigerio1, Jean Brach1, Aurélien Barré2,Antoine de Daruvar2, 4, Stéphane Claverol5, Marc Bonneu5, Nicolas Sommerer6,Luc Negroni7 and Christophe Plomion1

1 UMR 1202 BIOGECO, INRA, Equipe de Génétique, Cestas, France2 Centre de Bioinformatique de Bordeaux, Université V. Segalen Bordeaux 2, Bordeaux, France3 Plant Cell Biotechnology Lab. IBET/ITQB, Oeiras, Portugal4 UMR 5162, Génomique Fonctionnelle des Trypanosomatides, CNRS – Université Bordeaux 2, Bordeaux, France5 Pôle Protéomique, Plateforme Génomique Fonctionnelle Bordeaux, Université V. Segalen Bordeaux 2,

Bordeaux, France6 Unité de Recherches Protéomique, UR 1199, INRA, Montpellier, France7 UMR de Génétique Végétale, INRA/UPS/CNRS/INA-PG, Gif-sur-Yvette, France

Wood is one of our most important natural resources. Surprisingly, we know hardly anything aboutthe details of the process of wood formation. The aim of this work was to describe the main proteinsexpressed in wood forming tissue of a conifer species (Pinus pinaster Ait.). Using high resolution2-DE with linear pH gradient ranging from 4 to 7, a total of 1039 spots were detected. Out of the240 spots analyzed by MS/MS, 67.9% were identified, 16.7% presented no homology in the data-bases, and 15.4% corresponded to protein mixtures. Out of the 57 spots analyzed by MALDI-MS,only 15.8% were identified. Most of the 175 identified proteins play a role in either defense (19.4%),carbohydrates (16.6%) and amino acid (14.9%) metabolisms, genes and proteins expression (13.1%),cytoskeleton (8%), cell wall biosynthesis (5.7%), secondary (5.1%) and primary (4%) metabolisms. Asummary of the identified proteins, their putative functions, and behavior in different types of woodare presented. This information was introduced into the PROTICdb database and is accessible athttp://cbib1.cbib.u-bordeaux2.fr/Protic/Protic/home/index.php. Finally, the average protein amountwas compared with their respective transcript abundance as quantified through ESTcounting in acDNA-library constructed with mRNA extracted from wood forming tissue.

Received: September 6, 2004Revised: November 17, 2004

Accepted: December 14, 2004

Keywords:

Mass spectrometry / Pinus pinaster Ait. / Proteome analysis / Wood

Proteomics 2005, 5, 3731–3751 3731

1 Introduction

In perennial plants, the successive addition of secondaryxylem tissue differentiated from the vascular cambium givesrise to a unique tissue called wood. Wood is composed of

non-conducting and conducting elements implicated in thelong distance transport of water and nutriments in trees. Inconifers, wood is comprised of two main cell types: tracheidsand ray parenchyma. This simplicity hides the fact that it isalso a highly variable raw material. Field experiments haveshown genetic factors can influence the activity of the vas-cular cambium and the differentiation of newly divided cells,ultimately influencing wood and end-use properties [1–3].The ageing process constitutes another important source ofvariation affecting the characteristics of secondary xylem(reviewed in Zobel and Sprague [4]). Wood derived from ayoung cambium is referred as juvenile wood (JW), while

Correspondence: Dr. Christophe Plomion, UMR 1202 BIOGECO,INRA, Equipe de Génétique, 69 route d’Arcachon, F-33610 CestasCédex, FranceE-mail: [email protected]: 133-5-5712-2881

Abbreviations: SAM-S, S-adenosylmethionine synthetase; JW,juvenile wood; MW, mature wood; EW, early wood; LW, latewood; OW, opposite wood; CW, compression wood * These authors contributed equally.

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

DOI 10.1002/pmic.200401197

Page 2: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3732 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751

wood formed by an older cambium is referred as maturewood (MW). In fast growing pine trees, the transition be-tween JW and MW occurs around 10 years of age (Fig. 1A)and is accompanied by drastic changes in many wood prop-erties. Seasonal and gravitational effects are, among envi-ronmental factors, the most significant external sources ofvariation affecting wood characteristic. In temperate zones,climatic variation during the annual course of the vascularcambium give rise to early wood (EW) formed early duringthe growing season, and late wood (LW) formed in late sum-mer (Fig. 1B). The major changes are in the structure of thetracheids, which affect their ability to transport water underwet and dry conditions. A change in the orientation of aconifer tree stem stimulates the formation of a specializedtype of wood at the underside of a bent tree, termed com-pression wood (CW) (Fig. 1C). It serves to reorient the stemto a vertical position. CW differs anatomically in its chemicalcomposition, compared to opposite wood (OW) formed atthe other side of the leaning stem (reviewed in Timell [5]).The formation of these six types of wood is the result of pro-found molecular changes during xylogenesis, triggered byexternal (e.g., temperature, photoperiod [6, 7]) and/or endog-enous factors (e.g., phytohormones, sugars [8]). The con-siderable plasticity in anatomical, chemical and physicalwood properties provides a unique opportunity to dissect themolecular and biochemical mechanisms responsible forsuch differences.

Wood formation (xylogenesis) includes four major steps:cell division, cell expansion, secondary cell wall thickeningand programmed cell death (reviewed by Lachaud et al. [7]

and Plomion et al. [9]). It is a complex phenomenon driven bythe coordinate expression of numerous genes especiallyinvolved in the biosynthesis and the assembly of poly-saccharides, lignins, and cell wall proteins [8, 10]. Up to now,the study of molecular mechanisms involved in the develop-ment of wood has mainly taken a transcriptomic approach,combining expressed sequence tag (EST) sequencing andtranscript profiling [11–18]. Comparatively, there has beenno large-scale project to identify proteins from differentiat-ing secondary xylem, and only few studies have reported on ahandful of proteins in wood forming tissue [19–24]. Theobjective of the present work was to partially fill this gap andprovide for the first time in a forest tree species an overviewof the proteome expressed in this highly specialized tissue,and to serve as a basis for future proteome comparisons ofenvironmentally challenged trees, and in the course of theirdevelopment.

Maritime pine (Pinus pinaster Ait.), a conifer of greateconomic and ecological interest in Southwestern Europe(where it covers 4 millionhectares), was chosen as a modelspecies. A reference map was first obtained using high reso-lution 2-DE with proteins extracted from differentiatingxylem associated to the six types of wood mentioned above. Atotal of 300 spots were then excised from the gels and ana-lyzed by LC ESI-MS/MS, MALDI-TOF MS or internal se-quencing. The identified proteins are discussed and classi-fied based on their putative function and their behavior inthe six types of wood. Finally, the expression levels of 95 pro-teins quantified by 2-DE was compared with mRNA levelsquantified by EST counting.

Figure 1. The six types of wood typically found in a conifer tree. (A) Juvenile wood (JW) vs. mature wood (MW),(B) early wood (EW) vs. late wood (LW), and (C) compression wood (CW) vs. opposite wood (OW). (D) Upper andlower part of a leaning stem of a 4 months bent tree showing the red wood phenotype of CW immediately afterdebarking, 14-year-old tree.

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 3: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3733

2 Material and methods

2.1 Sampling differentiating secondary xylem tissue

To take into account the natural variability found in the woodof an adult conifer tree, differentiating xylem tissues weresampled: (i) at the base (breast height) and at the top of thestem of a 30-year-old maritime pine tree, corresponding toxylem associated to MW (formed by a 25-year-old cambium)and JW (formed by a 3-year-old cambium), respectively.Samples were taken in April (27.04.01). (ii) in April(25.04.00) and August (23.08.00) of two 14-year-old maritimepine trees belonging of the same clone (accession #4015),corresponding to xylem associated to EW and LW, respec-tively. (iii) in the upper and lower side of a 14-year-old mar-itime pine genotype (accession #105), whose grafted copieswere bent to a 157 angle by tying their trunk to neighbortrees, and sampled after 2 years of mechanical bending, cor-responding to xylem associated to OW and CW, respectively.Samples were taken in August (23.08.00).

After that, bark, phloem and cambium were peeled fromthe stem, scrapings were taken from exposed differentiatingxylem, immediately frozen in liquid N2 and stored at 2807Cuntil used for protein extraction.

2.2 Protein extraction and quantification

Starting from 500 mg fresh tissue, total protein of each of thesix samples described above was extracted following the pro-cedure described by Damerval et al. [25], with the followingmodifications: (i) for protein resolubilization, the “UKS”buffer was replaced by “TCT” buffer (urea 7 M, thiourea 2 M,Triton X-100 0.4%, CHAPS 4%, DTT 10 mM, IPG buffer 1%),(ii) samples were then centrifuged (4 min, 2000 rpm, 207C)and the supernatant was transferred to a new Eppendorftube. This step was added in order to insure that all cellularfragments were removed from the extract. Proteins werestored at 2807C. Three extractions were completed for eachsample and pooled for protein quantification. The resultingmix was quantified over six replicated assays, using the pro-tocol described by Ramagli et al. [26]. The mean concentra-tion was then calculated and used to load 300 mg of proteinson each IPG strip.

2.3 2-DE

2-DE [27] was used to analyze total protein from the xylemsamples following the procedure of Bahrman et al. [28]adapted for the IPGphor system (Amersham Biosciences,Uppsala, Sweden). For the IEF, 24 cm strips were used with alinear pH gradient ranging from 4 to 7. Proteins were mixedwith a strip rehydration solution (urea 7 M, thiourea 2 M, Tri-ton X-100 0.4%, CHAPS 4%, DTT 10 mM, IPG buffer 1%).The IPGphor system was then programmed for 12 h at 30 V(active rehydration), 1 h at 200 V, 1 h at 500 V, 1 h at 1000 V,

30 min from 1000 V to 8000 V and finally 8000 V per hour toachieve a total of 74 000 Vh. After approximately 15 h of IEF,strips were equilibrated (SDS saturation) with a 10 mL ofequilibration solution (Tris-HCl pH 8.8 50 mM, urea 6 M,glycerol 30%, SDS 2%, bromophenol blue). Equilibrationwas performed in two steps, with DTT (65 mM) in the firstequilibration, and iodoacetamide (135 mM) in the secondequilibration (without DTT). SDS-PAGE was performed bybatches of 15 gels run in a buffer (Tris 25 mM, glycine 0.2 M

and SDS 0.1 M) at 110 V for 17 h. To ensure gel reproduci-bility, five replicates were performed for each sample, result-ing in a total of 30 gels from which the four best were select-ed with the help of the image analysis software.

2.4 Gel staining

CBB G-250 (Bio-Rad, Hercules, CA, USA) was used for gelstaining. Gels were fixed for 2 h in a solution containing2% phosphoric acid and 50% ethanol. After three waterwashings of 30 min each, the gels were placed in an incuba-tion solution (methanol 34%, ammonium sulfate 17%,phosphoric acid 2%) for 1 h, and then immersed in a stain-ing solution (methanol 34%, ammonium sulfate 17%, phos-phoric acid 2%, Coomassie blue 0.05%) for 5 days. Finally,the gels were stored in a 5% acid acetic solution before scan-ning and spot picking after several days.

2.5 Image acquisition and spot detection

Stained gels were digitalized using the M141 image scannerand the LabScan software (Amersham Biosciences). First, acalibration with a grey scale was necessary to transform greylevels into OD values for each pixel of the gel picture. Thecalibration method used was the colloidal blue methoddescribed in the LabScan manual. All the gel pictures weresaved as tiff files. Image analysis was performed using theImage Master 2D-Elite software (IM2D; Amersham Bio-sciences). The 30 gel images were placed in one folder. Thewizard detection method proposed by the software was usedto detect the spots. Then, automatically detected spots weremanually checked, and some of them manually added orremoved. Following the detection procedure, the volume foreach spot corresponded to a gross value. In order to eliminatethe background from this gross value, the mode of non spotof IM2D was used. Finally, all the gels were matched in orderto attribute a common spot identity for the same spotsderived from different images. For this, we used the auto-matically matching options of IM2D. After visual checking ofthe matching, the IM2D software was used to construct amaster gel (reference gel, Fig. 2). For each sample, when aprotein was detected in all of the four replicates, this proteinwas automatically added to the master gel, thus creating areference map of wood forming tissue. Normalized volumeswere finally obtained using the total spot volume normal-ization procedure of IM2D.

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 4: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3734 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751

Figure 2. Reference 2-DE map for maritime pine wood forming tissue (4–7 linear gradient). Proteins that were identified are marked witharrows and numbers following Table 1. Unknown function proteins are squared.

2.6 Characterization by MS

2.6.1 In-gel protein digestion

CBB-stained protein spots were manually excised from thegels and washed twice with ultra-pure water. Spots weresubsequently washed in H2O/MeOH/acetic acid (47.5:47.5:5)until destaining. The solvent mixture was removed and re-placed by ACN. After shrinking of the gel pieces, ACN wasremoved and gel pieces were dried in a vacuum centrifuge.Gel pieces were rehydrated in 10 ng/mL trypsin (Sigma-Aldrich, St. Louis, MO, USA) in 50 mM NH4HCO3 andincubated overnight at 377C. The supernatant was removedand stored at 2207C, and the gel pieces were incubated15 min in 50 mM NH4HCO3 at room temperature underrotary shaking. This second supernatant was pooled with theprevious one, and a H2O/ACN/HCOOH (47.5:47.5:5) solu-tion was added to the gel pieces for 15 min. This step was

repeated once. Supernatants were pooled and concentratedin a vacuum centrifuge to a final volume of 30 mL. Digestswere finally acidified by addition of 1.8 mL of acetic acid andstored at 2207C.

2.6.2 On-line capillary HPLC nanospray ion trap

MS/MS analysis

Peptide mixtures were analyzed by on-line capillary HPLC(LC Packings, Amsterdam, The Netherlands) coupled to ananospray LCQ ion trap mass spectrometer (Thermo-Finnigan, San Jose, CA, USA). Peptides were separated on a75 mm id615 cm C18 PepMapTM column (LC Packings).The flow rate was set at 200 nL/min. Peptides were elutedusing a 5–50% linear gradient of solvent B in 30 min (sol-vent A was 0.1% formic acid in 5% ACN, and solvent B was0.1% formic acid in 80% ACN). The mass spectrometer wasoperated in positive ion mode at a 2.5 kV needle voltage and a

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 5: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3735

44 V capillary voltage. Data acquisition was performed in adata-dependent mode consisting of alternatively in a singlerun, a full scan MS over the range m/z 50–2000 and a fullscan MS/MS in an exclusion dynamic mode. MS/MS datawere acquired using a 2 m/z units ion isolation window, a35% relative collision energy, and a 5 min dynamic exclusionduration. Peptides were identified with SEQUEST (Thermo-Finnigan, Torrence, CA, USA) using the 18 254 Pinus pinasterEST (http://cbi.labri.fr/outils/SAM/COMPLETE/index.php),and the 59 447 Pinus taeda xylem EST comprising 8046 con-tigs and 12 437 singletons (http://pinetree.ccgb.umn.edu/).The contig names in Table 1 correspond to the Novem-ber 2002 assembly [29]. The Swiss-Prot database (http://us.expasy.org/sprot/) was also used to evaluate the rate of proteinidentification using nonconiferous nucleotide sequences.

2.6.3 PMF by MALDI-TOF MS

For 57 spots (six of which being also sampled for LC ESI-MS/MS analysis), we used MALDI-TOF MS following the proto-col and analysis procedure described by Sarry et al. [30]. TheMASCOT search engine software (Matrix Science, London,UK) was used to search the NCBI nonredundant and specificpine EST databases on a local server.

2.7 Differentiating xylem cDNA library construction

and EST sequencing

A composite cDNA library was obtained using equal amountsof total RNA extracted from the same samples as describedfor the protein analysis, but for JW and MW. Total RNA weremixed and poly A(1) RNA isolated from this bulked sample.The cDNA library was made using the l-ZAP-cDNA synthe-sis kit (Stratagene, La Jolla, CA, USA). Approximately10 000 l clones were excised to generate plasmid clones. The10 000 plasmid clones were sequenced using the Templifi kit(Amersham Biosciences), by single pass from the 5’-end togenerate the EST collection. Only sequences longer than60 nucleotides were kept for further analysis. EST annotationwas based on a search for homology with public protein andnucleic acid sequence databases using the BLAST software[31]. Homologs were sequentially searched in Swiss-Prot(BLASTX), TrEMBL (BLASTX), EMBL (BLASTN), and lastlyin dbEST database (BLASTN). At each step, the process wasstopped if a gene with similar sequence was found (definedby an expected value lower than 1025 for BLASTX and 10210

for BLASTN searches). A total of 8429 EST were finally sub-mitted to dbEST (http://www.ncbi.nlm.nih.gov/dbEST/), andcan be retrieved using the search fields organism [Pinuspinaster] and tissue_type[xylem].

2.8 Statistical analyses

To appreciate the relatedness between the six types of wood(i.e., JW, MW, EW, LW, OW, CW), based on a proteomic dis-tance obtained from either the 1039 detected spots, or a

restricted dataset of 215 spots (the 175 known and 40 un-known function proteins), we used the hierarchical cluster-ing software EPCLUST available at URL: http://ep.ebi.ac.uk/EP/. The Euclidian distance and UPGMA algorithm wereused for the analysis. The same software and options wereused to cluster the 215 spots according their log2 trans-formed expression profiles along the six samples. Simplet-tests were performed for each pair-wise comparison,namely JW vs. MW, EW vs. LW, and OW vs. CW, to detectthose proteins showing significant (p-value , 0.01) onto-genic, seasonal, and gravitational effect.

3 Results and discussion

3.1 2-DE reference map of maritime pine wood

forming tissue

The 2-DE reference map of maritime pine wood formingtissue was established using proteins extracted from differ-entiating xylem associated to JW, MW, EW, LW, CW and OW,and separated by 2-DE. For each samples five replicated gelswere performed. After colloidal blue staining, they werescanned with the LabScan software and analyzed using theIM2D software. The image obtained for differentiating xylemassociated to OW after 2 years of bending (replicate #1) wasrandomly chosen to build the reference gel (master gel) onwhich spots specifically detected on other samples (through-out the four best replicates) were added. Overall, 445, 468,506, 581, 552, 570 spots were detected in MW, JW, EW, LW,OW, and CW, respectively. A total of 1039 spots were finallyplaced on the reference map (Fig. 2), among which 300 pro-teins (29%) were excised from the polyacrylamide gel andanalyzed by mass spectrometry or internal microsequencing.As shown in Fig. 2, spots were picked randomly to ensure agood representation in terms of pH, molecular weight andprotein abundance.

3.2 Protein identification success rate

LC ESI-MS/MS analysis of the 240 spots was used for proteinidentification using protein (Swiss-Prot) and nucleotide(Pinus pinaster and Pinus taeda EST and contigs) databases.The overall identification success rate was 67.9%, corre-sponding to 163 spots identified. It should be noted thatsearching both databases appears quite redundant, since inonly five cases protein identification was achieved usingSwiss-Prot. It should also be noted that for 71 of the identifiedspots, the same hit was obtained in both nucleotide and pro-tein databases. In other words, the overlap in the number ofproteins identified in both databases was 43.6%. Thus, thepine EST allowed the identification of an additional 87 spots.This result clearly indicates the utility of pine EST to achievea high rate of protein identification. As for the remainingspots, 40 (16.7%) presented no homology in the query data-bases. Given the amount of pine xylem EST in public data-

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 6: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3736 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751Tab

le1.

IM2D

spot

IDMe

thod

Hiton

datab

asea)

(Matc

hesb) )

Cove

r-ag

ec)Co

nsen

suso

rsin

gleton

Id)Ac

cess

ionc)

Assig

nmen

tpI

/Mrf)

pI/M

rg)Ac

cess

ionnu

mber

Spec

iesMe

anno

rmali

zedv

olume

h)Me

anpro

tein

volum

ei)M

Jp-

value

EL

p-va

lueC

Op-

value

Amino

acid

metab

olism

166

MS/M

SPp

7(2)

19.1

RS09

E06(

root)

BX67

8462

2-Iso

propy

lmala

tesy

nthas

eA(EC

2.3.3.

13)

6.03/6

0687

5.66/6

4320

O049

73Ly

cope

rsico

nesc

ulentu

m–

––

722

0.011

36

90.0

231

11.21

184

MS/M

SPp

(3)15

.103

0C04

(xylem

)BX

2499

15Ald

ehyd

edeh

ydrog

enas

e(EC

1.2.1.

3)6.3

7/583

186.0

5/544

02P2

0000

Bost

aurus

134

520.1

462

148

182

0.454

815

218

40.2

301

166.4

423

5MS

/MS

Pp(2)

10CN

1576

(root)

AL75

1232

Amino

acyla

se-1

(EC3.5

.1.14

)5.4

6/531

015.7

7/458

55Q0

3154

Homo

sapie

ns–

––

029

0.001

519

130.4

333

15.04

241

MS/M

SPp

7(8)

46.3

CN15

77(ro

ot)AL

7512

33Am

inoac

ylase

-1(EC

3.5.1.

14)

5.44/5

4028

5.77/4

5856

Q031

54Ho

mosa

piens

3413

0.002

19

220.0

509

1113

0.384

313

.5523

MS/M

SPp

*(4)

23.8

087B

11(xy

lem)

BX25

3702

Amino

pepti

dase

N(EC

3.4.11

.2)5.4

9/104

359

5.14/9

8726

P048

25Es

cheri

chia

coli

2439

0.016

196

300.0

013

2313

<10-4

40.5

122

MS/M

SPp

*(3)

14.4

070G

05(xy

lem)

BX25

2790

D-3-p

hosp

hogly

cerat

edeh

ydrog

enas

e(EC

1.1.1.

95)

6.54/7

6786

5.22/6

0576

O041

30Ar

abido

psis

thalia

na–

––

––

–16

130.5

218

7.33

159

MS/M

SPp

*(3)

16.9

CN64

5(xy

lem)

BX25

2807

D-3-p

hosp

hogly

cerat

edeh

ydrog

enas

e(EC

1.1.1.

95)

5.82/6

2570

5.22/6

0576

O041

30Ar

abido

psis

thalia

na0

90.1

233

098

0.004

694

100

0.331

673

.0368

3MS

/MS

Pp7

(5)28

CN37

6(xy

lem)

BX25

0469

Glutat

hione

S-tra

nsfer

ase(

EC2.5

.1.18

)5.6

4/254

415.3

1/250

40P3

2111

Solan

umtub

erosu

m–

––

026

0.030

013

00.0

015

9.88

684

MS/M

SPp

7(8)

42.2

CN37

6(xy

lem)

BX25

0469

Glutat

hione

S-tra

nsfer

ase(

EC2.5

.1.18

)5.4

3/248

205.3

1/250

40P3

2111

Solan

umtub

erosu

m–

––

02

0.121

610

00.0

002

349

9MS

/MS

Pt7(3)

8.1co

ntig6

593_

3BG

0405

08Glu

tathio

neS-

trans

feras

e(EC

2.5.1.

18)

5.56/2

4431

5.78/2

5358

O498

21Ca

ricap

apay

a15

00.0

035

3717

90.0

002

8650

0.000

188

.1974

2MS

/MS

Pp*(

5)10

.3CN

167(

xylem

)BX

2556

17S-

Aden

osyl-

L-hom

ocys

teine

hydro

lase(

EC3.3

.1.1)

5.92/5

6287

5.51/5

3070

P502

48Ni

cotia

natab

acum

912

0.723

713

414

40.6

833

––

–69

.4619

7MS

/MS

Pp*(

9)26

.3CN

167(

xylem

)BX

2556

17S-

Aden

osyl-

L-hom

ocys

teine

hydro

lase(

EC3.3

.1.1)

6.00/5

5868

5.51/5

3070

P502

48Ni

cotia

natab

acum

093

0.003

797

890.7

938

211

215

0.922

615

2.86

260

MS/M

SPp

*(11

)36

.9CN

670(

xylem

)BX

2503

80S-

Aden

osylm

ethion

inesy

ntheta

se(EC

2.5.1.

6)6.1

7/497

455.5

3/431

41P5

0300

Pinus

bank

siana

––

–0

120.0

008

8053

0.015

536

.2126

3MS

/MS

Pp*(

9)21

.3CN

670(

xylem

)BX

2489

42S-

Aden

osylm

ethion

inesy

ntheta

se(EC

2.5.1.

6)5.8

9/490

905.5

3/431

41P5

0300

Pinus

bank

siana

––

–2

40.3

197

3822

0.001

016

.6827

3MS

/MS

Pp*(

14)

33.3

CN67

0(xy

lem)

BX24

8942

S-Ad

enos

ylmeth

ionine

synth

etase

(EC2.5

.1.6)

6.03/4

7389

5.53/4

3141

P503

00Pin

usba

nksia

na0

127

0.000

325

330.2

796

6449

0.223

242

.7927

5MS

/MS

Pp*(

10)

25.1

CN22

9(roo

t)BX

6660

55S-

Aden

osylm

ethion

inesy

ntheta

se(EC

2.5.1.

6)5.5

5/479

385.5

3/431

41P5

0300

Pinus

bank

siana

1627

0.162

617

120.3

169

2721

0.002

319

.2727

9MS

/MS

Pp*(

11)

31.6

CN22

9(roo

t)BX

6660

55S-

Aden

osylm

ethion

inesy

ntheta

se(EC

2.5.1.

6)5.4

5/475

365.5

3/431

41P5

0300

Pinus

bank

siana

145

301

0.003

223

616

00.0

038

220

179

0.014

619

8.73

280

MS/M

SPp

*(9)

30.2

CN22

7(roo

t)BX

6819

98S-

Aden

osylm

ethion

inesy

ntheta

se(EC

2.5.1.

6)6.1

9/466

305.7

4/431

93P4

6611

Orys

asati

va–

––

1667

0.003

223

317

00.0

397

121.6

128

2MS

/MS

Pp*(

3)20

.1CN

616(

xylem

)BX

2556

16S-

Aden

osylm

ethion

inesy

ntheta

se(EC

2.5.1.

6)5.6

7/471

355.7

6/426

25P4

3282

Lyco

persi

cone

scule

ntum

126

281

0,003

926

035

<10-4

100

540.0

002

112.2

328

3MS

/MS

Pp*(

9)50

CN61

5(xy

lem)

BX25

0974

S-Ad

enos

ylmeth

ionine

synth

etase

(EC2.5

.1.6)

5.93/4

5790

5.76/4

2625

P432

82Ly

cope

rsico

nesc

ulentu

m–

––

598

<10-4

262

78<1

0-411

0.730

3MS

/MS

Pp*(

10)

23.3

CN67

0(xy

lem)

BX24

8942

S-Ad

enos

ylmeth

ionine

synth

etase

(EC2.5

.1.6)

6.03/4

2731

5.53/4

3141

P503

00Pin

usba

nksia

na–

––

250

0.000

110

160.1

141

12.78

313

MS/M

SPp

(2)9

CN67

0(xy

lem)

BX25

0380

S-Ad

enos

ylmeth

ionine

synth

etase

(EC2.5

.1.6)

6.05/4

1844

5.53/4

3141

P503

00Pin

usba

nksia

na–

––

09

0.017

620

140.2

627

10.55

321

MS/M

SPp

*(2)

8.3CN

667(

xylem

)BX

2498

56S-

Aden

osylm

ethion

inesy

ntheta

se(EC

2.5.1.

6)5.9

5/424

245.7

4/431

93P4

6611

Orys

asati

va27

40,0

011

1421

0.083

415

140.7

202

15.69

668

MS/M

SSP

(2)10

.8P5

0303

S-Ad

enos

ylmeth

ionine

synth

etase

(EC2.5

.1.6)

5.94/4

1343

6.2/39

513

P503

03Ac

tinidi

achin

ensis

––

––

––

250

<10-4

6.27

782

MS/M

SPp

*(4)

9.8CN

667(

xylem

)BX

2498

56S-

Aden

osylm

ethion

inesy

ntheta

se(EC

2.5.1.

6)5.1

1/324

635.7

4/431

93P4

6611

Orys

asati

va12

00,0

351

30

0.132

7–

––

0.826

6Ed

man

SP(14

/15)

P503

00S-

Aden

osylm

ethion

inesy

ntheta

se(EC

2.5.1.

6)6.0

0/481

515.5

3/431

41P5

0300

Pinus

bank

siana

––

–20

622

80.3

547

618

455

0.016

337

6.67

Carbo

hydra

teme

taboli

sm13

4MS

/MS

Pt7(9)

27co

ntig7

733

CD02

7777

L-Asc

orbate

perox

idase

(EC1.1

1.1.11

)5.6

0/679

838.6

5/421

46Q3

9006

Arab

idops

istha

liana

817

0,029

144

880.0

052

3947

<10-4

54.54

431

MS/M

SPt

(4)13

.9co

ntig3

622_

1BG

0408

06L-A

scorb

atepe

roxida

se(EC

1.11.1

.11)

5.54/3

0528

8.65/4

2146

Q8LS

K6Ly

cope

rsico

nesc

ulentu

m–

––

20

0.143

710

150.0

561

6.73

476

MS/M

SPp

7(11

)30

.1CN

236(

xylem

)BX

2499

47L-A

scorb

atepe

roxida

se(EC

1.11.1

.11)

5.41/2

5533

5.52/2

7045

P485

34Pis

umsa

tivum

––

–28

530.1

233

2951

0.000

340

.3748

2Ed

man

SP(13

/15)

X800

36L-A

scorb

atepe

roxida

se(EC

1.11.1

.11)

5.55/2

4798

5.88/2

7928

Q390

06Ar

abido

psis

thalia

na31

930,0

108

110

377

0.001

725

724

30.3

1271

246.9

335

5MS

/MS

Pp7

(9)25

.8CN

515(

xylem

)BX

2488

14Fru

ctokin

ase(

EC2.7

.1.4)

4.75/3

8842

5.47/3

3743

P378

29So

lanum

tubero

sum

130

0,001

57

450.0

004

3125

0.363

027

.0336

0MS

/MS

Pp7

(9)26

.7CN

515(

xylem

)BX

2488

14Fru

ctokin

ase(

EC2.7

.1.4)

4.80/3

8680

5.47/3

3743

P378

29So

lanum

tubero

sum

180

260,0

010

127

205

0.002

519

215

90.0

310

170.9

232

2MS

/MS

Pt7(3)

24.1

conti

g625

1_2

BQ19

7338

NAD-

depe

nden

tsorb

itold

ehyd

rogen

ase

6.16/4

1315

6.75/4

0195

Q9ZR

22Ma

lusdo

mesti

ca3

40,8

182

2134

0.074

119

200.8

016

23.47

150

MS/M

SPp

*(9)

38.7

064E

07(xy

lem)

BX25

2436

Pyrop

hosp

hate

fructo

se6-p

hosp

hate

1-pho

spho

trans

feras

e(EC

2.7.1.

90)

6.31/6

6286

6.19/6

0076

Q411

41Ric

inusc

ommu

nis–

––

1376

0.007

292

112

0.064

373

.42

149

MS/M

SPt*

(2)8.6

conti

g683

6_1

BI64

3882

Pyrop

hosp

hate

fructo

se6-p

hosp

hate

1-pho

spho

trans

feras

e(EC

2.7.1.

90)

6.44/6

2870

6.19/6

0076

Q411

41Ric

inusc

ommu

nis0

00.3

559

2241

0.347

272

850.4

150

55.1

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 7: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3737Tab

le1.C

on

tin

ued

IM2D

spot

IDMe

thod

Hiton

datab

asea)

(Matc

hesb) )

Cove

r-ag

ec)Co

nsen

suso

rsin

gleton

Id)Ac

cess

ionc)

Assig

nmen

tpI

/Mrf)

pI/M

rg)Ac

cess

ionnu

mber

Spec

iesMe

anno

rmali

zedv

olume

h)Me

anpro

tein

volum

ei)M

Jp-

value

EL

p-va

lueC

Op-

value

148

MS/M

SPp

7(1)

6.206

4E07

(xylem

)BX

2524

36Py

ropho

spha

tefru

ctose

6-pho

spha

te1-p

hosp

hotra

nsfer

ase(

EC2.7

.1.90

)6.1

7/627

626.1

9/600

76Q4

1141

Ricinu

scom

munis

--

-0

160.0

003

2535

0.179

019

221

MS/M

SPt7

(2)9.7

conti

g388

8_1

BM13

3421

Pyrop

hosp

hate

fructo

se6-p

hosp

hate

1-pho

spho

trans

feras

e(EC

2.7.1.

90)

5.93/5

4039

5.77/5

3781

Q9M3

94Ar

abido

psis

thalia

na0

70.0

451

1520

0.305

013

160.3

466

15.97

67MS

/MS

Pt7(4)

8.8co

ntig7

811_

1CD

0268

15Tra

nske

tolas

e(EC

2.2.1.

1)6.5

0/885

126.1

2/799

78Q9

FPB7

Oryza

sativ

a–

––

––

–7

90.4

008

4.06

69MS

/MS

Pt7(3)

6.1co

ntig7

811_

1CD

0268

15Tra

nske

tolas

e(EC

2.2.1.

1)6.3

1/848

346.1

2/799

78Q9

FPB6

Oryza

sativ

a0

00.3

559

1983

0.002

712

112

70.7

212

87.52

484

MS/M

SPp

*(4)

21.8

CN44

2(xy

lem)

BX25

5804

Trios

epho

spha

teiso

meras

e(EC

5.3.1.

1)5.7

5/246

845.3

8/270

33Q9

SKP6

Arab

idops

istha

liana

310

248

0.044

524

534

30.0

005

284

245

0.006

127

9.26

579

MS/M

SPp

*(3)

8CN

626(

xylem

)BX

2504

192,3

-Bisp

hosp

hogly

cerat

e-ind

epen

dent

phos

phog

lycera

temu

tase(

EC5.4

.2.1)

5.83/7

1263

5.52/6

0780

P354

93Ric

inusc

ommu

nis0

30.0

905

210

<10-4

90

0.006

17.4

1

104

MS/M

SPp

7(2)

4.8CN

626(

xylem

)BX

2504

192,3

-Bisp

hosp

hogly

cerat

e-ind

epen

dent

phos

phog

lycera

temu

tase(

EC5.4

.2.1)

5.80/7

1444

5.52/6

0780

P354

93Ric

inusc

ommu

nis5

110.2

665

230

0.000

16

60.8

272

8.81

108

MS/M

SPp

*(5)

13.7

CN62

6(xy

lem)

BX25

0419

2,3-B

ispho

spho

glyce

rate-i

ndep

ende

ntph

osph

oglyc

erate

mutas

e(EC

5.4.2.

1)5.9

8/712

695.5

2/607

80P3

5493

Ricinu

scom

munis

380

0.002

80

175

<10-4

4559

0.006

669

.98

305

MS/M

SPp

(3)14

.1CN

1715

(root)

BX68

1260

Alcoh

olde

hydro

gena

se(EC

1.1.1.

1).6.4

8/454

176.6

1/414

32P1

7648

Fraga

riaan

anas

sa3

00.1

534

1145

0.148

417

230.2

888

24.09

298

MS/M

SPp

*(2)

21.5

CN80

(xylem

)BX

2499

35Alc

ohol

dehy

droge

nase

(EC1

.1.1.1

)6.1

1/425

355.9

2/411

16P1

4675

Solan

umtub

erosu

m4

40.9

375

1250

0.000

548

540.3

862

41.17

246

MS/M

SPt

(3)22

.6co

ntig1

9317

_2BG

0398

98Dih

ydrol

ipoam

ideac

etyltra

nsfer

ase(

EC2.3

.1.12

)5.8

1/510

187.5

4/596

52Q9

LVK7

Arab

idops

istha

liana

2455

0.005

410

290

0.277

143

460.5

205

69.9

239

MS/M

SPp

*(6)

18.3

CN19

8(roo

t)BX

6660

27En

olase

(EC4.2

.1.11

)5.7

5/515

175.7

1/481

32P4

2895

Zeam

ays

151

215

0.004

018

917

50.3

129

9598

0.503

613

9.39

211

MS/M

SPp

*(7)

21.4

CN19

8(roo

t)BX

6660

27En

olase

(EC4.2

.1.11

)5.9

7/561

105.7

1/481

32P4

2895

Zeam

ays

––

–26

611

00.0

047

5252

0.927

911

9.837

5MS

/MS

Pp*(

2)5.3

CN52

1(xy

lem)

BX24

9304

Fructo

se-bi

spho

spha

teald

olase

(EC4.1

.2.13

)5.9

3/366

155.9

6/384

47P2

9356

Spina

ciaole

racea

177

0.019

30

210.0

010

2112

0.033

413

.5189

MS/M

SPp

*(2)

11.9

CN75

2(xy

lem)

BX25

2576

Phos

phog

lucom

utase

(EC5.4

.2.2)

5.33/7

4448

5.56/6

3442

Q9SG

C1Ar

abido

psis

thalia

na0

135

0.000

118

219

00.6

817

140

127

0.025

915

9.74

171

MS/M

SPp

(6)40

CN18

79(ro

ot)BX

6819

93Ph

osph

ogluc

omuta

se(EC

5.4.2.

2)5.3

5/614

975.7

9/615

81Q9

LF71

Arab

idops

istha

liana

––

–7

120.0

212

1717

0.772

613

.2984

MS/M

SPp

*(3)

15.8

CN75

2(xy

lem)

BX25

2576

Phos

phog

lucom

utase

(EC5.4

.2.2)

5.39/7

8618

5.56/6

3442

Q9SG

C1Ar

abido

psis

thalia

na12

00.0

098

1413

0.779

27

80.6

665

10.92

349

MS/M

SPp

*(11

)46

.1CN

784(

xylem

)BX

2508

05UD

P-glu

cose

protei

ntran

sgluc

osyla

se(EC

2.4.1.

15)

5.49/3

8689

5.71/4

1576

Q8RU

27So

lanum

tubero

sum

413

321

0.075

929

831

70.2

410

198

212

0.476

225

6.06

15MS

/MS

Pt7(2)

16.8

conti

g993

3_2

BF06

0543

Acon

itase

(EC4.2

.1.2)

6.25/1

0786

25.7

9/980

92Q9

SIB9

Arab

idops

istha

liana

––

––

––

1119

0.097

97.5

719

MS/M

SPp

7(4)

25.7

RS02

C10(

root)

AL75

0948

Acon

itase

(EC4.2

.1.3)

6.36/1

0383

15.8

8/980

08Q9

FVE9

Nico

tiana

tabac

um0

10.1

779

2035

0.300

133

390.4

820

31.8

Cellw

all31

0MS

/MS

Pp7

(10)

28.8

CN12

58(xy

lem)

BX25

1221

Arab

inoga

lactan

/prol

in-ric

hprot

ein4.0

0/410

003.8

/1217

9Q9

LLZ5

Pinus

taeda

227

950.0

098

840

0.001

118

210.5

129

30.87

586

MS/M

SPt

(5)22

.3co

ntig3

490_

3BE

1236

50Ar

abino

galac

tan/pr

oline

-rich

protei

n4.9

4/643

373.8

/1217

9Q9

LLZ5

Pinus

taeda

7274

0.849

039

00.0

044

––

–9.7

561

7MS

/MS

Pp(6)

34.3

CN73

7(xy

lem)

BX25

5373

Arab

inoga

lactan

/proli

ne-ri

chpro

tein

4.15/3

7074

3.8/12

179

Q9LL

Z5Pin

ustae

da30

378

0.000

275

190.0

561

70

0.000

825

.2262

3MS

/MS

Pp7

(4)25

.7CN

680(

xylem

)BX

2489

77Ar

abino

galac

tan/pr

oline

-rich

protei

n4.1

1/328

393.8

/1217

9Q9

LLZ5

Pinus

taeda

371

178

0.014

417

652

0.011

5–

––

57.04

618

MS/M

SPp

*(2)

001D

01(xy

lem)

BX24

8813

Caffe

icac

id3-O

methy

ltrans

feras

elike

protei

n(E

C2.1.

1.68)

5.40/3

6929

5.71/4

1904

Q8L8

L1Ar

abido

psis

thalia

na86

760.4

118

2687

<10-4

110

0.072

030

.97

315

MS/M

SPp

*(4)

34.8

RN72

G02(

root)

CR39

4041

Cinna

myl-a

lcoho

ldeh

ydrog

enas

e(EC

1.1.1.

195)

6.21/4

1493

5.6/38

821

P416

37Pin

ustae

da39

106

0.125

411

420

20.0

161

232

211

0.535

018

9.93

665

MS/M

SPp

7(5)

26CN

331(

root)

BX68

1393

Perox

idase

54pre

curso

r(EC1

.11.1.

7)5.5

0/488

754.5

4/341

59Q9

FG34

Arab

idops

istha

liana

260

0.000

519

130.2

852

60

0.007

69.4

724

7MS

/MS

Pt(2)

15.6

conti

g537

2_2

BF61

0181

Xylos

eiso

meras

e(EC

5.3.1.

5)5.4

0/528

245.3

1/536

14Q4

0082

Horde

umvu

lgare

922

0.109

70

76<1

0-426

210.0

188

30.63

439

Edma

nSP

(5/5)

Z829

82Ca

ffeoy

lCoA

O-me

thyltra

nsfer

ase(

EC2.1

.1.10

4)4.9

5/289

615.3

0/277

81Q4

2945

Nico

tiana

tabac

um51

837

60.0

232

339

365

0.343

637

930

20.0

035

346.2

348

9MS

/MS

Pt(2)

5.2co

ntig7

614_

2BF

5180

75Ca

ffeoy

lCoA

O-me

thyltra

nsfer

ase(

EC2.1

.1.10

4)6.1

2/253

865.4

1/295

78P2

2734

Rattu

snorv

egicu

s–

––

06

0.183

531

180.0

949

13.83

Cytos

kelet

on16

3MS

/MS

Pp7

(2)10

.1CN

869(

xylem

)BX

2493

35Ac

tin5.4

1/624

085.3

1/416

16P3

0171

Solan

umtub

erosu

m17

480.0

315

4631

0.004

923

210.4

936

30.2

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 8: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3738 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751Tab

le1.C

on

tin

ued

IM2D

spot

IDMe

thod

Hiton

datab

asea)

(Matc

hesb) )

Cove

r-ag

ec)Co

nsen

suso

rsin

gleton

Id)Ac

cess

ionc)

Assig

nmen

tpI

/Mrf)

pI/M

rg)Ac

cess

ionnu

mber

Spec

iesMe

anno

rmali

zedv

olume

h)Me

anpro

tein

volum

ei)M

Jp-

value

EL

p-va

lueC

Op-

value

299

MS/M

SPp

*(5)

10.1

CN11

68(xy

lem)

BX25

5308

Actin

5.46/4

3549

5.31/4

1709

P534

92Ar

abido

psis

thalia

na52

332

60.0

228

515

207

0.002

612

812

80.9

785

244.6

530

0MS

/MS

Pp*(

3)7.2

CN54

9(xy

lem)

BX25

5342

Actin

5.59/4

3417

5.31/4

1709

P534

92Ar

abido

psis

thalia

na46

150.0

200

237

0.009

10

50.0

009

8.64

373

MS/M

SPp

*(10

)28

.4CN

1168

(xylem

)BX

2553

08Ac

tin5.6

1/372

265.3

1/417

09P5

3492

Arab

idops

istha

liana

1616

0.968

625

410.0

601

2044

0.000

832

.7729

7Ed

man

SP(5/

5)P2

4902

Actin

5.31/4

2734

5.31/4

1709

P534

92Ar

abido

psis

thalia

na43

7134

550.0

076

3305

2631

0.054

516

2115

670.7

122

2280

.8922

6MS

/MS

Pp*(

10)

22CN

179(

xylem

)BX

2488

16Tu

bulin

alpha

chain

5.07/5

4202

4.92/4

9621

P462

59Pis

umsa

tivum

338

286

0.409

734

324

10.0

060

158

127

0.019

921

7.38

242

MS/M

SPp

*(10

)40

.3CN

179(

xylem

)BX

2488

16Tu

bulin

alpha

chain

5.12/5

3290

4.92/4

9621

P462

59Pis

umsa

tivum

988

800

0.084

595

397

70.8

652

810

658

0.026

884

9.64

781

MS/M

SPp

*(2)

12.9

CN17

9(xy

lem)

BX25

5614

Tubu

linalp

hach

ain5.5

8/335

204.7

8/501

07Q9

ZPN6

Eleus

ineind

ica32

00.0

010

54

0.635

6–

––

2.21

212

MS/M

SPp

*(10

)19

.7CN

791(

xylem

)BX

2502

73Tu

bulin

beta

chain

4.88/5

7192

4.78/5

0107

Q9ZP

N7Ele

usine

indica

187

205

0.701

922

226

80.2

241

255

251

0.911

124

9.09

218

MS/M

SPp

*(18

)35

.6CN

791(

xylem

)BX

2502

73Tu

bulin

beta

chain

4.90/5

3820

4.78/5

0107

Q9ZP

N7Ele

usine

indica

141

160

0.433

012

219

90.1

101

138

191

0.003

916

2.521

7MS

/MS

Pp*(

8)14

.8CN

791(

xylem

)BX

2502

73Tu

bulin

beta

chain

4.92/5

4018

4.79/5

0011

Q436

97Ze

amay

s50

853

70.7

351

439

299

0.003

115

817

00.7

792

266.4

821

5MA

LDI-T

OFPp

7(11

1)BE

5821

28Tu

bulin

beta

chain

4.92/5

4542

4.82/4

9851

P180

26Ze

amay

s43

340

70.7

152

270

221

0.270

515

899

0.003

318

6.71

216

MALD

I-TOF

Pp7

(76)

BX25

5731

Tubu

linbe

tach

ain4.9

6/545

324.8

2/498

51P1

8026

Zeam

ays

450

266

0.030

129

411

90.0

071

5261

0.336

613

1.31

223

MALD

I-TOF

Pp7

(112)

BG03

9745

Tubu

linbe

tach

ain4.7

5/533

514.8

2/498

51P1

8026

Zeam

ays

970

<10-4

9323

00.0

016

251

231

0.412

820

1.27

Defen

se54

1MS

/MS

Pp*(

6)33

.8CN

1136

(xylem

)BX

2516

2317

.1kD

aclas

sIIh

eats

hock

protei

n5.4

7/197

716.3

2/170

59P1

9242

Pisum

sativ

um14

00.0

040

920

1<1

0-415

121

60.0

611

144.0

954

2MS

/MS

Pp7

(5)24

.9CN

523(

xylem

)BX

2502

1117

.1kD

aclas

sIIh

eats

hock

protei

n5.4

2/197

206.3

2/170

59P1

9242

Pisum

sativ

um–

––

081

0.000

525

560.0

157

40.36

733

MS/M

SPp

7(13

)43

.2CN

957(

xylem

)BX

2546

1217

.4kD

aclas

sIhe

atsh

ockp

rotein

4.90/2

0863

5.81/1

7365

P316

73Or

yzasa

tiva

––

–0

90.1

884

––

–2.1

653

3MS

/MS

Pp*(

9)31

.500

3D03

(xylem

)BX

2489

7017

.8kD

aclas

sIhe

atsh

ockp

rotein

6.25/2

0483

6.77/1

8123

P190

37Ar

abido

psis

thalia

na–

––

––

–5

80.0

651

3.24

836

MS/M

SPp

*(9)

28.1

CN10

82(xy

lem)

BX25

5777

18.0

kDac

lassI

heat

shoc

kprot

ein5.6

5/204

336.9

3/180

21P2

7397

Dauc

usca

rota

250

<10-4

014

80.0

331

––

–36

.9773

4MS

/MS

Pp*(

8)32

.9CN

1082

(xylem

)BX

2557

7718

.0kD

aclas

sIhe

atsh

ockp

rotein

5.62/2

0738

6.93/1

8021

P273

97Da

ucus

carot

a0

185

0.001

0–

––

––

–0

535

MS/M

SPp

7(3)

15.1

058F

10(xy

lem)

BX25

2024

22.7

kDac

lassI

Vhea

tsho

ckpro

tein

5.05/2

0381

6.17/1

9658

P192

44Pis

umsa

tivum

––

–6

650.0

220

3729

0.066

034

.0415

8MS

/MS

Pp7

(5)14

.2CN

748(

xylem

)BX

2514

9760

kDac

hape

ronin

5.75/6

2751

5.19/5

7611

P291

97Ar

abido

psis

thalia

na12

680.0

109

165

103

0.080

151

480.4

112

91.84

7MS

/MS

Pp7

(7)31

.7CN

1455

(root)

BX67

9313

70kD

ahea

tsho

ckpro

tein

5.42/1

1296

55.1

7/930

49Q9

AQZ5

Oryza

sativ

a–

––

––

–27

170.0

013

10.95

9MS

/MS

Pp*(

7)39

CN14

55(ro

ot)BX

6793

1370

kDah

eats

hock

protei

n5.3

4/112

791

5.17/9

3049

Q9AQ

Z5Or

yzasa

tiva

––

–0

370.0

032

4022

0.000

924

.7610

MS/M

SPp

7(4)

21.1

CN14

55(ro

ot)BX

6793

1370

kDah

eats

hock

protei

n5.3

8/112

791

5.17/9

3049

Q9AQ

Z5Or

yzasa

tiva

––

––

––

5328

<10-4

20.25

76MS

/MS

Pp*(

4)11

.5CN

769(

xylem

)BX

2491

7070

kDah

eats

hock

protei

n4.8

3/820

375.1

1/711

82P0

9189

Petun

iahy

brida

175

35<1

0-411

616

80.0

223

109

990.0

820

123.0

792

MS/M

SPp

*(2)

9.310

8H08

(xylem

)BX

2549

9270

kDah

eats

hock

protei

n5.4

3/753

865.2

7/669

53Q0

1899

Phas

eolus

vulga

ris0

10.0

402

445

0.000

323

380.0

001

27.13

80Ed

man

SP(12

/12)

Y170

53HS

P70k

Da5.0

0/758

684.9

7/711

03O6

5719

Arab

idops

istha

liana

030

0.162

00

284

<10-4

245

207

0.101

718

4.09

81Ed

man

SP(14

/14)

Y170

54HS

P70k

Da5.1

3/758

694.9

7/711

03O6

5719

Arab

idops

istha

liana

03

0.294

10

167

0.002

517

918

20.8

187

131.8

388

Edma

nSP

(15/15

)Y1

7055

HSP7

0kDa

5.07/7

5371

4.97/7

1103

O657

19Ar

abido

psis

thalia

na0

330.1

584

043

30.0

005

441

359

0.125

430

8.45

508

MS/M

SPp

(4)23

.6CN

1071

(xylem

)BX

2521

95Ab

scisi

cstre

ssrip

ening

protei

n15.9

8/241

616.8

1/131

22Q0

8655

Lyco

persi

cone

scule

ntum

––

–0

250.0

298

131

305

<10-4

115.2

790

7MS

/MS

Pp7

(2)10

.302

6F11

(xylem

)BX

2496

52Ab

scisi

cstre

ssrip

ening

protei

n15.1

1/269

336.8

1/131

22Q0

8655

Lyco

persi

cone

scule

ntum

––

–6

00.0

876

––

–1.5

639

0MS

/MS

Pp7

(5)18

.5CN

223(

root)

BX66

6054

Absc

isics

tress

ripen

ing-lik

eprot

ein4.8

7/357

425.6

8/207

47Q9

3WZ6

Prun

uspe

rsica

02

0.306

723

76<1

0-468

770.3

230

61.14

49MS

/MS

Pp*(

13)

44.8

CN94

2(xy

lem)

BX24

8869

Heat

shoc

kprot

ein4.9

7/938

164.9

6/800

86P3

6181

Lyco

persi

cone

scule

ntum

––

–0

140.0

134

142

129

0.287

371

.4197

MS/M

SPt

(3)10

.2co

ntig9

44_3

BE99

7207

Heat

shoc

kprot

ein5.1

6/732

475.0

3/713

13P2

2953

Arab

idops

istha

liana

00

0.355

93

90.1

433

2413

0.042

612

.3891

0MS

/MS

Pp7

(5)22

068B

04(xy

lem)

BX25

2628

Late

embry

ogen

esis

likep

rotein

5.41/2

0229

4.84/1

6412

P465

18Go

ssyp

iumhir

sutum

340

0.000

57

00.1

340

––

–1.6

538

4MS

/MS

Pt(3)

13co

ntig1

842_

3BG

3183

37La

teem

bryog

enes

is-lik

eprot

ein4.7

5/353

83NA

O813

66Pr

unus

armen

iaca

41

0.037

410

00.0

316

3450

0.023

123

.3571

9MS

/MS

Pt(2)

11.8

conti

g184

2_3

BG31

8337

Late

embry

ogen

esis-

likep

rotein

4.80/3

5110

NAO8

1366

Prun

usarm

eniac

a8

00.0

005

044

<10-4

––

–10

.9587

4MS

/MS

Pp7

(2)21

.9CN

1236

(xylem

)BX

2521

62Os

r40g3

protei

n(ab

scisi

cacid

ands

altstr

ess

respo

nsive

)5.3

7/259

787.6

6/228

07O2

4213

Oryza

sativ

a–

––

021

0.005

5–

––

5.28

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 9: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3739Tab

le1.C

on

tin

ued

IM2D

spot

IDMe

thod

Hiton

datab

asea)

(Matc

hesb) )

Cove

r-ag

ec)Co

nsen

suso

rsin

gleton

Id)Ac

cess

ionc)

Assig

nmen

tpI

/Mrf)

pI/M

rg)Ac

cess

ionnu

mber

Spec

iesMe

anno

rmali

zedv

olume

h)Me

anpro

tein

volum

ei)M

Jp-

value

EL

p-va

lueC

Op-

value

183

MS/M

SPp

*(8)

58.1

039B

09(xy

lem)

BX25

0616

Putat

ivese

lenium

bindin

gprot

ein5.8

3/586

145.3

7/540

23O2

3264

Arab

idops

istha

liana

2215

0.107

127

120.0

023

76

0.608

613

.0768

2MS

/MS

Pp7

(4)15

.604

3B07

(xylem

)BX

2509

39Rip

ening

regula

tedpro

tein

4.35/2

4875

4.29/2

0248

Q9FR

34Ly

cope

rsico

nesc

ulentu

m58

10.0

001

125

0.249

512

00.0

033

7.49

524

MS/M

SPp

7(10

)25

.6CN

1167

(xylem

)BX

2499

53Sm

allhe

atsh

ockp

rotein

5.23/2

2024

4.97/1

7125

P118

90Ch

enop

odium

rubrum

––

–0

730.0

078

2125

0.269

329

.8452

5MS

/MS

Pp7

(10)

25.6

CN11

67(xy

lem)

BX24

9953

Small

heat

shoc

kprot

ein5.3

9/219

854.9

7/171

25P1

1890

Chen

opod

iumrub

rum–

––

60

0.135

421

210.8

339

11.93

516

MS/M

SPt

(4)14

.5co

ntig6

542_

2BE

0497

47Sm

allhe

atsh

ockp

rotein

5.35/2

2504

7.87/2

7451

Q9SE

11Fu

naria

hygro

metric

a–

––

046

0.033

832

360.6

422

28.31

86MS

/MS

Pt(2)

8.9co

ntig5

996_

3AW

8700

72Str

ess-i

nduc

edpro

tein,

sti1-l

ikepro

tein

6.09/7

8106

6.05/6

0408

Q8L7

24Ar

abido

psis

thalia

na–

––

013

0.014

625

310.1

555

17.15

94MS

/MS

Pt(2)

6.5co

ntig6

114_

3BF

6100

48Str

ess-i

nduc

edpro

tein,

sti1-l

ikepro

tein

6.28/7

5688

6/636

66Q9

STH1

Arab

idops

istha

liana

––

–0

220.0

137

5374

0.022

737

.3354

5MS

/MS

Pp*(

3)19

CN11

3(xy

lem)

BX24

9798

Supe

roxide

dismu

tase[

Cu-Zn

](EC1

.15.1.

1)5.9

5/195

715.7

5/153

67P2

4669

Pinus

sylve

stris

280

0.000

111

550.0

799

2530

0.214

530

.3548

5MS

/MS

Pt(2)

9.6co

ntig4

918_

4BF

1695

04De

hydro

asco

rbate

reduc

tase(

EC1.8

.5.1)

5.01/2

5420

7.59/2

8495

Q8LE

52Ar

abido

psis

thalia

na69

180.0

007

4065

0.056

646

430.7

849

48.37

Gene

sand

protei

nsex

press

ion25

2MS

/MS

SP(8)

25.2

Q9SE

I426

Sprot

ease

regula

torys

ubun

it6Bh

omolo

g5.9

3/500

425.4

2/457

51Q9

SEI4

Arab

idops

istha

liana

015

0.001

340

560.0

359

2735

0.009

339

.6512

6MS

/MS

Pt(6)

21.5

conti

g747

2_3

BM42

8171

40Sr

iboso

malp

rotein

5.21/6

7621

8.74/6

3290

Q8H2

L4Or

yzasa

tiva

––

–9

400.0

030

010

0.000

514

.955

2MS

/MS

Pp*(

4)21

.6CN

1785

(root)

BX68

1551

40Sr

iboso

malp

rotein

S12

5.06/1

8861

5.35/1

5285

Q9XH

S0Ho

rdeum

vulga

re38

0<1

0-412

110.9

261

03

0.292

46.3

938

7MS

/MS

Pp*(

4)24

.202

2B07

(xylem

)BX

2492

7760

Sacid

icrib

osom

alpro

tein

5.39/3

6015

5.15/3

4137

P503

46Gly

cinem

ax–

––

063

<10-4

3434

0.948

332

.9140

2MS

/MS

Pp7

(2)13

.502

2B07

(xylem

)BX

2492

7760

Sacid

icrib

osom

alpro

tein

5.36/3

4915

5.15/3

4137

P503

46Gly

cinem

ax51

350.0

312

4023

0.016

214

140.7

638

22.72

449

MS/M

SPt7

(2)11

.8co

ntig6

667_

3CD

0247

58Ch

apero

nin6.0

6/297

715.2

5/589

02Q9

4K05

Arab

idops

istha

liana

410

0.004

3–

––

1111

0.892

55.6

242

5MS

/MS

Pp7

(1)5.9

RN16

A02(

root)

BX67

6996

DNA-

dama

ge-re

pair/t

olerat

ionpro

teinD

RT10

25.1

8/316

785.2

7/252

41Q0

5212

Arab

idops

istha

liana

30

0.046

74

70.3

772

1212

0.992

08.8

439

1MS

/MS

Pp7

(8)27

.1CN

707(

root)

BX67

7176

Elong

ation

factor

1beta

4.45/3

6163

4.43/2

5117

P480

06Ar

abido

psis

thalia

na66

340.0

051

3413

0.011

622

190.7

335

22.05

432

MS/M

SPp

*(6)

33CN

1218

(xylem

)BX

2512

21Elo

ngati

onfac

tor1-b

eta4.2

8/303

384.4

1/243

51P9

3447

Pimpin

ellab

rachy

carpa

715

0.002

731

70.0

253

1112

0.701

215

.2943

3MS

/MS

Pp*(

8)24

.4CN

340(

root)

BX24

9583

Elong

ation

factor

1-beta

4.34/3

0267

4.41/2

4351

P934

47Pim

pinell

abrac

hyca

rpa83

620.0

032

2917

0.357

019

220.4

528

21.59

269

MS/M

SPp

*(6)

39.9

074E

06(xy

lem)

BX25

2896

Euka

ryotic

initia

tionf

actor

4A-11

5.24/4

7751

5.38/4

6872

Q404

65Ni

cotia

natab

acum

3849

0.258

036

140.0

028

2013

0.004

920

.6227

0MS

/MS

Pp*(

4)24

.507

4E06

(xylem

)BX

2528

96Eu

karyo

ticini

tiatio

nfac

tor4A

-115.1

9/473

305.3

8/468

72Q4

0465

Nico

tiana

tabac

um6

20.0

387

1235

0.002

59

120.0

974

16.7

271

MS/M

SPp

*(1)

4.9CN

918(

xylem

)BX

2492

25Eu

karyo

ticini

tiatio

nfac

tor4A

-145.3

1/472

175.3

8/468

46Q4

0467

Nico

tiana

tabac

um33

680.0

578

6171

0.298

560

600.9

837

62.77

551

MS/M

SPp

7(6)

56.2

CN13

29(ro

ot)BX

6783

86Gly

cine-r

ichRN

A-bin

dingp

rotein

5.62/1

8966

5.21/1

6006

P493

10Sin

apis

alba

381

238

0.001

014

618

0.004

60

32<1

0-448

.7547

0MS

/MS

Pp*(

5)16

.8CN

1726

(root)

BX68

1684

Prote

asom

esub

unita

lphat

ype3

(EC3.4

.25.1)

5.83/2

6313

6.11/2

7268

O243

62Sp

inacia

olerac

ea3

10.0

962

2232

0.467

729

270.4

121

27.45

477

MS/M

SPt

(4)13

.4co

ntig6

561_

1BQ

6548

71Pr

oteas

omes

ubun

italph

atyp

e4(EC

3.4.25

.1)5.3

6/254

836.1

7/274

48P5

2427

Spina

ciaole

racea

158

800.0

045

9214

50.0

647

042

<10-4

69.65

491

MS/M

SPp

*(8)

46.7

CN13

19(ro

ot)BX

6790

55Pr

oteas

omes

ubun

italph

atyp

e5-1

(EC3

.4.25

.1)4.5

5/242

574.7

/2596

4Q9

M4T8

Glycin

emax

320

0.000

39

90.9

368

910

0.672

99.1

754

8MS

/MS

Pp*(

8)40

CN12

81(ro

ot)CR

3929

19Pr

otein

kinas

eCinh

ibitor

5.58/1

9508

6.19/1

4292

P428

56Ze

amay

s72

80.0

005

827

0.005

410

170.1

668

29.15

229

MS/M

SPp

(13)

54.5

CN17

20(ro

ot)BX

6812

78Ra

bGDP

disso

ciatio

ninh

ibitor

alpha

5.52/5

3456

5/505

04P5

0398

Rattu

snorv

egicu

s–

––

068

0.000

532

290.6

855

32.25

257

MS/M

SPt

(3)7.3

conti

g772

4_3

BQ69

7516

RAD2

3prot

ein4.5

7/616

874.8

/4421

9Q9

M887

Arab

idops

istha

liana

123

580.0

053

7577

0.815

830

450.1

004

56.78

420

MS/M

SPp

(2)12

.910

2E08

(xylem

)BX

2546

80Ra

n-spe

cific

gtpas

e-acti

vatin

gprot

ein4.6

7/328

035.4

/2413

5Q0

9717

Schiz

osac

charo

myce

spom

be0

40.1

951

2510

90.0

001

8810

50.1

601

81.83

517

MS/M

SPp

(2)8.1

RS12

E06(

root)

BX67

8647

Ras-r

elated

protei

nARA

-34.8

1/222

167.6

5/238

20P2

8186

Arab

idops

istha

liana

160

0.001

912

130.9

214

1113

0.449

112

.3630

4MS

/MS

Pp7

(9)46

.4CN

327(

root)

BX67

8145

SRC2

onco

gene

4.94/4

2079

7.13/3

8989

Q9LN

V0Ar

abido

psis

thalia

na14

520.0

001

5476

0.186

676

910.1

420

74.17

Lipid

metab

olism

429

MS/M

SPp

7(3)

15.5

CN59

1(xy

lem)

BX25

0477

Isofla

vone

reduc

taseh

omolo

g(EC

1.3.1.

-)5.7

4/322

685.5

7/346

32P5

2579

Nico

tiana

tabac

um–

––

030

0.032

026

180.0

839

18.68

428

MS/M

SPp

(1)3.4

CN26

1(roo

t)BX

6675

58Iso

flavo

nered

uctas

ehom

olog(

EC1.3

.1.-)

6.24/3

0649

6.16/3

3831

P525

78So

lanum

tubero

sum

192

0.025

115

140

0.012

315

916

30.7

933

119.2

743

0Ed

man

SP(12

/15)

AF07

1477

Isofla

vone

reduc

tase(

EC1.3

.1.-)

5.94/3

1033

6.16/3

3831

P525

78So

lanum

tubero

sum

379

258

0.086

031

186

1<1

0-481

971

10.0

219

675.4

2

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 10: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3740 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751Tab

le1.C

on

tin

ued

IM2D

spot

IDMe

thod

Hiton

datab

asea)

(Matc

hesb) )

Cove

r-ag

ec)Co

nsen

suso

rsin

gleton

Id)Ac

cess

ionc)

Assig

nmen

tpI

/Mrf)

pI/M

rg)Ac

cess

ionnu

mber

Spec

iesMe

anno

rmali

zedv

olume

h)Me

anpro

tein

volum

ei)M

Jp-

value

EL

p-va

lueC

Op-

value

Memb

ranea

ssoc

iated

364

MS/M

SPp

7(9)

28.2

CN86

5(roo

t)BX

6806

86Ste

roidm

embra

nebin

dingp

rotein

4.31/3

8375

4.56/2

1465

Q952

50Su

sscro

fa11

554

0.004

121

110.0

314

137

0.102

812

.89

Metab

olism

ofco

factor

sand

vitam

ins41

7MS

/MS

Pp7

(4)32

.9CN

627(

xylem

)BX

2525

28Cy

tochro

mec1

precu

rsor

4.00/3

2078

3.98/4

4864

P136

27Pa

racoc

cusd

enitri

fican

s19

358

0.001

894

00.0

030

2119

0.848

533

.54

Nucle

otide

metab

olism

503

MS/M

SPp

(1)3.7

CN11

84(ro

ot)BX

6777

86Ad

enine

phos

phori

bosy

ltrans

feras

e(EC

2.4.2.

7)5.0

2/239

905.3

5/197

27P3

1166

Arab

idops

istha

liana

110

0.019

018

70.0

392

109

0.672

111

.0855

4MS

/MS

Pp*(

2)15

.3CN

488(

root)

BX67

6865

Nucle

oside

dipho

spha

tekin

ase1

(EC2.7

.4.6)

6.08/1

8858

6.31/1

6341

O813

72Me

semb

ryanth

emum

crysta

llinum

109

5<1

0-453

105

0.269

60

410.0

960

49.76

638

MS/M

SPp

7(4)

16.5

CN10

44(xy

lem)

BX25

3409

UMP/C

MPkin

ase

5.06/2

6764

5.79/2

2468

O049

05Ar

abido

psis

thalia

na96

690.0

867

237

0.076

6–

––

7.57

Nucle

otide

suga

rsme

taboli

sm35

7MS

/MS

Pp*(

6)30

.1RS

16E0

9(roo

t)BX

6788

86UD

P-glu

cose

4-epim

erase

(EC5.1

.3.2)

6.09/3

8290

7.63/3

8966

Q430

70Pis

umsa

tivum

184

0.114

77

120.3

396

1713

0.257

912

.29

Photo

synth

esis

506

MS/M

SPp

7(2)

13CN

743(

xylem

)BX

2499

05Fla

vopro

teinw

rba6.3

9/246

735.7

9/206

93Q8

Z7N9

Salm

onell

atyp

hi25

00.0

437

013

0.218

034

430.5

624

22.4

Prim

aryme

taboli

sm(en

ergy)

202

MS/M

SPp

*(10

)31

.8CN

468(

xylem

)BX

2507

92AT

Psyn

thase

beta

chain

(EC3.6

.3.14

)5.3

1/574

275.1

3/540

97P1

7614

Nico

tiana

plumb

agini

folia

1167

897

0.002

571

767

90.4

964

404

443

0.378

656

0.79

532

MS/M

SPp

*(7)

17.8

CN46

8(xy

lem)

BX25

0792

ATPs

yntha

sebe

tach

ain(EC

3.6.3.

14)

6.00/5

7427

5.19/5

4029

P190

23Ze

amay

s–

––

541

60.0

006

149

207

0.001

619

4.29

945

MS/M

SPp

*(2)

10.5

CN21

23(ro

ot)AL

7507

20Ph

osph

oglyc

erate

kinas

e(EC

2.7.2.

3)5.7

3/365

215.2

9/426

01P2

9409

Spina

ciaole

racea

––

–0

40.0

006

––

–0.8

963

9MS

/MS

Pp7

(6)19

.6CN

406(

xylem

)BX

2498

48So

luble

inorga

nicpy

ropho

spha

tase(

EC3.6

.1.1)

6.25/2

6764

5.59/2

4246

Q431

87So

lanum

tubero

sum

71

0.014

85

30.5

636

80

0.000

83.9

283

MS/M

SPp

*(2)

24.6

RS16

G07(

root)

BX67

8905

Vacu

olarA

TPsy

nthas

e(EC

.3.6.

3.14)

5.47/7

8817

5.29/6

8835

P094

69Da

ucus

carot

a17

616

80.7

120

151

144

0.626

096

109

0.039

212

5.01

340

MS/M

SPp

(6)32

.600

9F03

(xylem

)BX

2557

74Va

cuola

rATP

synth

ase(

EC3.6

.3.14

)5.5

6/403

355.4

/4259

3Q9

SDS7

Arab

idops

istha

liana

70

0.355

911

90.6

634

58

0.256

47.9

210

9MS

/MS

SP(2)

4.2P3

4105

NADP

-depe

nden

tmali

cenz

yme(

EC1.1

.1.40

)5.7

6/703

576.5

/6522

3P3

4105

Popu

lustric

hoca

rpa9

00.0

003

45

0.271

17

100.1

249

6.63

Seco

ndary

metab

olism

519

MS/M

SPp

(6)29

.5CN

1427

(root)

BX67

8193

Glutat

hione

perox

idase

(EC1.1

1.1.9)

4.92/2

1599

5.92/1

9036

O238

14Sp

inacia

olerac

ea18

00.0

210

66

0.986

610

130.1

918

8.41

118

MS/M

SPt7

(2)13

.2co

ntig7

08_1

BE76

2017

beta

gluco

sidas

e5.3

2/691

575.3

9/560

42Q9

FIW4

Arab

idops

istha

liana

40

0.005

83

30.7

582

33

0.697

83.0

212

7MS

/MS

Pt7(2)

15.6

conti

g708

_1BE

7620

17be

taglu

cosid

ase

5.28/6

7570

5.39/5

6043

Q9FIW

4Ar

abido

psis

thalia

na12

00.0

068

2383

0.000

216

170.5

767

34.65

669

MS/M

SPp

7(3)

13.6

054F

12(xy

lem)

BX25

1740

Leuc

oanth

ocya

nidin

dioxy

gena

se(EC

1.14.1

1.19)

5.89/4

1222

5.13/4

8402

P510

92Pe

tunia

hybri

da–

––

––

–13

0<1

0-43.2

859

0MS

/MS

Pp7

(3)17

CN32

7(xy

lem)

BX25

0111

Limon

oidUD

P-glu

cosy

ltrans

feras

e(EC

2.4.1.

210)

5.55/6

1271

5.31/5

7441

Q9MB

73Cit

rusun

shiu

021

0.063

833

0<1

0-4–

––

8.18

168

MS/M

SPt

(8)11

.7co

ntig7

633_

1BE

5823

27Mi

tocho

ndria

lproc

essin

gpep

tidas

ebeta

subu

nit6.2

6/604

966.5

6/588

45Q9

AXQ2

Cucu

mism

elo0

60.3

352

3241

0.223

437

360.8

778

36.48

585

MS/M

SPp

*(9)

35.7

CN29

2(xy

lem)

BX25

1011

Prote

indis

ulfide

isome

rase(

EC5.3

.4.1)

4.67/6

6969

4.91/5

2998

Q431

16Ric

inusc

ommu

nis28

730.0

020

7910

0.000

17

00.0

131

24.15

940

MS/M

SPp

7(4)

25.1

RN62

D04(

root)

CR39

3604

Prote

indis

ulfide

isome

rase(

EC5.3

.4.1)

5.44/4

2052

5.29/3

7301

P386

61Me

dicag

osati

va–

––

026

0.000

2–

––

6.41

113

Edma

nSP

(9/10

)P5

2588

Prote

indis

ulfide

isome

rase(

EC5.3

.4.1)

4.63/6

7928

5.11/5

4655

P525

88Ze

amay

s44

690.0

463

117

130

0.401

928

300.8

511

76.3

Uncla

ssifie

d44

6MS

/MS

Pp*(

2)13

.5CN

1700

(root)

BX68

1197

14-3-

3-like

protei

n4.6

2/298

654.8

3/305

26Q9

C5W

6Ar

abido

psis

thalia

na71

70.0

004

5132

0.072

224

250.8

882

32.75

453

MS/M

SPp

*(11

)30

.8CN

1248

(xylem

)BX

2506

9914

-3-3-l

ikepro

tein

4.67/2

9089

4.79/2

9235

Q9SP

07Lil

iumlon

giflor

um11

557

0.140

815

415

20.9

405

8180

0.990

211

6.57

455

MS/M

SPp

*(8)

19.7

CN12

48(xy

lem)

BX25

0699

14-3-

3-like

protei

n4.7

4/281

454.7

9/292

35Q9

SP07

Lilium

longif

lorum

5653

0.795

171

730.8

508

4939

0.153

858

.143

7MS

/MS

Pp7

(3)14

.902

0A03

(xylem

)BX

2490

9514

-3-3-l

ikepro

tein

4.73/2

9839

4.79/2

9500

Q964

53Gly

cinem

ax44

180.1

842

8729

0.005

435

330.7

456

45.94

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 11: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3741Tab

le1.C

on

tin

ued

IM2D

spot

IDMe

thod

Hiton

datab

asea)

(Matc

hesb) )

Cove

r-ag

ec)Co

nsen

suso

rsin

gleton

Id)Ac

cess

ionc)

Assig

nmen

tpI

/Mrf)

pI/M

rg)Ac

cess

ionnu

mber

Spec

iesMe

anno

rmali

zedv

olume

h)Me

anpro

tein

volum

ei)M

Jp-

value

EL

p-va

lueC

Op-

value

450

MS/M

SPp

*(5)

22CN

1087

(xylem

)BX

2494

0614

-3-3-l

ikepro

tein

4.84/2

9290

4.79/2

9500

Q964

53Gly

cinem

ax13

100.6

643

3573

0.002

339

470.2

892

48.43

57MS

/MS

Pt(4)

18.9

conti

g409

3_6

BF60

9020

acyl

CoAb

inding

protei

n5.5

1/838

035.8

9/709

65Q8

RWD9

Arab

idops

istha

liana

3423

0.050

319

50.0

158

106

0.116

19.9

524

MS/M

SSP

(5)6.4

P350

16En

dopla

smin

homo

logpre

curso

r(Grp9

4)4.7

5/106

433

4.86/9

3492

P350

16Ca

tharan

thusr

oseu

s–

––

032

0.000

411

711

20.6

773

65.22

496

MS/M

SPt

(2)2.8

conti

g586

8_1

BG03

9026

Ferri

tinsu

bunit

-relat

ed5.1

7/250

285.1

3/237

42Q9

SRL5

Arab

idops

istha

liana

3624

0.192

40

110.0

836

2222

0.896

513

.8682

1MS

/MS

Pp7

(6)33

.9CN

276(

xylem

)BX

2518

22GA

L4DN

A-bin

dinge

nhan

cerp

rotein

24.2

8/264

264.8

4/186

97P3

8879

Sacc

harom

yces

cerev

isiae

386

0.003

712

150.6

823

––

–6.6

849

7MS

/MS

Pp(5)

48.3

CN16

51(ro

ot)BX

6813

07Ge

rmin-

likep

rotein

5.35/2

4530

5.81/1

9362

P940

14Ar

abido

psis

thalia

na27

00.0

001

1543

0.026

863

250.0

000

36.54

730

MS/M

SPp

7(13

)42

.6CN

1875

(root)

BX68

1971

IN2-1

protei

n6.1

3/245

274.8

/2697

2P4

9248

Zeam

ays

657

0.003

60

50.1

447

––

–1.2

554

9MS

/MS

Pp*(

1)4.1

CN36

7(xy

lem)

BX24

9454

Profi

lin1

4.45/1

9058

4.88/1

4172

P492

31Ph

aseo

lusvu

lgaris

224

580.0

053

117

480.0

466

069

0.007

858

.6814

6MS

/MS

SP(5)

11.2

P287

69T-c

omple

xprot

ein1,

alpha

subu

nit6.1

4/631

085.9

3/592

29P2

8769

Arab

idops

istha

liana

––

–0

100.0

065

2129

0.171

515

.1

Nohit

201

MS/M

SNo

hit5.5

1/569

3758

00.0

008

––

–6

50.2

476

2.65

334

MS/M

SNo

hit4.7

7/418

339

00.0

096

89

0.875

16

90.1

180

7.85

649

MS/M

SNo

hit5.3

4/198

74–

––

06

0.147

9–

––

1.38

648

MS/M

SNo

hit5.9

3/204

28–

––

013

0.117

012

00.0

003

6.24

707

MS/M

SNo

hit5.5

7/504

810

10.3

559

02

0.004

2–

––

0.58

463

MS/M

SNo

hit5.7

2/289

380

00.0

805

521

0.132

714

170.1

249

14.26

540

MS/M

SNo

hit6.1

0/195

8537

140.1

984

7477

0.936

964

470.1

556

65.57

515

MS/M

SNo

hit5.5

0/228

1210

918

<10-4

4837

0.653

633

500.0

101

41.89

630

MS/M

SNo

hit5.7

5/301

43–

––

––

–6

0<1

0-41.5

651

0MS

/MS

Nohit

5.41/2

3219

509

0.001

977

138

0.015

059

600.9

212

83.57

467

MS/M

SNo

hit5.2

0/259

8641

10.0

002

2115

0.554

031

310.9

749

24.67

472

MS/M

SNo

hit4.9

8/266

8160

180.0

113

7958

0.075

034

590.1

354

57.39

720

MS/M

SNo

hit5.3

1/336

9817

00.0

061

––

––

––

025

3MS

/MS

Nohit

5.02/5

0485

920

0.141

944

260.0

418

2218

0.242

927

.690

5MS

/MS

Nohit

5.17/3

1656

30

0.026

42

00.1

247

––

–0.4

531

6MS

/MS

Nohit

5.29/4

1461

036

0.024

533

360.7

808

1018

0.003

924

.3631

4MS

/MS

Nohit

5.20/4

1426

711

0.228

816

110.2

350

07

0.007

08.3

612

1MS

/MS

Nohit

4.92/6

7765

200

0.012

921

280.3

898

1717

0.962

920

.5165

6MS

/MS

Nohit

6.29/8

5420

––

–4

00.0

642

180

0.003

65.4

247

5MS

/MS

Nohit

5.53/2

5582

2720

0.524

90

390.0

023

4662

0.060

136

.9844

0MS

/MS

Nohit

5.30/3

0588

80

0.001

26

50.7

998

68

0.340

16.5

452

3MS

/MS

Nohit

5.11/2

1951

30

0.003

10

240.0

921

1318

0.239

313

.9135

6MS

/MS

Nohit

6.13/3

7715

––

–6

00,0

015

131

101

0.092

159

.6589

7MS

/MS

Nohit

4.77/9

7180

––

––

––

100

<10-4

2.44

521

MS/M

SNo

hit5.9

5/216

988

00.0

003

60

0.168

37

70.9

375

5.27

302

MS/M

SNo

hit5.8

0/436

000

00.2

711

735

0.000

117

180.8

759

19.39

736

MS/M

SNo

hit5.8

5/203

71–

––

026

0.058

9–

––

6.58

95MS

/MS

Nohit

5.05/7

3399

67

0.844

54

110.2

109

1214

0.395

010

.0318

MS/M

SNo

hit6.6

1/104

293

––

––

––

2825

0.839

213

.37

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 12: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3742 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751Tab

le1.C

on

tin

ued

IM2D

spot

IDMe

thod

Hiton

datab

asea)

(Matc

hesb) )

Cove

r-ag

ec)Co

nsen

suso

rsin

gleton

Id)Ac

cess

ionc)

Assig

nmen

tpI

/Mrf)

pI/M

rg)Ac

cess

ionnu

mber

Spec

iesMe

anno

rmali

zedv

olume

h)Me

anpro

tein

volum

ei)M

Jp-

value

EL

p-va

lueC

Op-

value

152

MS/M

SNo

hit5.1

0/647

3216

70.1

269

1120

0.088

013

150.7

775

14.96

47MS

/MS

Nohit

5.04/9

4480

––

–0

30.1

056

4142

0.781

921

.4248

MS/M

SNo

hit5.0

7/942

37–

––

––

–55

560.8

289

27.81

646

MS/M

SNo

hit5.1

1/224

23–

––

60

0.134

9–

––

1.43

262

MS/M

SNo

hit5.7

9/492

340

00.1

108

30

0.000

212

80.0

667

5.63

398

MS/M

SNo

hit5.8

6/348

6413

1<1

0-42

20.9

883

05

0.001

92.3

383

MS/M

SNo

hit5.8

8/361

853

00.0

734

510

0.092

08

100.1

774

8.27

494

MS/M

SNo

hit6.5

0/254

61–

––

05

0.145

916

190.8

043

10.02

536

MS/M

SNo

hit5.3

6/203

918

00.0

011

69

0.732

917

120.3

703

10.92

289

MS/M

SNo

hit4.9

1/453

51–

––

09

0.002

86

80.2

634

5.67

877

MS/M

SNo

hit6.4

0/241

63–

––

017

0.228

4–

––

4.23

a)P

p:h

ito

nP

inu

sp

inas

ter

on

ly,P

t:h

ito

nP

inu

sta

eda

on

ly;S

P:h

ito

nS

wis

s-P

roto

nly

.7in

dic

ates

that

no

hit

was

fou

nd

inS

P,*

ind

icat

esth

atth

esa

me

fun

ctio

nw

asfo

un

din

SP

b)

Mat

ches

:nu

mb

ero

fmat

chin

gp

epti

des

for

MS

/MS

,sco

refo

rM

ALD

Ian

did

enti

tyfo

rin

tern

alse

qu

enci

ng

c)C

ove

rag

e:re

fere

sto

the

Pin

us

ES

To

rco

nse

nsu

sw

hen

the

qu

ery

dat

abas

eis

Pin

us

sp.,

and

toth

efu

llcd

sw

hen

the

qu

ery

dat

abas

eis

SP

d)

Clo

ne

IDg

iven

inth

eP.

taed

aan

dP.

pin

aste

r(l

ign

om

eo

rg

emin

i)d

atab

ases

e)E

MB

Lac

cess

ion

(giv

enfo

ro

ne

ES

Tin

case

ofc

on

sen

sus)

f)M

r(i

nD

a)an

dp

Ioft

he

pro

tein

wer

ees

tim

ated

inco

mp

aris

on

toa

2-D

gel

wit

hm

arke

rp

rote

ins

g)

Mr(i

nD

a)an

dp

Ioft

he

ho

mo

log

ou

sp

rote

inw

ere

calc

ula

ted

wit

ha

too

lava

ilab

leat

UR

Lh

ttp

://u

s.ex

pas

y.o

rg/t

oo

ls/p

epti

de-

mas

s.h

tml

h)

Mea

nn

orm

aliz

edvo

lum

ein

the

six

typ

eso

fwo

od

:J=j

uve

nile

,M=m

atu

re,E

=ear

ly,L

=lat

e,O

=op

po

site

,C=c

om

pre

ssio

n.”

-”in

dic

ates

that

the

spo

twas

no

tded

ecte

di)

Ove

rall

mea

nca

lcu

late

do

ver

the

fou

rsa

mp

les

use

dfo

rth

ecD

NA

libra

ryco

nst

ruct

ion

,i.e

.,E

W,L

W,O

W,C

W

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 13: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3743

bases (,90 000), these proteins might correspond to very raretranscript that have not be sequenced in EST projects to date,and may indicate a specific role of these proteins in wood for-mation. Finally, 37 spots (15.4%) corresponded to mixtures ofproteins. Comparatively, only 9 (15.8%) of the 57 spots analyzedby MALDI-TOF MS were identified using the same databases,from which six were also analyzed and identified by MS/MS(#83, #212, #217, #226, #242, and #282), and three (#215, #216,and #223) corresponded to tubulin b chain isoforms. Suchdiscrepancy in identification rates between MS/MS and MSalone has recently been reported in Panax ginseng [32], and canlargely be attributed to the lack of genome database or extensiveEST datasets for most plant species, gymnosperms in particu-lar. To these 166 proteins identified by mass spectrometry, oneshould add another nine proteins corresponding to very abun-dant proteins in wood forming tissues, and whose function waspreviously determined by internal microsequencing [19].These proteins have been also localized on the reference gel(Fig. 2) and correspond to the following functions: #80, #81,and #88: HSP 70 kDa, #113: protein disulfide isomerase (EC5.3.4.1), #266: SAM-S (S-adenosylmethionine synthetase) (EC2.5.1.6), #297: actin, the most intense spot on our gels, #430:isoflavone reductase (EC 1.3.1.) probably the second mostintense spot not only in this experiment, but also reported asthe most highly expressed protein in poplar wood formingtissue [20], #439: caffeoyl-CoA-O-methyltransferase (EC2.1.1.104), and #482: ascorbate peroxidase (EC 1.11.1.11).Overall, 175 proteins were thus identified in this study. Theseproteins are marked with arrows and numbers in Fig. 2. Over-all, membrane proteins were under-represented, with theexception of a vacuolar ATPase subunit (#340). This observa-tion is not specific to the wood proteome, and can be attributedto the general poor solubilization of such proteins.

3.3 Protein identification of wood forming tissue and

functional classification

A summary of protein functions is given in Table 1. The func-tional distribution of the known function proteins is reportedin Fig. 3. Proteins were classified into 15 groups based on

functional categories using the DBGET system (http://www.genome.ad.jp/dbget/). Interestingly, 87% of the pro-teins fell into eight major groups, while 13% were classifiedin seven other minor groups. Major groups were for “defense”(34 spots), “carbohydrate metabolism” (29 spots), “amino acidmetabolism” (26 spots), “genes and proteins expression”(23 spots) (including signal transduction, transcription,translation, protein assembly, modification and degradation),“cytoskeleton” (14 spots), “cell wall” (10 spots), “secondarymetabolism” (9 spots), and “primary metabolism” (7 spots).Overall, 39.4% of the proteins appeared as multiple spots andaccounted for most of the proteins found in the groups. Sucha high number of spots attributed to one protein has recentlybeen reported in Medicago truncatula [33]. This observationmay reflect post-translational modification, allelic variation ofthe same protein (e.g., position shift variants), isozyme varia-tion (proteins encoded by paralogs), alternative splicingevents, but also protein degradation.

SAM-S for example was represented by 14 spots (3.36%of the 300 studied proteins), accounting for 53.8% of theproteins of the amino acid metabolism category. SAM servesas a universal methyl group donor in numerous trans-methylation reactions that involve many types of acceptormolecules (proteins, nucleic acids, polysaccharides, fattyacids). It is also the substrate of many reactions, such asvitamins, polyamines, the gaseous phytohormone ethylene,and nucleotide biosynthesis. SAM is believed to be next toATP for the number of reactions in which a biological com-pound is used [34]. The transcript of SAM-S was found at ahigh level in cDNA libraries constructed from pine andpoplar differentiating xylem [11, 12, 35]. Among others,SAM-S plays a role in the methylation of monolignol pre-cursors during lignin biosynthesis [36].

The carbohydrate metabolism category presented aredundancy of 51.7%, with most proteins present two to fourtimes, e.g., pyrophosphate fructose 6-phosphate 1-phospho-transferase and ascorbate peroxidase (four spots), 2,3-bisphos-phoglycerate-independent phosphoglycerate mutase andphosphoglucomutase (three spots), fructokinase, transketo-lase, alcohol dehydrogenase, enolase, aconitase (two spots).

Figure 3. Functional distributionof the major proteins in mar-itime pine wood forming tissue,as separated by 2-DE.

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 14: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3744 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751

Carbohydrates (cellulose, hemicelluloses) are essential com-ponents of the cell wall. The abundance of these proteinsclearly shows the importance of carbohydrate biosyntheticpathways during xylogenesis [37].

Arabinogalactan proteins (AGP) represented 40% of thecell wall category. EST sequencing in trees [12, 35, 38] hasrevealed a high level of transcript accumulation of these pro-teins in wood forming tissue. In the maritime pine xylemEST database, this protein ranked first among the mosthighly expressed genes. Moreover, Loopstra and Sederoff [39]reported that some AGP were preferentially expressed indifferentiating xylem compared to other tissue, suggestingan important role of these proteins in vascular development.Enzymes involved in the second most abundant compoundof the cell wall, lignins, were also well represented in the setof studied proteins, with four proteins identified, corre-sponding to C-CoA-OMT (caffeoyl-CoA-O-methyltransfer-ase), COMT (caffeic acid 3-O methyltransferase), CAD (cin-namyl-alcohol dehydrogenase) and a peroxidase.

The 10 spots classified in the cytoskeleton category cor-responded to only two proteins, namely tubulin (a and bsubunits) and actin. These proteins were also found to behighly expressed at the transcriptome level in loblolly pine[14] and poplar [35] wood forming tissues. Actin and tubulinconstitutes essential component of the cytoskeleton. Corticalmicrotubules are mainly composed of a and b tubulin. Cor-tical microtubules could determine the cell wall pattern bydefining the position and the orientation of cellulose micro-fibrils during the differentiation of tracheid elements [40],probably by guiding the movement of the cellulose-synthe-sizing complex in the plasma membrane.

The defense category mainly comprised heat shock pro-teins (HSP): 20 spots in total of low and high molecularweight, representing 11.4% of the identified proteins in thisstudy. Canton et al. [16] showed that HSP were much moreexpressed in differentiating xylem of maritime pine com-pared to other tissues (pollen, bud, phloem, cambium, nee-dles, and root). HSP are well known to be produced in re-sponse to various stresses [41–43]. Synthesis also occursduring developmental processes such as pollen or seedmaturation [44], and early seedling growth [45]. Recently, LeProvost et al. [46] hypothesized that some HSPs could havespecific role during wood formation, showing that theseproteins are important proteins for the normal developmentof secondary wood. The presence of multiple spots corre-sponding to LEA (late embryogenesis abundant) like pro-teins, abscisic stress ripening-like protein and stress inducedproteins is also worth noting and could be related to thepresence of drought stressed tissues, namely LW, OW andCW, sampled in summer.

The gene and protein expression category was repre-sented by 23 spots involved in signal transduction, tran-scription, translation, protein assembly, modification anddegradation. Most of these proteins (11 spots) correspondedeither to ribosomal protein or initiation and elongation fac-tors. It has been reported that the expression of initiation

factor could be related to GTP-binding protein. Moreover,Schultheiss et al. [47] have shown that GTP-binding proteinsare potentially involved in cellular shape and cell wall for-mation.

Subunits of the ATP-synthase complex were the mostabundant proteins of the primary metabolism category. Thisobservation is certainly related to the high energy demandfor tracheids elongation and growth.

The secondary metabolism was represented by eightproteins, two of which being similar to protein disulfideisomerase (PDI). In endoplasmic reticulum of eukaryotes,PDI catalyzes the formation, isomerization and reduction ofdisulfide bonds to ensure the correct folding of secretoryproteins prior to their further modification and transport[48]. High expression of PDI during wood formation isprobably related to the high metabolic activity existing invascular cambium.

3.4 Correlation between protein and mRNA

abundance

The relationship between mRNA and protein abundances isneeded to elucidate the processes and regulation of tran-scription and translation. For this comparison, mRNAabundance was estimated for unique functional annotationsby counting the number of ESTs corresponding to thesefunctions among the 8429 xylem ESTs. Protein amount wasestimated by determining the volume of each spot averagedacross the four samples used to generate the cDNA library(i.e., OW, CW, EW, and LW). Average values for a given func-tional annotation (e.g., SAM-S) were then summed to obtainthe global volume of that function. Raw data for proteinamount and number of EST are provided in Table 2. Thecorrelation between mRNA and protein level is shown inFig. 4. There was a general trend of increased protein level,resulting from increase in mRNA level. The Pearson corre-lation coefficient for the whole dataset was 0.46. However,when highly expressed genes at the transcript (AGP) andprotein (SAM-S, actin, a and b tubulin, ATP synthase bchain, isoflavone reductase and HSP70 kDa) levels wereremoved from the dataset, the correlation coefficient was stillpositive but dropped down to 0.31. Although our analysiswas restricted to a limited number of highly abundant pro-teins (i.e., revealed by 2-DE), this result indicates a weaklypositive correlation between mRNA and protein abundance.A similar result has also been reported in yeast by Gygi et al.[49] and Washburn et al. [50]. In a recent report on the pro-teome of Medicago truncatula, Watson et al. [51] reported on amoderate level (r = 0.50) of correlation between mRNAabundance (estimated by EST counting) and protein amount(estimated by 2-DE). Given the biased representation of thepresent proteome (poor representation of membrane, highmolecular weight and basic proteins), we believe that 0.31may represent a lower limit of the wood proteome.

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 15: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3745

Table 2. Correspondence between protein [Q (protein), normalized volume] and mRNA [Q (transcript), number of EST] abundance

Spot ID Function Q(protein) Q(transcript)

297 Actin 10389 37223 Tubulin beta chain 4789 36266 S-Adenosylmethionine synthetase (EC 2.5.1.6) 4324 83781 Tubulin alpha chain 4277 7888 HSP70 kDa 3322 18

430 Isoflavone reductase (EC 1.3.1.-) 3254 20532 ATP synthase beta chain (EC 3.6.3.14) 3020 6489 Caffeoyl-CoA O-methyltransferase 1440 19482 L-ascorbate peroxidase (EC 1.11.1.11) 1394 21450 14-3-3-like protein 1207 13484 Triosephosphate isomerase (EC 5.3.1.1) 1117 6211 Enolase (EC 4.2.1.11) 1037 8349 UDP-glucose protein transglucosylase (EC 2.4.1.15) 1024 23197 S-Adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) 889 0360 Fructokinase (EC 2.7.1.4) 792 11315 Cinnamyl-alcohol dehydrogenase (EC 1.1.1.195) 760 6542 17.1 kDa class II heat shock protein 738 084 Phosphoglucomutase (EC 5.4.2.2) 736 5

390 Abscisic stress ripening-like protein 712 19221 Pyrophosphate fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) 654 12340 Vacuolar ATP synthase (EC 3.6.3.14) 532 16623 Arabinogalactan/proline-rich protein 492 127113 Protein disulfide isomerase (EC 5.3.4.1) 427 0499 Glutathione S-transferase (EC:2.5.1.18) 404 4158 60 kDa chaperonin 389 969 Transketolase (EC 2.2.1.1) 366 1

108 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (EC 5.4.2.1) 345 497 Heat shock protein 335 20

420 Ran-specific gtpase-activating protein 327 2159 D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) 321 3304 SRC2 oncogene 297 1246 Dihydrolipoamide acetyltransferase (EC 2.3.1.12) 280 0516 Small heat shock protein 280 3477 Proteasome subunit alpha type 4 (EC 3.4.25.1) 279 0298 Alcohol dehydrogenase (EC 1.1.1.1) 261 624 Endoplasmin homolog precursor (Grp94) 261 1

271 Eukaryotic initiation factor 4A-14 251 0433 Elongation factor 1-beta 236 14463 60S acidic ribosomal protein 233 0257 RAD 23 protein 227 294 Stress-induced protein, sti1-like protein 218 0

554 Nucleoside diphosphate kinase 1 (EC 2.7.4.6) 199 3551 Glycine-rich RNA-binding protein 195 44485 Dehydroascorbate reductase (EC 1.8.5.1) 193 0734 18.0 kDa class I heat shock protein 169 923 Aminopeptidase N (EC 3.4.11.2) 162 0

252 26S protease regulatory subunit 6B homolog 159 219 Aconitase EC:4.2.1.3 157 0

127 Latex cyanogenic beta glucosidase 151 0270 Eukaryotic initiation factor 4A-11 149 1168 Mitochondrial processing peptidase beta subunit 146 0497 Germin-like protein 146 5719 Late embryogenesis-like protein 143 15535 22.7 kDa class IV heat shock protein 136 0417 Cytochrome c1 precursor 134 18229 Rab GDP dissociation inhibitor alpha 129 6618 Caffeic acid 3-O methyltransferase like protein (EC 2.1.1.68 ) 124 0

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 16: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3746 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751

Table 2. Continued

Spot ID Function Q(protein) Q(transcript)

247 Xylose isomerase (EC 5.3.1.5). 123 0545 Superoxide dismutase [Cu-Zn] (EC 1.15.1.1). 121 10548 Protein kinase C inhibitor 117 1241 Aminoacylase-1 (EC 3.5.1.14) 114 0470 Proteasome subunit alpha type 3 (EC 3.4.25.1) 110 1322 NAD-dependent sorbitol dehydrogenase 94 0506 Flavoprotein wrba 90 30552 40S ribosomal protein S12 85 0146 T-complex protein 1, alpha subunit 60 0496 Ferritin subunit-related 55 1375 Fructose-bisphosphate aldolase (EC 4.1.2.13) 54 5183 Putative selenium binding protein 52 2364 Steroid membrane binding protein 52 0517 Ras-related protein ARA-3 49 9357 UDP-glucose 4-epimerase (EC 5.1.3.2) 49 17166 2-isopropylmalate synthase A (EC 2.3.3.13) 45 157 Acyl CoA binding protein 40 6

665 Peroxidase 54 precursor (EC 1.11.1.7) 38 16491 Proteasome subunit alpha type 5–1 ( EC 3.4.25.1) 37 2425 DNA-damage-repair/toleration protein DRT102 35 1519 Glutathione peroxidase (EC 1.11.1.9) 34 1590 Limonoid UDP-glucosyltransferase (EC 2.4.1.210) 33 15682 Ripening regulated protein 30 1638 UMP/CMP kinase 30 0109 NADP-dependent malic enzyme (EC 1.1.1.40) 27 2821 GAL4 DNA- binding enhancer protein 2 27 0874 Osr40g3 protein (abscisic acid and salt stress responsive) 21 9639 Soluble inorganic pyrophosphatase (EC 3.6.1.1) 16 6669 Leucoanthocyanidin dioxygenase (EC 1.14.11.19) 13 5730 IN2–1 protein 5 1945 Phosphoglycerate kinase (EC 2.7.2.3) 4 3

3.5 Protein expression in the six types of wood

The clustering of the 215 proteins (175 known and40 unknown function proteins) analyzed in this study andquantified over the six types of wood, clearly showed thatseasonal effect was the main factor controlling protein accu-mulation in wood forming tissue. Indeed, the six samplesclustered together into two distinct sub-trees (Fig. 5), withthe three samples collected in summer (LW, CW and OW)forming a first branch, and the three samples collected inspring (EW, JW and MW) forming a second branch. Then,ontogenic (JW vs. MW) and gravitational (OW vs. CW) effectsranked second and third, respectively. The same conclusionscould be drawn from the analysis of the whole dataset(1039 spots, data not shown). A simple pair-wise comparison(t-test), confirmed that the seasonal factor presented themost important effect on protein accumulation in secondaryxylem during wood formation. Indeed, 39.5, 30.7, and 20% ofthe identified proteins exhibited distinctive expression pat-terns between EW vs. LW, JW vs. MW, and OW vs. CW,respectively (Table 1). Examples of differentially expressed

proteins are given in Fig. 6. Given that the quality of woodand derived products largely depends on the physical andchemical properties of xylem secondary cell wall, and giventhe phenotypic differences in terms of wood quality betweenthese six samples, it can be hypothesized that some of theseproteins could be related to the changes in secondary cellwall structure and composition, and therefore representinteresting targets potentially controlling wood and end-useproperties.

To cluster the proteins showing similar expressionprofiles in the six types of wood, hierarchical clusteringwas applied to the 215 proteins (Fig. 7A). Interestingly,while among the most abundant proteins, actin, tubulins,AGP, 14-3-3 tended to be clustered and expressed con-stitutively across the six types of wood, SAM-S spots werefound to be distributed throughout the dendrogram,showing that members of this multigene family are eitherexpressed constitutively (#279, #282, #275, #321), or speci-fically regulated by environmental and/or ontogenic factors(Fig. 7B, cluster C1). In the following paragraphs we willonly discuss three clusters characteristic of protein over-

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 17: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3747

Figure 4. Correlation betweenprotein (x axis, normalized vol-ume) and mRNA (y axis, num-ber of EST) abundance. Plainline: correlation for the wholedataset (88 functions listed inTable 2, r = 0.46). Inset: correla-tion for a restricted datasetwhere AGP, SAM-S, actin, a andb tubulin, ATP synthase b chain,isoflavone reductase andHSP70 kDa were removed (r =0.31).

Figure 5. Clustering result between JW, MW, EW, LW, OW, andCW based on the proteins listed in Tab. 1.

expressed in either LW, MW, or CW, as well as one clusterand one protein overexpressed in normal wood and EW,respectively.

The LW cluster contained 21 proteins (Fig. 7B, clus-ter C2), most of which already reported as drought respon-sive in plants, such as: (i) the abscisic stress ripening protein,a plant gene with unknown biological role that becomesoverexpressed under water- and salt-stress conditions [52];(ii) low and high molecular weight HSP, including theendoplasmin precursor 94 kDa glucose-regulated protein (aholomog of HSP90) and stress-induced proteins (sti1-likeprotein) (reviewed by [53]); and (iii) isoflavone reductase [54].As for the two SAM-S accumulating in LW tissue (#260,#213), it should be reminded that besides their central role inplant growth and development [55], these proteins have alsobeen reported as drought stress regulated [56, 57]. Con-versely, one spot (#586) corresponding to an arabinoga-lactan/proline-rich protein (AGP) was identified as an EWprotein. AGP are abundant in the plant cell wall. They havebeen reported as among the most expressed genes in differ-entiating xylem of poplar and pine stems, undergoing radialexpansion by secondary growth [11, 12, 14, 16, 18]. Althoughtheir exact functions are unclear, they are implicated indiverse processes associated with plant growth and develop-ment, including cell proliferation (reviewed in [58]). Its over-expression in EW could be related to the higher rate of celldivision occurring in spring time.

The MW cluster contained 23 co-regulated proteins(Fig. 7B, cluster C3), most of which were also significantlydifferentially expressed between JW and MW as revealed byt-tests. As opposed to differentiating xylem formed by young

cambium, MW differentiating xylem is characterized bylarge cells with thick cell wall and lower microfibril angle,high cellulose content, and lower lignin content [4]. MW isalso characterized by higher LW and lower CW content per-centage. We hypothesized that the molecular mechanisms,as revealed by the protein overexpressed in MW, contributedto the delay of programmed cell death (PCD), therefore pro-longating cell wall deposition, resulting in the higher wooddensity characteristic of MW. Our results suggest that fourmechanisms, DNA reparation, cell detoxication, proteolysisregulation, and reduction of cytoplasm acidosis contribute toprolonged cell life.

In plants, PCD is involved in the terminal differentiationof xylem vessels [59]. DNA degradation has been reported asone of the key events associated with tracheary element dif-ferentiation [60]. In this study, a low abundant protein(spot #425) corresponding to a DNA-damage repair/tolera-tion protein DTR 102 was found to be overexpressed in MW,supporting our hypothesis.

In addition, several proteins of the MWcluster belonged tothe defense category, particularly involved in detoxicationmechanisms, also likely to contribute to the delay of PCD.These proteins included a superoxide dismutase [Cu-Zn](#545), one glutahione S-transferase (#499), and one glutathi-one peroxidase (#519). One germin-like protein (GLP, #497)categorized in the “unclassified” category was also present inthis cluster. Germins/GLP have been reported as proteinsinvolved in defense mechanisms (with either oxalate oxidaseor extracellular [Mn] superoxide dismutase activities [61, 62]).Interestingly, spot #497 was tightly linked with spot #545,reinforcing the putative role of this GLP in oxidative stressdefense. Kim and Tripplett [63] recently reported that a cottonfiber germin-like protein (GhGLP1) exhibited a maximalexpression with stages of maximal cotton fiber elongation,suggesting that some GLP may be important for cell wallexpansion. All together, these results suggest an importantrole of GLP in MW differentiation. The accumulation of ade-nine phosphoribosyl transferase (APT) (spot #503), a proteinimplicated in salvage of adenine to AMP, in MW differentiat-ing cells could also be interpreted as a defense mechanismagainst adenine, a toxic compound for the cell.

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 18: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3748 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751

Figure 6. Cuttings from 2-D gels showing different types of behavior in protein accumulation between JW vs. MW, EW vs. LW, and OW vs.CW.

Ubiquitin-dependent proteolysis plays a crucial role dur-ing the development in all organisms. Especially in plants, ithas been shown that phytohormone action depended on theubiquitin-proteasome pathway [64]. Recently, Paux et al. [17]showed the importance of auxin signaling through ubiqui-tin-dependent proteolysis, during wood formation. Ourfindings, i.e., up-regulation of a GTP-binding protein (Ras-related protein ARA-3, #517) and a proteasome protein(#491) in MW forming tissue, highlight the importance ofprotein degradation in the regulation of MW differentiation.

According to Drew [65], metabolic changes under anoxiahelp maintain cell survival by generating ATP anaerobicallyand minimizing the cytoplasmic acidosis associated with celldeath. In anaerobic treatment of maize seedlings, 20 anaero-bic proteins (ANP), which accounted for more then 70% oftotal translation, were selectively synthesized [66]. Most ofthese ANP corresponded to enzymes of glycolysis or sugar-phosphate metabolism [67]. In this study, proteins of thecarbohydrate and primary metabolisms category were alsofound to be up-regulated in MW forming tissue, namely afructokinase (#355), an alcohol dehydrogenase (#305), aphosphoglucomutase (#84), and NADP-dependent malicenzyme (spot #109). Besides these mechanisms, the accu-mulation of a vacuolar ATP synthase (spot #340; H1-ATPase(V-ATPase)) in MW corroborates the hypothesis of cyto-plasmic acidosis reduction during MW formation.

The CW cluster contained four proteins (Fig. 7B, clus-ter C4), including a structural enzyme of the flavonoid bio-synthetic pathway, leucoanthocyanidin dioxygenase (antho-cyanidin synthase). This enzyme catalyzes the reaction from

the colorless leucoanthocyanidin compound to the antho-cyanidin pigment responsible of the dark red or purple colorin plant tissues [68]. CW is also characterized by a reddishcolor (Fig. 1D). Although the molecular basis for this colorhas not been established, it has been suggested that it couldbe attributed to the polymerization of coniferaldehyde [69].Our finding suggests that the typical color of CW formingtissue also results from the biosynthesis of flavonoids.

The OW or “normal” wood (NW) cluster contained eightproteins (Fig. 7B, cluster C5) down-regulated in CW. CW ishighly lignified with more p-hydroxyphenyl subunits, andcontains less cellulose than NW. Microfibril angle of the cel-lulose fibers in the S2 layer of the cell wall is high, tracheidlength is reduced, the cross-sectional profile becomes iso-diametric, and intercellular spaces become larger comparedto NW [5]. We hypothesized that the molecular mechanismsdetermining cell shape and cell size [70], as revealed by someof the proteins underexpressed in CW (actin, profilin,nucleoside diphosphate kinase), are disturbed in gravi-stimulated tissue, leading to the typical cell phenotypeobserved in CW. Actin (spot #300) filaments are responsiblefor many aspects of cell behavior, including cell division,movement, and expansion. Profilin (PFN, #549) is a ubiqui-tous actin monomer-binding protein involved in the organi-zation of the cytoskeleton of eukaryotes, including higherplants. It is thought to regulate actin polymerization in re-sponse to extracellular signals. In cotton, it was observed thatone PFN-like protein was activated during the fiber elonga-tion period [71]. In Arabidopsis, it was observed that PFNplays an important role in cell elongation, cell shape main-

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 19: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3749

Figure 7. Hierarchical clustering analysis of the 175 identified and the 40 unknown proteins and example of clus-ters. Samples correspond to mature (M), juvenile (J), early (E), late (L), compression (C) and opposite (O) wood.Left panel (A): clustering of the whole dataset, right panels (B): C1/SAM-S cluster, C2/LW cluster, C3/MW cluster,C4/CW cluster, C5/normal wood cluster.

tenance, and polarized growth of root hair [72]. Cells of Ara-bidopsis plants expressing antisense PFN were shorter, andmore isodiametric, compared to wild-type. These resultsstrongly suggest that the specific shape of CW tracheids canresult (at least in part) from the down-regulation of actin andPFN in wood forming tissue. By comparing coleoptilelengths, nucleoside diphosphate kinase (NDK, #554) en-zyme activities, and cell size in non-transformants and anti-NDP kinase rice plants, Pan et al. [73] found that the cellelongation process was predominantly inhibited in epi-dermal cells of coleoptiles in antisense plants. This resultsuggests that the reduction of NDK accumulation couldcontribute to the shorter cells characteristic of CW. The threeother known function proteins of the normal wood cluster(glycine-rich RNA-binding protein #551, proteasome sub-

unit alpha type 4 #477, 40S ribosomal protein S12, #552)indicate that proteins of the genes and proteins expressioncategory were underexpressed in CW forming tissue.

3.6 A database to store and query the maritime pine

wood proteome

We recently described a complete web-based application“PROTICdb” (http://moulon.inra.fr/,bioinfo/PROTICdb,[74]), dedicated to the storage, query, and analysis of plantproteomic data. Maritime pine proteomes of differentiatingxylem, corresponding to different developmental stages andtreatments, have been stored with this application. We havedeveloped a new website to make these data publicly avail-able (http://cbib1.cbib.u-bordeaux2.fr/Protic/Protic/home/

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 20: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

3750 J.-M. Gion et al. Proteomics 2005, 5, 3731–3751

index.php). As a first level of information, the ‘Plants’, ‘Pro-tocols’, and ‘Protein identification’ hyperlinks providerespectively details about (i) the plant material and theexperimental conditions used, the organs sampled, the pro-tein quantity loaded on IPG strips; (ii) the protocols used forprotein extraction, first and second dimension electrophore-sis, staining, and image digitalization; and (iii) identifiedspots, including the query databases, number of matchingpeptides, protein coverage by the matching peptides, acces-sion number, matching species, assignment, theoretical andobserved pI and Mr (Da), MS techniques, and the MS plat-form where the spots have been processed.

A Java applet is used to access diverse information di-rectly on 2-DE images. 2-DE images can be downloaded byselecting their own ID and press the ‘load’ button. Up to fourimages can be visualized at the same time. By selecting the‘detected’ or ‘identification’ mode, all detected spots or allidentified spots are displayed with blue or red crosses,respectively. By Moving the mouse over a cross, a first level ofinformation is displayed, i.e., spot ID for any gel or referencespot ID for the master gel, Mr, pI and annotation (as inTable 1). More information (spot relationships, identificationand quantification) can be retrieved by left clicking on themouse. In respect to the identified spots, SEQUEST data(including peptide sequences) and links to nucleotide orprotein databases are also provided.

4 Concluding remarks

In this report, we have identified for the first time a highnumber (175) of known function proteins expressed in thewood forming tissue in a forest tree species. Identificationsuccess rate of MS/MS was high, over 70%, resulting mainlyfrom the use of pine EST. This is to be compared to the 16%success rate of MADLI-TOF MS. It is concluded that thecombined analysis of MS/MS spectra and EST sequences,provides an efficient and accurate protein identificationmethod for pine proteome analysis. A comparison betweenprotein and mRNA levels showed that at least 30% of theproteins were correlated with their corresponding mRNAlevels. This also means that for the majority of the proteinstheir level could not be predicted from transcript accumula-tion. This result demonstrates that a proteomic approach iscertainly a relevant approach for tracking genes involved inwood formation and determining wood quality.

The reference map represents the most comprehensivewood proteome projects to date and provides a good basis forfuture proteomic comparisons. Approximately 20 samples ofdifferentiating xylem taken along, (1) a gradient of gravi-stimulated xylem tissue, with samples collected on treesbended for few hours to few months, (2) a seasonal gradient,with samples taken every 15 days during the growing season(i.e., from April to August), and (3) a cambial age gradientwith samples taken every 4 m along the bole of an adult tree,have been collected, and are being analyzed by 2-DE com-

bined with LC ESI-MS/MS. This new dataset should shednew light onto the protein machinery involved in wood for-mation.

We thank anonymous reviewers for helpful comments on themanuscript. This research was supported by grants from the Eu-ropean Union (GEMINI project no. QLK-5-CT-1999-00942)and France (DERF no. 01.40.40/99; Région Aquitaineno. 20000307007, and INRA “Lignome”). JP was supported byfellowship SFRH/BD/3129/2000 from FCT/MCT Portugal.

5 References

[1] Zobel, B. J., Van Buijtenen, J. P., Wood Variation: Its Causesand Control, Springer-Verlag Berlin 1989.

[2] Cornelius, J., Can. J. For. Res. 1984, 24, 372–379.

[3] Pot, D., Chantre, G., Rozenberg, P., Rodrigues, J. C., Lloyd, J.G. et al., Ann. For. Sci. 2002, 59, 563–575.

[4] Zobel, B. J., Sprague, J. R., Juvenile Wood in Forest Trees,Springer-Verlag Berlin Heidelberg New York 1998.

[5] Timell, T. E., Compression Wood in Gymnosperms,Springer-Verlag Heidelberg 1986.

[6] Uggla, C., Magel, E., Moritz, T., Sundberg, B., Plant Physiol.2001, 125, 2029–2039.

[7] Lachaud, S., Catesson, A.M., Bonnemain, J. L., C. R. Acad.Sci. Paris 1999, 322, 633–650.

[8] Mellerowicz, E. J., Baucher, M., Sunberg, B., Boerjan, W.,Plant Mol. Biol. 2001, 47, 239–274.

[9] Plomion, C., Le Provost, G., Stokes, A., Plant Physiol. 2001,127, 1513–1523.

[10] Fukuda, H., Annu. Rev. Plant. Physiol. Plant Mol. Biol. 1996,47, 299–325.

[11] Allona, I., Quinn, M., Shoop, E., Swope, K., Cyr, S. S. et al.,Proc. Natl. Acad. Sci. USA 1998, 95, 9693–9698.

[12] Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rodhde, A.et al., Proc. Natl. Acad. Sci. USA 1998, 95, 13330–13335.

[13] Hertzberg, M., Aspeborg, H., Schrader, J., Anderson, A.,Erlandsson, R. et al., Proc. Nat. Acad. Sci. USA 2001, 98,14732–14737.

[14] Whetten, R., Sun, Y. H., Zhang, Y., Sederoff, R., Plant Mol.Biol. 2001, 47, 275–291.

[15] Lorenz, W. W., Dean, J. F., Tree Physiol. 2002, 22, 301–310.

[16] Canton, F., Le Provost, G., Garcia, V., Barré, A., Frigério, J. M.et al., Sustainable Forestry, Wood Products and Biotechnol-ogy, BIOFOR Proceedings, 2004, p333–347.

[17] Paux, E., Tamasloukht, M. B., Ladouce, N., Sivadon, P.,Grima-Pettenati, J., Plant Mol. Biol. 2004, 55, 263–280.

[18] Déjardin, A., Leplé, J. C., Lesage-Descauses, M. C., Costa, G.,Pilate, G., Plant Biol. 2004, 6, 55–64.

[19] Costa, P., Pionneau, C., Bauw, G., Dubos, C., Bahrmann, N. etal., Electrophoresis 1999, 20, 1098–1108.

[20] van der Mijnsbrugge, K., Meyermans, H., van Montagu, M.,Bauw, G., Boerjan, W., Planta 2000, 210, 589–598.

[21] Baba, K., Asada, T., Hayashi, T., J. Wood Sci. 2000, 46, 1–7.

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de

Page 21: REGULAR ARTICLE The proteome of maritime pine wood forming ... et al Proteomics 2005.pdf · REGULAR ARTICLE The proteome of maritime pine wood forming tissue Jean-Marc Gion 1*, Céline

Proteomics 2005, 5, 3731–3751 Plant Proteomics 3751

[22] Plomion, C., Pionneau, C., Brach, J., Costa, P., Baillère, H.,Plant Physiol. 2000, 123, 959–969.

[23] McDougall, G. J., J. Exp. Bot. 2000, 51, 1395–1401.

[24] Plomion, C., Pionneau, C., Baillères, H., Holzforschung 2003,57, 353–358.

[25] Damerval, C., De Vienne, D., Zivy, M., Thiellement, H., Elec-trophoresis 1986, 7, 52–54.

[26] Ramagli, L. S., Rodriguez, L.V., Electrophoresis 1985, 6, 559–563.

[27] O’Farrel, P.H., J. Biol. Chem. 1975, 250, 4007–4021.

[28] Bahrman, N., Plomion, C., Petit, R. J., Kremer, A., Ann. Sci.For. 1997, 54, 225–236.

[29] Kirst, M., Johnson, A. F., Baucom, C., Ulrich, E., Hubbard, K.et al., Proc. Natl. Acad. Sci. USA 2003, 100, 7383–7388.

[30] Sarry, J. M., Sommerer, N., Sauvage, F. X., Bergoin, A., Ros-signol, M. et al., Proteomics 2004, 4, 201–215.

[31] Altschul, S. F., Stephen, F., Madden, T. L., Schaffer, A. A.,Zhang, J. et al., Nucleic Acids Res. 1997, 25, 3389–3402.

[32] Kim, S., Kim, J. Y., Kim, E. A., Kwon, K. H., Kim, K. W. et al.,Proteomics 2004, 3, 2379–2392.

[33] Mathesius, U., Keijzers, G., Natera, S .H. A., Winman, J J.,Djordjevic, M. A. et al., Proteomics 2001, 1, 1424–1440.

[34] Cantoni, G. L., The Biochemistry of S-Adenosylmethionine.Columbia University Press, New York 1977, pp. 557–577.

[35] Pilate, G., Déjardin, A., Laurans, F., Leplé, J. C., New Phytol.2004, 164, 63–72.

[36] Ye, Z. H., Kneusel, R. E., Matern, U., Varner, J. E., Plant Cell1994, 6,1427–1439.

[37] Gibeaut, D. M., Plant Physiol. Biochem. 2000, 38, 69–80.

[38] Zhang, Y., Sederoff, R., Allona, I., Tree Physiol. 2000, 20, 457–466.

[39] Loopstra, C., Sederoff, R. R., Plant Mol. Biol. 1995, 27, 277–291.

[40] Chaffey, N., Cell and Molecular Biology of Wood Formation.BIOS Scientific Publishers, Oxford 2000.

[41] Costa, P., Bahrman, N., Frigerio, J. M., Kremer, A., Plomion,C., Plant Mol. Biol. 1998, 38, 587–596.

[42] Waters, E., Lee, G., Vierling, E., J. Exp. Bot. 1996, 47, 325–338.

[43] Vierling, E., Annu. Rev. Plant Physiol. 1991, 42, 579–620.

[44] Puigderrajols, P., Joffré, A., Mir, G., Pla, M., Verdaguer, D. etal., J. Exp. Bot. 2002, 53, 1445–1452.

[45] Kaukinen, K. H., Tranbarger, T. J., Misra, S., Plant Mol. Biol.1996, 30, 1115–1128.

[46] Le Provost, G., Paiva, J., Pot, D., Brach, J., Plomion, C.,Planta 2003, 217, 820–830.

[47] Schultheiss, H., Dechert, C., Kogel, K. H., Huckelhoven, R.,Plant Physiol. 2002, 128, 1447–1454.

[48] McArthur, A. G., Knodler, L. A., Silberman, J. D., Davids, B.J., Gillin, F. D. et al., Mol. Biol. Evol. 2001, 18, 1455–1463.

[49] Gygi, S. P., Rochon, Y., Robert Franza, B., Aebersold, R., Mol.Cell Biol. 1999, 19, 1720–1730.

[50] Washburn, M. P., Wolters, D., Yates, III J. R., Nat. Biotechnol.2001, 19, 242–247.

[51] Watson, B. S., Asirvatham, V. S., Wang, L., Sumner, L. W.,Plant Physiol. 2003, 131, 1104–1123.

[52] Kalifa, Y., Gilad, A., Konrad, Z., Zaccai, M., Scolnik, P. A. et al.,Biochem. J. 2004, 381, 373–378.

[53] Iba, K., Annu. Rev. Plant Biol. 2002, 53, 225–245.

[54] Heath, L. S., Ramakrishnan, N., Sederoff, R. R., Whetten, R.W., Chevone, B. I. et al., Comp. Func. Gen. 2002, 3, 226–243.

[55] Kumar, A., Taylor, M. A., Mad Arif, S. A., Davies, H. V., Plant J.1996, 9,147–158.

[56] Espartero, J., Pintor-Toro, J. A., Pardo, J. M., Plant Mol. Biol.1994, 25, 217–227.

[57] Ma, X. L., Wang, Z. L., Qi, Y. C., Zhao, Y. X., Zhang, H., ActaBot. Sinica 2003, 45, 1359–1365.

[58] Schultz, C. J., Johnson, K. L., Currie, G., Bacic, A., Plant Cell2000, 12, 1751–1767.

[59] Fukuda, M., Plant Mol. Biol. 2000, 44, 245–253.

[60] Obara, K., Kuriyama, H., Fukuda, H., Plant Physiol. 2001, 125,615–626.

[61] Lane, B. G., Dunwell, J. M., Ray, J. A., Schmitt, M. R., Cum-ing, A. C., J. Biol. Chem. 1993, 268, 12239–12242.

[62] Carter, C., Thornburg, R.W., J. Biol. Chem. 2000, 275, 36726–36733.

[63] Kim, H. J., Tripplett, B. A., Planta 2004, 218, 516–524.

[64] Hellmann, H., Estelle, M., Science 2002, 297, 793–797.

[65] Drew, M. C., Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997,48, 223–250.

[66] Sachs, M. M., Subbaiah, C. C., Saab, I. N., J. Exp. Bot. 1996,47, 1–15.

[67] Subbaiah, C. C., Sachs, M. M., Ann. Bot. 2003, 91, 119–127.

[68] Saito, K., Yamazaki, M., New Phytol. 2002, 155, 9–23..

[69] Higuchi, T., Ito, T., Umezawa, T., Hibino, T., Shibata, D., J.Biotech. 1994, 37, 151–158.

[70] Smith, L. G., Curr. Opin. Plant Biol. 2003, 6, 63–73.

[71] Ji, S. J., Lu, Y. C., Feng, J. X., Wei, G., Li, J., Shi, Y. H., Fu, Q. etal., Nucleic Acids Res. 2003, 31, 2534–2543.

[72] Ramachandran, S., Christensen, H. E. M., Ishimaru, Y., Dong,C. H., Chao-Ming, W. et al., Plant Physiol. 2000, 124, 1637–1647.

[73] Pan, L., Kawai, M., Yano, A., Uchimiya, H., Plant Physiol.2000, 122, 447–452.

[74] Ferry-Dumazet, H., Houel, G., Montalent, P., Moreau, L.,Langella, O. et al., Proteomics 2005, 5, 2069–2081.

2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de