references - springer978-1-4614-3667-6/1.pdf · allain f, denysa, denysa, spik g (1996) cyclophilin...

25
References 1. Galoyan AA (2008) The brain immune system: chemistry and biology of the signal molecules. Handbook of neurochemistry and molecular neurobiology, 3rd Edition, Neuroimmunology (Lajtha A., Galoyan A. and Besedovsky H., eds), pp.155–195. Springer Science. 2. Galoyan A (2010) Concepts of neuroendocrine cardiology and neuroendocrine immunology, chemistry and biology of signal molecules. Neurochem. Res. 35, 2, 2001–2027. 3. Galoyan AA (1997) Biochemistry of novel cardioactive hormones and immunomodulators of the functional system neurosecretory hypothalamus – endocrine heart. Nauka Publ., Moscow, 240 P. 4. Galoyan AA (2004) Brain neurosecretory cytokines: immune response and neuronal survival. Kluewer Academic/Plenum Publishers, New York. 188 P. 5. Lajtha A 2009 Academician Armen Galoyan’s scientific achievements “Gitutyun” Publishing House of NAS RA. 6. Galoyan A, Grigoryan SL, Badalyan AA (2006) Treatment and prophylaxis of anthrax by new neurosecretory cytokines. Neurochem. Res., 31, 6, pp.795–803. 7. Stevens DL, Laine BM, Mitten JE (1987) Comparison of clindamycin, rifampin, tetracyclin, metridinazole, and penicillin for the efficacy in prevention of the experimental gas gangrene due to Clostridium perfringens. The Journal of Infectious Disease, 155, 2, pp. 220–228. 8. Lonchop E, Dupont JL, Wioland MR et al. (2010) Clostridium perfringens epsilon toxin targets granulecells in the mouse cerebellum and stimulates glutamate release. PloS One, 5, 9, e13046. 9. Shimizu Tohru, Kaori Ohtani, Hideki Hirakawa et al. (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. PNAS, 99, 2, pp 996–1001. 10. Knaryan VH, Samantaray S, Galoyan AA, Mohanakumar KP (2005) A synthetic human proline-rich-polypeptide enhances hydroxyl radical generation and fails to protect dopaminer- gic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced tox-icity in mice. Neurosci. Lett. 375, 187–191. 11. Tavadyan LA, Galoian KA, Harutunyan LA, Tonikyan HG, Galoyan AA (2010) Antioxi- dant and electron donating function of hypothalamic polypeptides: galarmin and Gx-NH 2 . Neurochem. Res., 35, 6, pp.947–952. 12. Davtyan TK, Manukyan HM, Hakopyan GS, Mkrtchyan NR, Avetisyan SA, Galoyan AA (2005) Hypothalamic proline-rich polypeptide is an oxidative burst regulator. Neurochem. res. v.30, n 3, p.297–309. 13. Davtyan T, Manukyan H, Mkrtchyan N,Avetisyan S, GaloyanA (2005) Hypothalamic Proline- Rich polypeptide is a regulator of oxidative burst in himan neurotrophils and monocytes., Neuroimmunomodulation, 12, 270–284. 14. Janeway CA, Travers P,Walport M, Shlomchik M (2005) Immunobiology, 6th edn. New York: Garland Publishing. 15. Yarilin AA (1997) System of cytokines and principles of its functionation in norm and pathology Immunology 5: 7–14. A. A. Galoyan, Brain Immune System Signal Molecules in Protection from Aerobic 173 and Anaerobic Infections, Advances in Neurobiology 6, DOI 10.1007/978-1-4614-3667-6, © Springer Science+Business Media New York 2012

Upload: others

Post on 02-Feb-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References

1. GaloyanAA (2008) The brain immune system: chemistry and biology of the signal molecules.Handbook of neurochemistry and molecular neurobiology, 3rd Edition, Neuroimmunology(Lajtha A., Galoyan A. and Besedovsky H., eds), pp.155–195. Springer Science.

2. Galoyan A (2010) Concepts of neuroendocrine cardiology and neuroendocrine immunology,chemistry and biology of signal molecules. Neurochem. Res. 35, 2, 2001–2027.

3. Galoyan AA (1997) Biochemistry of novel cardioactive hormones and immunomodulators ofthe functional system neurosecretory hypothalamus – endocrine heart. Nauka Publ., Moscow,240 P.

4. Galoyan AA (2004) Brain neurosecretory cytokines: immune response and neuronal survival.Kluewer Academic/Plenum Publishers, New York. 188 P.

5. Lajtha A 2009 Academician Armen Galoyan’s scientific achievements “Gitutyun” PublishingHouse of NAS RA.

6. Galoyan A, Grigoryan SL, Badalyan AA (2006) Treatment and prophylaxis of anthrax by newneurosecretory cytokines. Neurochem. Res., 31, 6, pp.795–803.

7. Stevens DL, Laine BM, Mitten JE (1987) Comparison of clindamycin, rifampin, tetracyclin,metridinazole, and penicillin for the efficacy in prevention of the experimental gas gangrenedue to Clostridium perfringens. The Journal of Infectious Disease, 155, 2, pp. 220–228.

8. Lonchop E, Dupont JL, Wioland MR et al. (2010) Clostridium perfringens epsilon toxintargets granulecells in the mouse cerebellum and stimulates glutamate release. PloS One, 5,9, e13046.

9. Shimizu Tohru, Kaori Ohtani, Hideki Hirakawa et al. (2002) Complete genome sequence ofClostridium perfringens, an anaerobic flesh-eater. PNAS, 99, 2, pp 996–1001.

10. Knaryan VH, Samantaray S, Galoyan AA, Mohanakumar KP (2005) A synthetic humanproline-rich-polypeptide enhances hydroxyl radical generation and fails to protect dopaminer-gic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced tox-icity in mice.Neurosci. Lett. 375, 187–191.

11. Tavadyan LA, Galoian KA, Harutunyan LA, Tonikyan HG, Galoyan AA (2010) Antioxi-dant and electron donating function of hypothalamic polypeptides: galarmin and Gx-NH2.Neurochem. Res., 35, 6, pp.947–952.

12. Davtyan TK, Manukyan HM, Hakopyan GS, Mkrtchyan NR, Avetisyan SA, Galoyan AA(2005) Hypothalamic proline-rich polypeptide is an oxidative burst regulator. Neurochem.res. v.30, n 3, p.297–309.

13. Davtyan T, Manukyan H, Mkrtchyan N,Avetisyan S, GaloyanA (2005) Hypothalamic Proline-Rich polypeptide is a regulator of oxidative burst in himan neurotrophils and monocytes.,Neuroimmunomodulation, 12, 270–284.

14. Janeway CA, Travers P, Walport M, Shlomchik M (2005) Immunobiology, 6th edn. New York:Garland Publishing.

15. Yarilin AA (1997) System of cytokines and principles of its functionation in norm andpathology Immunology 5: 7–14.

A. A. Galoyan, Brain Immune System Signal Molecules in Protection from Aerobic 173and Anaerobic Infections, Advances in Neurobiology 6,DOI 10.1007/978-1-4614-3667-6, © Springer Science+Business Media New York 2012

Page 2: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

174 References

16. Hsieh CS, Mucatinia SE, Tripp CS, Wolf SF, O’Garra A, et al. (1993) Development ofTnlCD4+ T-cells through IL-12 produced by listeria-induced macrophages. Science 260:547–549.

17. Simbirtsev AS (1998) IL-8 and other chemokines. Immunology 4: 9–14.18. Hirano T (1999) Molecular basis underlying functional pleiotrophy of cytokines and growth

factor. Biochem Biophys Res Commun 260: 303–308.19. Hibi M, Hirano T (2000) Signal transduction through cytokine receptors. Int Rev Immunol

17: 75–102.20. Fukada T, Yoshida Y, Nishida K, Ohtani T, Shirogan T, et al. (1999) Signaling through gpl30:

Toward a general scenario of cytokine action. Growth Factors 17: 81–91.21. Kisseleva T, Bhattacharya S, Braunstein J, Schneider CW (2002) Signaling through the

JAL/STAT pathway, recent advences and future challenges. Gene 285: 1–24.22. Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science

296: 1653–1655.23. Freidlin IS (1999) IL-12 key cytokine of immunoregulation. Immunology 4: 5–9.24. Breder CD, Dinarello CA, Super CB (1988) Interleukin-1 immunoreactive interactions of the

human hypothalamus. Science 240: 321–324.25. Licini J, Wang ML (1992) Neutrophil-activating peptide-1, interleukin-8 mRNA is localized

in rat hypothalamus ana hippocampus. Neureport 3: 753–756.26. Lee YB, Kim SU (1997) Cytokines and cytokine receptors in human neurons, astrocytes and

microglia in culture. J Neurochem 69(Suppl): S178C.27. Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, et al. (1998) A neuromodulatory

role of interleikin-lb in the hippocampus. Proc Nat Acad Sci USA 95: 7778–7783.28. Pitossi F, del Rey A, Kabiersch A, Besedovsky HO (1997) Induction of cytokine transcripts in

the CNS and pituitary following peripheral administration of endotoxin to mice. J NeurosciRes 46: 287–298.

29. Besedovsky HO, Balschun D, Pitossi F, Schneider H, del Rey A (2001) Brain-born cytokinesaffect neuro-endocrine functions and the maintenance of long term potentiations. Biochemicaland molecular—biological aspects of the brain immune system. GaloyanA.A, editor.Yerevan:Encyclopedia Armenica Publishing House; pp. 41–46.

30. Sternberg SS, Antonioli DA, Carter D, Eggleston J, Mills SE, et al. (1989) Diagnostic surgicalpathology (two volumes). New York: Raven Press.

31. Ketlinski SA, Kalinina NM (1995) Cytokines of mononuclear phagocytes in inflammationand immune regulation. Immunology 3: 30–44.

32. Redwine LS, Pert CB, Rone JD, Nixon R, Vance M, et al. (1999) Peptide T blocksGP120/CCR5 chemokine receptor-mediated chemotaxis. Clin Immunol 93(2): 124–131.

33. Wells TNC, ProudfootAEJ, Power CA (1999) Chemokine receptors and their role in leukocyteactivation. Immunol Lett 65: 35–40.

34. Wells TNC, Power CA, Proudfoot AEI (1998) Definition, functions and pathophysiologicalsignificance of chemo-kine receptors. TIPS 19: 376–381.

35. Meucci O, Simen FAA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulatehippocampal neuronal signaling and gpl20 neurotoxicity. Proc Natl Acad Sci USA 95: 14500

36. Oh SB, Tran PB, Gillard SE, Hurvey RW, Hammond DL, et al. (2001) Chemokines and gly-coprotein 120 produce pain hypersensitivity by directly exciting primary nociceptive neurons.J Neurosci 21: 5027.

37. Tran PB, Miller RJ (2003) Chemokine receptors: Signposts to brain development and disease.Nat Rev Neurosci 4: 444.

38. ZouYR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokinereceptor CXCR4 in haematopoiesis and in cerebellar development. Nature 93 (6685): 595–599.

39. Abbadie C, Lindia JA, Gumiskey AM, Peterson LB, Mudgett JS, et al. (2003) Impairedneuropathic responses in mice backing the chemokine receptor CCR2. Proc Natl Acad SciUSA 100: 7974

Page 3: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 175

40. Szabo J, Chen XH, Xin L, Adler MW, Howard OM, et al. (2002) Heterologous desensitizationof opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain.Proc Natl Acad Sci USA 99: 10276.

41. Zhang N, Rogers ThJ, Caterina M, Oppenheim JJ (2004) Pro-inflammatory chemokines, suchas C-C chemokine ligand 3, desensitize m-opioid receptors on dorsal root ganglia neurons. JImmunol 173: 594–599.

42. Fontana A, Kristensen F, Dubs R, Gemsa D, Weber E (1982) Production of prostaglandinE and interleukinl-like factors by cultured astrocytes and C-6 glioma cells. J Immunol 129:2413–2419.

43. Fabry Z, Raine CS, Hart MN (1994) Nervous tissue as in immune compartment; the dialectof the immune response in the CNS. Immunol Today 15: 218–224.

44. Connolly JH, Haire M, Hadden DS. M (1971) Measles immunoglobulins in subacutesclerosing panencephalitis. Br Med J 1: 23–35.

45. Culter RWP, Watters GV, Hammerstad JP, Merler E (1967) Origin of cerebrospinal fluidy-globulin in subacute sclerosis leucoencephalitis. Arch Neurol 17: 620–628.

46. Koler OJ, Ross AT, Gilliam H (1972) Serum lgG, LgA, LgM concentration in 1,038 patientswith various neurological disorders. Z Neurol 203: 133–144.

47. Touatellotte W (1976) On cerebrospinal fluid immunoglobulin-G (IgG) quotients in multiplesclerosis and other diseases. J Neurol Sci 10: 279–384.

48. Goldstein AL, Asanuma Y, White A (1970) The thymus as an endocrine gland: Properties ofthymosin, a new thymus hormone. Recent Prog Horm Res 26: 505–538.

49. Goldstein AL, Guha A, Zatz MM, Hardy MA, White A (1972) Purification and biologicalactivity of thymosin, a hormone of the thymus gland. Proc Natl Acad Sci USA 69(7): 1800–1803.

50. Hooper JA, McDaniel MC, Thurman GB, Cohen GH, Schulof RS, et al. (1975) Purificationand properties of bovine thymosin. Ann NY Acad Sci 249: 125–144.

51. Rebar RW, Miyake A, Low TLK, Goldstein AL (1981) Thymosin stimulates secretion ofluteinizing hormone releasing factor. Science 214: 669–671.

52. Azakawa H, Nagase H, Hayashi N, Fujwara T, Ogawa M, et al. (1994) BBRC 200: 836–843.53. Galoyan AA, Gurvits BY, Shuvalova LA, Davis MT, Shively JE, et al. (1992) A hypothalamic

activator of calmodulin-depcndent enzymes is thymosin β4 (1–39). Neurochem Res 17: 773–777.

54. Voelter W, Kapurniotu A, Mihelic M, Gurvits B, Abrahamian G, et al. (1995) The interactionof (1–4)-fragment of thymosin-β4 with calmodulin-sensitive cAMP phosphodiesterase fromhypothalamus. Neurochem Res 20(1): 55–59.

55. Galoyan AA, Gurvits BYa, Sharova NP (1989) Cyclic nucleotide PDE and 5’-nucleotidase:A coupled system. Neurochem Res 14: 1213–1221.

56. Galoyan AA, Gurvits BYa, Shuvalova LA, Davis MT, Shively JE, et al (1992) A hypothalamicactivator of calmodulin-depcndent enzymes is thymosin β4 (1–39). Neurochem Res 17: 773–777.

57. Eylar EH, Westall FC, Brostoff S (1971) Allergic encephalomyelitis. An encephalitogenicpeptide derived from the basic protein of myelin. J Biol Chem 246: 3418–3424.

58. Eylar EH (1972) The structure and immunologic properties of basic proteins of myelin. AnnNY Acad Sci 195: 481–491.

59. Hashim GA, Eylar EH (1969) Allergic encephalomyelitis: Isolation and characterization ofencephalitigenic peptides from the basic protein of bovine spinal cord. Arch Biochem Biophys129: 645–654.

60. Alvord EC (1984) Species restricted encephalitogenic determinants. Experimental allergicencephalomyelitis, a useful model for multiple sclerosis. Alvord EC, Kies MW, Suckling AJ,editors. New York: Alan R., Liss; pp. 523–537.

61. Galoyan AA, Gurvits BYa. (1992) The discovery of peptidyl-prolyl-cys-transisomerase inhypothalamus (its new functions). Neirokhimiya RAS & NAS RA 11(1): 89–92.

62. Gurvits BYa, Galoyan AA (1995) Structure and function of immunophilin, a receptor ofimmunosuppressor FK506, isolated from bovine hypothalamus. J Neurochem (Raven Press)65(Suppl.): S178D.

Page 4: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

176 References

63. Callebaut I, Mornon JP (1995) Trigger factor, one of the Escherichia coli chaperone proteins,is an original member of the FKBP family. FEBS Lett 374: 211–215.

64. Sewell TJ, Lam E, Martin MM, Leszyk J, Weidner J, et al. (1994) Inhibition of calcineurinby a novel FK-506-binding protein. J Biol Chem 269(33): 21094–21102.

65. Abrahamyan SS, Meliksetyan IB, Galoyan A (2001a). Immuno-histochemical analysis ofthe brain immunomodulators (proline rich polypepride and immunophilin) in the nor-mal pathological conditions. Proceeding of the international conference “Biochemical andmolecular-biological aspects of brain immune system”. Galoyan AA, editor. Yerevan:Encyclopedia Armenica Publishing House; pp. 62–73.

66. Abrahamyan SS, Meliksetyan IB, Sulkhanyan RM, Sarkissian JS, Galoyan AA. (2001b).Immunohistochemical study of Immunophilin 1–15 fragment in intact frog brain, and in thebrain and spinal cord of intact and spinal cord hemisectioned rats. Neurochem Res 26(11):1225–1230.

67. Cardenas ME, Hemenway RS, Muir RYe, Fiorentino D, Heitman J (1994) Immunophilinsinteract with calcineurin in the absence of exogenous immunosuppressive ligands. EMBO J13(24): 5944–5957.

68. Sherry B, Yarlett N, Strupp A, Cerami A (1992) Identification of cyclophilin as a pro-inflammatory secretory product of lipopolysaccharide-activated macrophages. Proc NatlAcadSci USA 89(8): 3511–3515.

69. Allain F, Denys A, Denys A, Spik G (1996) Cyclophilin B mediates cyclosporine A incorporinA incorporate in human blood T-lymphocytes through the specific binding of complexed drugto the cell surface. Biochem J 371(Pt2): 565–570.

70. Mariller C, AUain F, Kouach M, Spik G (1996) Evidence that human milk isolated cyclophilinB corresponds to a truncated form. Biochim Biophys Acta 1293(1): 31–38.

71. Bang H, Muller W, Hans M, Brune K, Swandulla D (1995) Activation of Caz+ signaling inneutrophils by the mast cell-released immunophilin FKBP12. Proc Natl Acad Sci USA 92(8):3435–3438.

72. Liu J, Farmer JD, Jr, Lane WS, Friedman J, Weissman I, et al. (1991) Calcineurin is a commontarget of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66(4): 807–815.

73. Friedman J, Weissman I (1991) Two cytoplasmic candidates for immunophilin action arerevealed by affinity for a new cyclophilin: One in the presence and one in the absence of CsA.Cell 66(4): 799–806.

74. Kunz J, Henrique R, Schneider U, Deuter-Reinhard M, Mowa NR, et al. (1993) Target ofrapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required forGl progression. Cell 73(3): 585–596.

75. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, et al. (1994) A mammalian proteintargeted by Gl-arresting rapamycin-receptor complex. Nature 369(6483): 756–758.

76. Steiner JP, Dawson TM, Fotuhi M, Glatt CE, Snowman AM, et al. (1992) High brain densitiesof the immunophilin FKBP colocalized with calcineurin. Nature 358(6387): 584–587.

77. Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, et al. (1993) ImmunosuppressantFK506 enhances phosphorylation of nitric oxide synthase and protects against glutamateneurotoxicity. Proc Natl Acad Sci USA 90(21): 9808–9812.

78. Ren RF, Flander KC (1996) Transforming growth factor-B protects primary rat hippocampalneuronal cultures from degeneration induced by B-amyloid peptide. Brain Res 732 (1–2):16–24.

79. Hultsch T, Albers MW, Schreiber SL, Hohman RJ (1991) Immunophilin ligands demonstratecommon features of signal transduction leading to exocytosis or transcription. Proc Natl AcadSci USA 88(14): 6229–6233.

80. Hirsch DB, Steiner JP, Dawson TM, Mammen A, Hayek E, et al. (1993) Neurotransmitterrelease regulated by nitric oxide in PC-12 cells and brain synaptosomes. Curr Biol 3(11):749–754.

81. Freeman EE, Grosskreutz CL (2000) The effects of FK506 on retinal ganglion cells after opticnerve crush. Invest Ophthalmol Vis Sci 41(5): 1111–1115.

Page 5: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 177

82. Galoyan AA, Chailian SG, Gurvits BYa, Abrahamian GE, Alexanian AR, Parsadanian ASh,Lottspeich F (1992) Ubiquitin from hypothalamus, chemical structure and functions. Abstractof the IXth general meeting of ESN, Dublin.

83. Gurvits BYa, Tretyakov OYu, Klishina NV, Stoeva S, Vbelter W, Galoyan AA (2000) Identi-fication of macrophage migration inhibitory factor isoforms in bovine brain. Neurochem Res25(8): 1125–1129.

84. Bloom BR, Bennet B (1966) Mechanism of a reaction in vitro associated with delayed-typehypersensitivity. Science 153: 80–82.

85. David JR (1966) Delayed hypersensitivity in vitro: Its mediation by cell-free substancesformed by lymphoid cell-antigen interaction. Proc Natl Acad Sci USA 56: 72–77.

86. Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, et al. 1995. MIF as aglucocorticoid-induced modulator of cytokine production. Nature 376: 68–71.

87. Galat A, Riviere S, Bouet F. 1993. Purification of macrophage migration inhibitory factor(MIF) from bovine brain cytosol. FEBS Lett 319: 233–236.

88. Nishino T, Bernhagen J, Shiiki H, Calandra T, Dohi K, et al. (1995)Localization of MIF insecretory granules within the corticotropic thyrotropic cells of the pituitary gland. Mol Med1: 781–788.

89. Bucala R (1996) MIF rediscovered: Cytokine, pituitary hormone, and glucocorticoid-inducedregulator of the immune response. FASEB J 10: 1607–1613.

90. Bendrak K, Al-Abed Y, Callaway DJ, Peng T, Calandra T, et al. (1997) Biochemical andmutational investigations of the enzymatic activity of macrophage migration inhibitory factor.Biochemistry 36: 15356–15362.

91. Rosengren E,Aman P, Thelin S, Hansson C,Ahlfors S, et al. (1997) The macrophage migrationinhibitory factor (MIF) is a phenylpyruvate tautomerase. FEBS Lett 417: 85–88.

92. Galat A, Riviere S, Bouet F, Menez A (1994) A diversified family of 12-kDa proteins with ahigh amino acid sequence similarity to macrophage migration-inhibitory factor (MIF). Eur JBiochem 224: 417–421.

93. Swope M, Sun HW, Blake PR, Lolis E (1998) Direct link between cytokine activity and acatalytic site for macrophage inhibitory factor. EMBO J 17: 3534–3541.

94. Kaye J, Gillis S, Mizel SB, et al. (year ?) Growth of a cloned helper T cell line inducedby a monoclonal antibody specific for the antigen receptor: interleukin 1 is required for theexpression of receptors for interleukin 2. J Immunol 1984; 133: 1339–1345.

95. Kaye J, Porcelli S, Tite J, Jones B, Janeway CA Jr (1983) Both a monoclonal antibodyand antisera specific for determinants unique to individual cloned helper T cell lines cansubstitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med. Sep1; 158(3):836–856.

96. Kurt-Jones EA, Beller DI, Mizel SB, Unanue ER (1985) Identification of a Membrane-Associated Interleukin 1 in Macrophages. PNAS USA 82(4): 1204–1208.

97. Johnson HM, Farrar WL, Torres BA (1982) Vasopressin replacement of interleukin 2 require-ment in gamma interferon production: lymphokine activity of a neuroendocrine hormone. JImmunol. Sep; 129(3):983–6.

98. Simon PL, Laydon JT, Lee JC (1985) A modified assay for interleukin-1 (IL-1). J ImmunolMethods. Nov 28; 84(1–2): 85–94.

99. Serrate SA, Schulof RS, Leondaridis L, Goldstein AL, Sztein MB (1987) Modulation ofhuman natural killer cell cytotoxic activity, lymphokine production, and interleukin 2 receptorexpression by thymic hormones. J Immunol. Oct 1;139(7):2338–43.

100. Hoffman P, Wiesmuller KH, Metzger J, Jung G, Bessler WG (1989) Induction of tumor cyto-toxicity in murine bone marrow-derived macrophages by two synthetic lipopeptide analogues.Biol Chem Hoppe-Seyler 370(6): 575–582.

101. Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA, Jr et al. (1985) Recombinanthuman tumor necrosis factor-a: Effects on proliferation of normal and transformed cells invitro. Science 230(4728): 943–945.

102. Lauber M, Camier M, Cohen P (1979) Immunological and biochemical characterization ofdistinct high molecular weight forms of neurophysin and somatostatin in mouse hypothalamusextracts. FEBS Lett. Jan 15; 97(2):343–7.

Page 6: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

178 References

103. Béguin P, Nicolas P, Boussetta H, Fahy C, Cohen P (1981) Characterization of the80,000 molecular weight form of neurophysin isolated from bovine neurohypophysis. J BiolChem. Sep 10; 256(17):9289–94.

104. Seidah NG, Benjannet S, Chrétien M (1981) The complete sequence of a novel human pi-tuitary glycopeptide homologous to pig posterior pituitary glycopeptide. Biochem BiophysRes Commun. May 29; 100(2): 901–7.

105. Plata-Salaman CR (1989) Immunomodulators and feeding regulation: a humoral link betweenthe immune and nervous systems. Brain Behav. Immun. 3(3): 193–213.

106. Weigent DA, Blalock JE (1985) Associations between the neuroendocrine and immunesystems. Leukoc. Biol. 58:137–150.

107. De Simoni MG, Imeri L (1998) Cytokine-neurotransmitter interactions in the brain. Biol.Signals Recept. 7:33–44.

108. Besedovsky HO, del Rey A (1996) Immune-neuro-endocrine interactions: Facts andhypotheses. Endocrine Rev 17: 64–102.

109. Dunn AA, Powell ML, Meitin C, and Small Jr, PA (1989) Virus infection as a stressor:influenza virus elevates plasma concentrations of corticosterone, and brain concentrations ofMHPG and tryptophan. Physiol. 45:591–594.

110. Rothwell NJ (1999) Cytokines-killers in the brain. J Physiol 514(1): 3–17.111. Turnbull AV, Pitossi F, Lebrun J, Lee S, Meltzer J, et al. (1997) Inhibition of tumor necrosis

factor-α action within the CNS markedly reduces the plasma adrenocorticotropin response toperipheral local inflammation in rats. J Neurosci 11(9): 3262–3273.

112. Del ReyA, Besedovsky HO (1992) Metabolic and neuroendocrine effects of pro-inflammatorycytokines. Eur. J. Clin. Invest. 22:10–15.

113. Berczi I, Chalmers IM. Nagy E et al. (1996) The immune effects of neuropeptides. DaillieresClin. Rheumatol. 10:227–257.

114. Aarden LA, De Groot ER, Schap OL, Lansdorp PM (1987) Production of hybridoma growthfactor by human monocytes. Eur J Immunol 10: 1411–1416.

115. Schedlowski M, Schmidt RE (1996) Stress and the immune system. Naturwissenschaften.83:214–220.

116. Laye S, Bluthe RM, Kent S, Lombe C, Medina C, et al. (1995) Sub-diaphragmatic vagotomyblocks induction of IL-lb mRNA in mice brain in response to peripheral LPS. Am J Physiol268(Pt2): 1327–1331.

117. Markossian KA, Gurvits BYa, Galoyan AA (1999) Isolation and identification of novelpeptides from secretory granules of neurohypophysis. Neurochimiya RAS & NAS RA 16:22–25.

118. Galoyan AA, Sahakian FM (1971) Isolation of coronary vasodilating hormones fromneurosecretory granules. Dokl Acad Nauk USSR 201: 843–845.

119. La Bella F (1968) Storage and secretion of neurohypophyseal hormones. Canad J PhysiolPharmacol 46(2): 335–345.

120. Richter D (1985) Biosynthesis of vasopressin. Current Topics in Neuroendocrinology. Neu-robilogy of Vasopressin. Ganten D, Pfaff D, editors. Springer-Verlag, Berlin HeidelbergNew York Tokyo; pp. 1–16.

121. Smith D.G., and Massay D.E. 1979. A new glycopeptide in pig, ox and sheep pituitary.Biochem. Biophys. Res. Commun. 87(4): 1006–1010.

122. Watson SJ, Seidah NG, Chretien M (1982) The carboxy terminus of the precursor tovasopressin and neurophysin: immunocytochemistry in rat brain. Science 217:853–855.

123. Land H, Schüz G, Schmale H, and Richter D (1982) Nucleotide sequence of cloned cDNAencoding bovine arginine vasopressin-neurophysin II precursor. Nature 295:299–303.

124. Holwerda DA (1972) A glycopeptide from the posterior lobe of pig pituitaries. 2. Primarystructure.Eur. J. Biochem. 28:340–346.

125. McCann SM, Karanth S, Kamat A, et al. (1994) Induction by cytokines of the pattern ofpituitary hormone secretion in infection. Neuroimmunomodulation. 1:2–13.

126. Nagy G, Mulchahey J, Smith DG, and Neil JD (1988) The glycopeptide moiety of vasopressin-neurophysin precursor is neurohypophysial prolactin releasing factor. Biochem. Biophys. Res.Commun. 151(1): 524–529.

Page 7: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 179

127. Burbach JP, Seidah NG, and Chretien M (1986) Isolation and primary structure of novelneurointermediate pituitary peptides derived from the C-terminal of the rat vasopressin-neurophysin precursor (propressophysin). Eur. J. Biochem. 156:137–142.

128. Koff WC, Dunegan MA (1986) Neuroendocrine hormones suppress macrophage-mediatedlysis of herpes simplex virus-infected cells. J. Immunol. 135:150–154.

129. Tager HS. Emdin SO, Clark JL, and Steiner DF (1983) Studies on the conversion of proinsulinto insulin. II. Evidence for a chymotrypsin-like cleavage in the connecting peptide region ofinsulin precursors in the rat. J. Biol. Chem. 248:3476–3482.

130. Seidah NG, Lazure C, Chrétien M, Thibault G, Garsia R, Cantin R, Genest G, Palaveda A,Colton WJ. Nutt SR, Brady SF, Lyle T, Ciccarone TM, and Veber DF (1984) Amino acidsequence of homologous rat atrial peptides: natriuretic activity of native and synthetic forms.Proc. Natl Acad. Sci. USA. 81:2640–2644.

131. Austen BM, Smyth DG, and Snell CR (1977) Gamma endorphin, alpha endorphin and Met-enkephalin are formed extracellularly from lipotropin C fragment. Nature. 269:619–621.

132. Burbach JPH, Loeber JG., Verhoef J, Wiegant VM, de Kloet ER, and de Vied D (1980)Selective conversion of beta-endorphin into peptides related to gamma- and alpha-endorphin.Nature (Lond.) 283:96–97.

133. Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanisms of action. Physiol.Rev. 57:313–370.

134. Birch NP, Hakes DJ, Dixon JE and Mezey E (1994) Distribution and regulation of the candidateprohormone processing enzymes spc2 and spc3 in adult rat brain, neuropeptides. 27: 307–322.

135. Coates LC, Birch NP (1998) Differential cleavage of pro-vasopressin by the major molecularforms of SPC3. J. Neurochem. 70:1670–1678.

136. Galoyan AA, Azaryan AV (1987) Involvement of brain cysteine proteinases in the turnoverof vasoactive, opioid and other neuropeptides. Synaptic transmitters and receptors. Praha,P. 222–229.

137. Burbach PH (1984) Action of proteolytic enzymes on lipotropins and endorphins: biosynthe-sis, biotransformation and fate. Pharmacol. Ther. 24:321–354.

138. Pickering BT, Jones CW, Burford GD McPherson M, Swann RW, Heap PE, and Morris JF.(1975) Neurophysins: Carriers of peptide hormones. Ed. by R. Walter. Annals of the New YorkAcademy of Sciences, 248:15–35.

139. Mentlain R (1998) Proline residues in the maturation and degradation of peptide hormonesand neuropeptides. FEBS Lett. 234(2): 251–6.

140. Yaron A. Naider F (1992) Proline-dependent structural and biological properties of peptidesand proteins. Crit. Rev. Biochem. Mol. Biol. 28 : 31–81.

141. Brandt l, Lambeir AM, Maes MB et al. (2006). Peptide substrates of dipeptidyl peptidases.Adv Exp Med Biol 575:3-I8.

142. Mentlein R (I999) Dipeptidyl-peptidase IV (CD26)–role in the inactivation of regulatorypeptides.

143. Lambeir AM, Durinx C, Proost P, Van Damme J, Scharpé S, and De Meester I (2001) Ki-netic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved inpancreatic insulin secretion. FEBS Lett. Nov 2;507(3):327–30.

144. Reinhold D, Kähne T, Steinbrecher A, et al. (2005) The role of dipeptidyl peptidase IV (DPIV, CD26) in T cell activation and multiple sclerosis. Signal Transduct 5:258–265

145. Antonyan AA Sharoyan SG, Mardanyan SS, Galoyan AA (2011) Proline-rich cytokine fromneurosecretory granules: a new natural substrate for dipeptidyl peptidase iv. Neurochem Res36:34–38

146. Abrahamyan SS, Davtyan TK, Galoyan AA Detection and quantification of galarmin in theblood serum of intact rats by using anti-detection and quantification of galarmin in the bloodserum of intact rats by using anti-PRP-1 polyclonal antiserum (In press).

147. Aprikian VS, Galoian KA, Galoyan AA (1999) Hypothalamic polypeptides-a new family ofimmunomodulators. ASN 30th Annual Meeting, New Orleans, (USA), J. Neurochemistry, V.77, S68D.

Page 8: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

180 References

148. Aprikyan VS, Galoyan AA (1999) Immunoprotective properties of a new hypothalamicpolypeptide in bacterial pathologies. Medical Science ofArmenia. V. XXXIX, No. 2, P. 23–30

149. Aprikyan VS, Galoyan AA (1999) Immuno-correcting properties of a novel hypothalamicpolypeptide at macrophages-associated bacterial dysfunctions. Medical Science of Armenia.V. XXXIX, No. 4. P. 29–36.

150. Aprikyan VS, Galoyan AA (2000) Hypothalamic polypeptide protects mice from lethalchallenge with gram-negative bacteria. Neurokhimiya RAS & NAS RA 17: 60–63.

151. Peng J,Yang J, Jin Q (2011) An integrated approach for finding overlooked genes in Shigella.PLoS One. Apr 5; 6(4):e18509.

152. Jain SK, Gupta A, Glanz B, Dick J, Siberry GK (2005) Antimicrobial-resistant Shigellasonnei: limited antimicrobial treatment options for children and challenges of interpreting invitro azithromycin susceptibility. Pediatr Infect Dis J. Jun; 24(6):494–7.

153. Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D (1998) Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun. Dec;66(12):5620–9.

154. Aprikyan VS, Galoyan AA (1999) Antibacterial activity of a new hypothalamic polypeptide.Reports of the national academy of sciences of the republic of Armenia, V. 99, No. 4, P. 367–371.

155. Finney, DJ (1952) Probit analysis. A statistical treatment of the sigmoid response curve. 2 ed.Cambridge Univ. Press, Cambridge.

156. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli ofcecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. Jul;61(7):2978–84.

157. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol.13:61–92.

158. Boman HG (1998) Peptide antibiotics come of age/H.G. Boman, W.F. Broekaert//TheImmunologist. V. 6, No. 6. – P. 234 – 238.

159. Hancock RE, Lehrer R (year?) Cationic peptides: a new source of antibiotics. Trends Biotech160. Ahmad I, Perkins WR, Lupan DM, Selsted ME, Janoff, AS (1995) Liposomal entrapment of

the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. BiochimBiophys Acta. 1995 Jul 26; 1237(2):109–14.

161. Aley SB, Zimmerman M, Hetsko M, Selsted ME, Gillin FD (1994) Killing of Giardia lambliaby cryptdins and cationic neutrophil peptides. Infect Immun. Dec; 62(12): 5397–403.

162. Schluesener HJ, Radermacher S, Melms A, Jung S (1993) Leukocytic antimicrobial peptideskill auto-immune T cells. J Neuroimmunol. Sep;47(2):199–202.

163. Falla TJ, Karunaratne DN, Hancock RE (1996) Mode of action of the antimicrobial peptideindolicidin. J Biol Chem. Aug 9; 271(32): 19298–303.

164. Boman HG (1998) Gene-encoded peptide antibiotics and the concept of innate immunity: anupdate review. Scand J Immunol. Jul;48(1):15–25.

165. Suh JY, Lee KH, Chi SW, Hong SY, Choi BW, Moon HM, Choi BS (1996) Unusually sta-ble helical kink in the antimicrobial peptide, a, derivative of gaegurin. FEBS Lett. Sep 2;392(3):309–12.

166. Park S, Park SH, Ahn HC, Kim S, Kim SS, Lee BJ (2001) Structural study of novel an-timicrobial peptides, and nigrocins isolated from Rana nigromaculata. FEBS Lett. Oct19;507(1):95–100.

167. Park CB, Kim MS, Kim SC (1996) A novel antimicrobial peptide from Bufo bufo gargarizans.Biochem Biophys Res Commun. 1996 Jan 5; 218(1):408–13.

168. Kobayashi S. Takasxhima K. Park ChB, Kim SB, and Matsuzaki K (2000) Interactions of thenovel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promotingfactor. Biochemistry, 39(29): 8648–8654.

169. Kim HS, Park CB, Kim MS, Kim SC (1996) cDNA cloning and characterization of buforin I,an antimicrobial peptide: a cleavage product of histone H2A. Biochem Biophys Res Commun.Dec 13; 229(2): 381–7.

Page 9: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 181

170. Steiner H (1982) Secondary structure of the cecropins: antibacterial peptides from the mothHyalophora cecropia. FEBS Lett. 1982; 137(2): 283–7.

171. Cole AM, Kim YH, Tahk S, Hong T, Weis P, Waring AJ, Ganz T (2001) Calcitermin, anovel antimicrobial peptide isolated from human airway secretions. FEBS Lett. 2001 Aug 24;504(1–2):5–10.

172. Galoyan AA, Kamalian LA, Gasparian MG (2000a) Effect of a new cytokine on the synthesisof interferon-γ in the human mononuclears culture and replication virus encephalomio-carditis. Rep Armen Natl Acad Sci 100(3): 276-282.

173. Brossier F, Weber-Levy M, Mock M, Sirard JC (2000) Role of toxin functional domains inanthrax pathogenesis. Infect Immun 68:1781–1786

174. Mourez M, Lacy DB, Conningham K et al. (2002) A year of major advances in anthrax toxinresearch. Trends Microbiol 10:287–293.

175. Bradley KA,Young JAT (2003) Anthrax toxin receptor proteins. Biochem Pharmacol 65:309–314

176. Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increasescyclic AMP concentration in eukaryotic cells. PNAS USA 79:3162–3166

177. O’Brien J, Friedlander AM, Dreier T, Ezzell J, Leppla S (1985) Effects of anthrax toxincomponents on human neutrophils. Infect Immun 47:306–410

178. Ezzell JW, Ivins BE, Leppla SH (1984) Immuno-electrophoretic analysis, toxicity, and kinet-ics of in vitro production of the protective antigen and lethal factor components of Bacillusanthracis toxin. Infect Immun. Sep; 45(3):761–767.

179. Ross JM (1957) The pathogenesis of anthrax following the administration of spores by therespiratory route. J Pathol Bacteriol 73:485–494

180. Hanna P (1998) Anthrax pathogenesis and host response. Curr Top Microbiol Immunol225:13–35

181. Lalitha MK, Thomas MK (1997) Penicillin resistance in Bacillus anthracis. Lancet 349:1522182. Chen Y, Succi J, Tenovez FC, Kochler TM (2003) Beta-Lactamase Genes of the Penicillin-

Cusceptible Bacillus anthracis Sterne Strain. J Bacteriol 185:823–830183. Swartz MN (2001) Recognition and management of anthrax – an update. N Engl J Med

345:1621–1626184. Ressel G (2001) CDC updates interim guidelines for anthrax exposure management and

antimicrobal therapy. Am Fam Physicion 64:1901–1902185. Borg MA, Tieck WC (2001) Responding to anthrax. J Dent Technol 18:12–14, 28186. Brook J (2002) The prophylaxis and treatment of anthrax. Inf J Antimicrob Agents 20(5):

320–325187. BryskierA (2002) Bacillus anthracis and antibacterial agents. Clin Microbiol Infect 8:467–478188. Odendaal MW, Peterson PM, de Voc V, Botha AD (1991) The antibiotic sensitivity patterns of

Bacillus anthracis isolated from the Kruger National park. Onderstepoort J Vct Res 58:17–19189. Doganaya M, Aydin N (1991) Antimicrobial susceptibility of Bacillus anthracis. Scand J

Infect Dis 23:333–335190. Ingles TV, Handerson DA, Bartlett JG et al. (1999) Anthrax as a biological weapon. JAMA

128(18): 1735–1745191. Aprikyan VS, Galoyan AA (2000) Hypothalamic polypeptide protects mice from lethal

challenge with gram-negative bacteria. Neurokhimya RAS NAS RA 17:60–63192. Galoyan AA, Aprikyan VS (2002) A new hypothalamic peptide is a regulator of myelopoiesis.

Neurochem Res 27:305–312.193. Aprikyan VS, Galoyan AA (1999) Immunocorrecting properties of a new hypothalamic

polypeptide upon macrophage-associated bacterial dysfunction. Med Sci Armenia 31(4):29–36

194. Pellizzari R, Guidi-Rontani C, Vitale G, Mick U, Montecucco C (1999) Anthrax lethal factorcleves MkK3 in macrophages and inhibits the LPS/IFN gamma-induced release of NO andTNFalpha. FEBS Lett 462:199–204

195. Park JM, Greten FR, Li ZW, Karin M (2002) Macrophage apoptosis by anthrax lethal factorthrough p38 MAP kinase inhibition. Science 297(5589): 2048–2051

Page 10: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

182 References

196. Guidi-Ronfani Ch, Levy M, Ohayon H, Mock M (2002) Fate of germinated Bacillus anthracisspores in primary macrophages. Mol Microbiol 42(4): 931

197. Rontani Chantal-Guidi, Leve Martine, Ohayon Helene, Mock Michele (2001) Fate of ger-minated Bacillus anthracis spores in primary murine macrophages. Mol Microbiol 42(4):931

198. Pickering AK, Merkel TJ (2004) Macrophages release tumor necrosis factor alpha andInterleukin-12 in response to intracellular Bacillus anthracis spores. Infect Immun 72:3069–3072

199. Dixon TC, Fahd AA, Koehler TM, Swanson JA, Hanna PC (2000) Early events in anthraxpathogenesis, intracellular survival of B. anthracis and escape RAW 264.7 macrophages. CellMicrobiol 2:453–463

200. Scobie HM, Rainey GJ, Bradley KA, Young JA (2003) Human capillary morphogene-sis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A. Apr29;100(9):5170–4.

201. Bradley KA, Mogridge J, Mourez M, Collier RJ,Young JA (2001) Identification of the cellularreceptor for anthrax toxin. Nature. Nov 8;414(6860):225–9.

202. Cryan LM, Rogers MS (2011) Targeting the anthrax receptors, TEM-8 and CMG-2, foranti-angiogenic therapy. Front Biosci Jan 1;16:1574–88.

203. Liu S, Crown D, Miller-Randolph S, Moayeri M, Wang H, Hu H, Morley T, Leppla SH (2009)Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxinin vivo. Proc Natl Acad Sci U S A. Jul 28;106(30):12424–9.

204. Liu S, Leppla SH (2003) Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, andinternalization. J Biol Chem. Feb 14;278(7):5227–34.

205. Abrami L, Kunz B, Van der Goot FG (2010) Anthrax toxin triggers the activation of src-likekinases to mediate its own uptake. Proc Natl Acad Sci U S A. Jan 26;107(4):1420–4.

206. Abrami L, Kunz B, Deuquet J, Bafico A, Davidson G, van der Goot FG (2008) Functionalinteractions between anthrax toxin receptors and the WNT signaling protein LRP6. CellMicrobiol. Dec; 10(12):2509–19.

207. Duesbery NS, Resau J, Webb CP, Koochekpour S, Koo HM, Leppla SH, Vande Woude GF(2001) Suppression of ras-mediated transformation and inhibition of tumor growth and an-giogenesis by anthrax lethal factor, a proteolytic inhibitor of multiple MEK pathways. ProcNatl Acad Sci U S A. Mar 27;98(7):4089–94.

208. KirakosovaAS,. Abrahamyan SS, Tumasyan NV, Davtyan TK, KhachatryanAR,. GaloyanAA(2012) The Hypothalamic proline-rich polypeptide-1 (galarmin) and its analogue d-15 are theinhibitors of protein tyrosine kinase activity at cyclophosphamide-induced lymphocytopenia.Neurochem. Res. 37(1):2–4.

209. Bone R.C. (1993) How gram-positive organisms cause sepsis. J. Crit. Care 8:51–59.210. Sheagren J.N (1984) Staphylococcus aureus. The persistent pathogen. N. Engl. J. Med.

310;1437–1442.211. Waldvogel F A (1995) Staphylococcus aureus (including toxic shock syndrome), p. 1754. In

G. L. Mandell, J. E. Bennett, and R. Dolin (ed.), Principles and practice of infectious diseases,4th ed. Churchill Livingstone, New York, N.Y.

212. Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin.Invest. 111(9), 1265–1273.

213. Cauda R, Garau J (2009) New insights concerning methicillin-resistant Staphylococcus aureusdisease. Clin. Microbiol. Infect. 15(2), 109–111.

214. Lode HM (2009) Clinical impact of antibiotic-resistant gram-positive pathogens. Clin.Microbiol. Infect. 15(3), 212–217.

215. Hiramatsu K, Hanaki H & Ino T (1997). Methicillin-resistant Staphylococcus aureus clinicalstrain with reduced vancomycin susceptibility. Journal of Antimicrobial Chemotherapy 40,135–6.

216. Chang SC, Hsieh WC, Liu C (2000). High prevalence of antibiotic resistance of commonpathogenic bacteria in Taiwan. Diagnostic microbiology and infectious disease 36, 107–12.

Page 11: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 183

217. Lyon BR. Skurray R (1987)Antimicrobial resistance of Staphylococcus aureus: Genetic basis.Microbiol Rev; 51:88–134.

218. Locksley RM (1994) Staphylococcal infections in Harrisons Principles of Internal Medicine,Thirteenth ed.; 1:611–613.

219. Mongkolrattanothai K, Boyle S, Kahana MD, Daum RS (2003 Severe Staphylococcus au-reus infections caused by clonally related community-acquired methicillin-susceptible andmethicillin-resistant isolates. Clin Infect Dis. 37(8):1050–8.

220. Ito T, KatayamaY,Asada K et al. (2001) Structural comparison of three types of staphylococcalcassette chromosome mec in the chromosome of methicillin-resistant Staphylococcus aureus.Antimicrob Agents Chemother; 45:1323–36.

221. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG (2002) The evolu-tionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad SciU S A. May 28;99(11):7687–92.

222. Spratt BG (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus(MRSA). Proc. Natl. Acad. Sci. USA 99, 7687–7692.

223. Ma X X, Ito T, Tiensasitorn C, Jamklang M. Chongtrakool P, Boyle-Vavra S, Daum RS,Hiramatsu K (2002). Novel type of staphylococcal cassette chromosome mec identified incommunity-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob. AgentsChemother. 46, 1147–1152.

224. Robinson DA,. Enright MC (2003) Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 3926–3934.

225. Chambers HF (1997). Methicillin resistance in staphylococci: molecular and biochemicalbasis and clinical implication. Clinical Microbiology Reviews 10, 781–91.

226. Engemann JJ, CarmeliY, Cosgrove SE et al. (2003). Adverse clinical and economic outcomesattributable to methicillin resistance among patients with Staphylococcus aureus surgical siteinfection. Clinical Infectious Diseases 36, 592–8.

227. Ippolito G, Leone S, Lauria FN, Nicastri E, Wenzel RP (2010) Methicillin-resistantStaphylococcus aureus: the superbug. 13. Int J Infect Dis.

228. Diep BA, Carleton HA, Chang RF et al. (2006 Roles of 34 virulence genes in the evolutionof hospital and community-associated strains of methicillin-resistant Staphylococcus aureus.J Infect Dis. 193(11): 1495–503.

229. Matthew TG, Holden et al. (2004) Complete genomes of two clinical Staphylococcus aureusstrains: Evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad SciUSA. 101(26): 9786–91.

230. Tacconelli E, De Angelis G, de Waure C, Cataldo MA, La Torre G, Cauda R (2009)Rapid screening tests for meticillin-resistant Staphylococcus aureus at hospital admission:systematic review and meta-analysis. T. Lancet Infect Dis.9(9):546–54.

231. Sieradzki K, Tomasz AJ (2003) Alterations of cell wall structure and metabolism accom-pany reduced susceptibility to vancomycin in an isogenic series of clinical isolates ofStaphylococcus aureus. Bacteriol. 185(24): 7103–10.

232. Shi SH, Kong HS, Jia CK, Xu J, Zhang WJ, Wang WL, Shen Y, Zhang M, Zheng SS(2010) Coagulase-negative staphylococcus and enterococcus as predominant pathogens inliver transplant recipients with gram-positive coccal bacteremia. Chin Med J (Engl). Aug 5;123(15):1983–8.

233. Chaberny IF, Wriggers A, Behnke M, Gastmeier P (2010.) Antibiotics: MRSA PreventionMeasures in German Hospitals: Results of a Survey Among Hospitals. Dtsch Arztebl Int.Sep;107(37):631–7.

234. National committee for clinical laboratory standards. Performance standards for antimicrobialsusceptibility testing; fourteenth informational supplement. nCCLS document M100-S14,(2004) V. 24, N.1, P. 109, Wayne, PA.

235. US Food and Drug Administration(1987) Guideline on validation of the limulus amebocytelysate test as an end-product endotoxin. Test for human and animal parenteral drugs, biologicalproducts, and medical devices,.

Page 12: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

184 References

236. Durgaryan AA, Dmitrenko OA, Matevosyan MB, Galoyan AA (2010) Protectory activity ofproline rich polypeptides at generalized staphylococcus infections induced by methicillin-resistant S.aureus. Reports of the NAS RA, v. 110, No. 4, p. 384–89.

237. Durgaryan AA, Dmitrenko OA, Galoyan AA (2011) The use of hypothalamic proline-richpolypeptide Gx-NH2 as immunomodulatory remedy against methicillin-resistant Staphylo-coccus aureus (MRSA) infection // AM 20100161 patent decision 1/2011

238. Durgaryan AA, Dmitrenko OA, Galoyan AA (2011)The use of hypothalamic proline-richpolypeptide galarmin as immunomodulatory remedy against methicillin-resistant Staphylo-coccus aureus (MRSA) infection // AM 20100143 patent desicion 1.19.2011.

239. Durgaryan AA, Matevosyan MB, Seferyan TE,. Sargsyan MA, Grigoryan SL Galoyan AA(2011) Protective effect of proline rich polypeptides galarmin and its analogue d-15 galarminon the generalyzed Staphylococci infection induced by methicillin-resistant Staphylococusaureusin vivo. Biological Journal of Armenia, v.13 (1): 72–78.

240. Warren HS, Fitting C, Hoff E, Adib-Conquy M, Beasley-Topliffe L, Tesini B, Liang X, Valen-tine C, Hellman J, Hayden D, Cavaillon JM (2010) Resilience to bacterial infection: differencebetween species could be due to proteins in serum. J Infect Dis. Jan 15; 201(2): 223–32.

241. Maxime V, Fitting C, Annane D, Cavaillon JM (2005) Corticoids normalize leukocyte pro-duction of macrophage migration inhibitory factor in septic shock. J Infect Dis. Jan 1; 191(1):138–44.

242. Annane D, Cavaillon JM. Corticosteroids in sepsis: from bench to bedside? Shock. 2003 Sep;20(3): 197–207.

243. S Bhakdi, J Tranum-Jensen (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev.Dec; 55(4): 733–751.

244. Durgaryan AA (2010) Investigation of direct antibacterial activity of galarmin and analogueson gram-positive and gram-negative bacteria in vitro.Reports of the NAS RA, v. 111, No. 1,p.69–75.

245. Durgaryan AA (2011) Investigation of direct antibacterial activity of proline-rich peptides,galarmin and analogues, against methicillin-resistant Staphylococcus aureus and clinicallyrelevant gram-positive and gram-negative bacteria, in vitro. // PONS Med J.v.7(4):131–138.

246. Bezirganyan KB, Davtyan TK, Galoyan AA (2010) hypothalamic proline -rich polypeptideregulates hematopoiesis // Neurochem. Res.V.35, N.6, P.917–924.

247. Chailakhian RK, GerasimovYu.V, Chailakian MR, Galoyan AA (2010) Proline-rich hypotha-lamic polypeptide has opposite effects on the proliferation of human normal bone marrowstromal cells and human giant-cell tumor stromal cells. // Neurochem.Res., V. 35, N 6, P.934–9.

248. Galoyan AA, Korochkin LI, Rybalkina EJ, Pavlova GV, Saburina IN, Zaraiski EI, GaloyanNA, Davtyan TK, Bezirganyan KB RevishchinAV (2008) Hypothalamic proline-rich polypep-tide enhances bone marrow colony-forming cell proliferation and stromal progenitor celldifferentiation. Cell Trannsplant 17:1061–1066

249. Bezirganyan KB, Davtyan TK, Galoyan AA (2008) Hypothalamic proline-rich polypeptideenhances human cd34+ progenitor cell differentiation into erythroid and granulomonocyticlineages. Proceedings of the international symposium on “actual problems in neurochemistryand neuroimmunology dedicated to H.Buniatian 100-th anniversary”. Neurokhimiya (RASand NAS RA) v. 25, N.4, p.3–4. Translated in Neurochemical Journal, v.25, No.4, p.301.

250. Gulati GL, Hyun BH (1994) The automated CBC: a current perspective. Hematol Oncol ClinNorth Am.;8:593–603.

251. Joshi A, Pancari G, Cope L, Bowman E, Cua D, McNeely T (2011) Th17 stimulation andIL17A play critical roles in the Staphylococcus aureus iron regulated surface determinant B(IsdB) mediated protection in a disseminated challenge model. The Journal of Immunology,186, 99.11

252. Clawson CC (1973) Platelet interaction with bacteria, 3: ultrastructure. Am J Pathol. 70:449–471.

253. Clawson CC, Rao GH, White JG (1975) Platelet interaction with bacteria, IV: stimulation ofthe release reaction. Am J Pathol. 81:411–420.

Page 13: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 185

254. Clawson CC, White JG (1980) Platelet interaction with bacteria: ultrastructure of congenitalafibrinogenemic platelets. Am J Pathol. 98:197–211.

255. Clawson CC,White JG, Herzberg MC (1980) Platelet interaction with bacteria, VI: contrastingthe role of fibrinogen and fibronectin. Am J Hematol. 9:43.

256. Bhakdi S, Muhly M, Mannhardt U, et al. (1988) Staphylococcal alpha toxin promotes bloodcoagulation via attack on human platelets. J Exp Med. 168:527–542.

257. Arvand M, Bhakdi S, Dahlback B, Preissner KT (1990) Staphylococcus aureus alpha-toxinattack on human platelets promotes assembly of the prothrombinase complex. J Biol Chem.265: 14377–14381.

258. Cramer EM, Savidge GF, Vainchenker W, et al. (1990) Alpha-granule pool of glycoproteinIIb-IIIa in normal and pathologic platelets and megakaryocytes. Blood. 75:1220–1227.

259. Youssefian T, Drouin A, Massé JM, Guichard J, Cramer EM (2002) Host defense role ofplatelets: engulfment of HIV and Staphylococcus aureusoccurs in a specific subcellular com-partment and is enhanced by platelet activation. Prepublished online April 30, 2002; 2002 99:4021–4029. doi:10.1182/blood-2001-12-0191

260. Maurice J L.Bancsi, MF Marcel HA, Veltrop H, Bertina RM, Thompson J. (1996) Influenceof monocytes and antibiotic treatment on tissue factor activity of endocardial vegetations inrabbits infected with Streptococcus sanguis. Infection and immunity, p. 448–451

261. Yochida K, Ekstedta RD (1968) Antibody response to Staphylococcus aureus in rabbits:sequence of immunoglobulin synthesis and its correlation with passive protection in mice.Journal of bacteriology, p. 1540–1545. Vol. 96, No. 5.

262. Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH (2011)Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediateimmune evasion. J Immunol. Jun 1; 186(11):6445–53.

263. Santucci L, Fiorucci S, Chiorean M, et al. (1996) Interleukin 10 reduces lethality and hepaticinjury induced by lipopolysaccharide in galactosamine-sensitized mice. Gastroenterology.111(3): 736–44.

264. Chmiel JF, Konstan MW, Saadane A, Krenicky JE, Lester Kirchner H, and Berger M (2002)Prolonged inflammatory response to acute Pseudomonas challenge in IL-10 knockout mice.Am J Respir Crit Care Med 165:1176–1181

265. Moore KW, de Waal Malefyt R, Coffman RL, and O’Garra A (2001) Interleukin-10 and theinterleukin-10 receptor. Annu Rev Immunol 19:683–765.

266. Oberholzer A, Oberholzer C, Bahjat KS, Ungaro R, Tannahill CL, Murday M, Bahjat FR,Abouhamze Z, Tsai V, LaFace D, et al. (2002) Increased survival in sepsis by in vivoadenovirus-induced expression of IL-10 in dendritic cells. J Immunol 168:3412–3418.

267. Ji J, Sun J, Soong L (2003) Impaired expression of inflammatory cytokines and chemokines atearly stages of infection with leishmania amazonensis. Infection and immunity, p. 4278–4288,Vol. 71, No. 8.

268. Freudenberg MA, Galanos C (1991) Tumor necrosis factor alpha mediates lethal activityof killed gram-negative and gram-positive bacteria in D-galactosamine-treated mice. Infect.Immun. 59:2110–2115.

269. Hinshaw LB, Emerson TE, Taylor, FB Jr., ChangACK, Duerr M, Peer GT, Flournoy DT,WhiteGL, Kosanke, SD, Murray CK, Xu R, Passey RB, Fournel MA (1992) Lethal Staphylococcusaureus induced shock in primates: prevention of death with anti-TNF antibody. J. Trauma33:568–573.

270. Miethke T, Wahl C, Heeg K, Echtenacher B, Krammer PH, Wagner H (1992) T-cell mediatedlethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical roleof tumor necrosis factor. J. Exp. Med. 175:91–98.

271. Vaudaux P, Grau GE, Huggler E, Schumacher-Perdreau F, Fiedler F. Waldvogel FA, Lew DP(1992) Contribution of tumor necrosis factor to host defense against Staphylococci in a guineapig model of foreign body infections. J. Infect. Dis. 166:58–64.

272. Dalrymple SA, Lucian LA, Slattery R, et al. (1995) Interleukin-6-deficient mice are highlysusceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia.Infect Immun. 63:2262–2268.

Page 14: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

186 References

273. Dalrymple SA, Slattery R, Aud DM, Krishna M, Lucian LA, Murray RL (1996) Interleukin-6is required for a protective immune response to systemic Escherichia coli infection. InfectImmun. 64:3231–3235.

274. Ladel CH, Blum C, Dreher A, Reifenberg K, Kopf M, Kaufmann SHE (1997) Lethaltuberculosis in interleukin-6 deficient mutant mice. Infect Immun. 65:4843–4849.

275. Romani L, Mencacci A, Cenci E, et al. (1996) Impaired neutrophil response and CD4+ Thelper cell 1 development in IL-6-deficient mice infected with Candida albicans. J Exp Med.183:1345–1355.

276. Kishimoto T (1989) The biology of interleukin-6. Blood. 74:1–10.277. Cole N, Krockenberger M, Bao S, Beagley KW, Husband AJ, Willcox M (2001) Effects of

exogenous IL-6 during Pseudomonas aeruginosa corneal infection. Infect Immun. 69:4116–4119.

278. Barton BE, Jackson JV (1993) Protective role of interleukin 6 in the lipopolysaccharide-galactosamine septic shock model. Infect Immun. 61:1496–1499.

279. Liu Z, Simpson RJ, Cheers C (1992) Recombinant IL-6 protects mice against experimentalbacterial infection. Infect Immun. 60:4402–4406.

280. Emma BH, Hume, Cole N, Garthwaite LL, Khan S, Willcox MDP (2006) A protective rolefor il-6 in staphylococcal microbial keratitis. Invest. Ophthalmol. Vis. Sci. vol. 47 no. 114926–4930

281. Dube PH, Handley SA, Lewis J, Miller VL (2004) Protective role of interleukin-6 dur-ing Yersinia enterocolitica infection is mediated through the modulation of inflammatorycytokines. Infect Immun. Jun;72(6):3561–70.

282. Matsushima K, Morishita K, Yoshimura T, Lavu S, Kobayashi Y, Lew W, Appella E, KungHF, Leonard EJ, Oppenheim JJ (1988) Molecular cloning of a human monocyte-derivedneutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin1 and tumor necrosis factor. J. Exp. Med. 167:1883–1893.

283. Smith WB, Gamble JR, Clark-Lewis I, Vadas MA (1991) Interleukin- 8 induces neutrophiltransendothelial migration. Immunology 72:65–72.

284. Mulligan MS, Jones ML, Bolanowski MA, Baganoff MP, Deppeler CL, Meyers DM, RyanUS, Ward PA (1993) Inhibition of lung inflammatory reactions in rats by an anti-human IL-8antibody. J. Immunol. 150:5585–5595.

285. Kang HJ, Ha JM, Kim HS, Lee H, Kurokawa K, Lee BL (2011) The role of phagocytosis inIL-8 production by human monocytes in response to lipoproteins on Staphylococcus aureus.Biochem Biophys Res Commun. 18;406(3):449–53.

286. Shimizu T (2004) Analysis of genomic structure and regulation of virulence genes ofClostridium perfringens. Review. Japanese nippon saikingaku zasshi. May; 59(2): 377–85.

287. McDonel JL (1980) Clostridium perfringens toxins (type A, B, C, D, E). Pharmacol. Ther.10, 617–635.

288. T Hatheway CL (1990) Toxigenic clostridia. Clin. Microbiol. Rev. 3, 66–98.289. Mahony DE, Moore TI (1976). Stable L-forms of Clostridium perfringens and their growth

on glass surfaces. Can J Microbiol 22, 953–959.290. Rood JI (1998) Virulence genes of Clostridium perfringens. Annu. Rev Microbiol 52, 333–

360.Dargatz et al 1993291. SutterVL, Finegold SM (1976) Susceptibility of anaerobic bacteria to 23 antimicrobial agents,

Antimicr. Agents Chemother., 10, 736–752.292. Stevens DL, Laine BM, Mitten JE (1987) Effect of antibiotics on toxin production and viability

of Clostridium perfringens. Antimicrobial agents for chemotherapy, 31(2): 312–6.293. Chhabra G, Sharma P, Anant A, Deshmukh S, Kaushik H, Gopal K, Srivastava N, Sharma

N, Garg LC (2010) Identification and modeling of a drug target for Clostridium perfringensSM101. Bioinformation. Jan 17; 4(7):278–89.

294. Sengupta N,Alam SI (2011) In vivo studies of Clostridium perfringens in mouse gas gangrenemodel. Curr Microbiol. Mar; 62(3):999–1008.

295. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drugdiscovery for tuberculosis. Nature. Jan 27;469(7331):483–90.

Page 15: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 187

296. Mostrom P, Gordon M, Sola C, Ridell M, Rastogi N (2002) Methods used in molecularepidemiology of tuberculosis. Clin. Microbiol. Infect. 8: 694–704

297. Dannenberg AM (1989) Immune mechanisms in the pathogenesis of pulmonary tuberculosis.Rev. Infect. Dis. 11 (Suppl.) 2:S369–78

298. Shafer RW, Kim DS, Weiss JP, Quale JM (1991) Extrapulmonary tuberculosis in patients withhuman immunodeficiency virus infection. Medicine 70: 384–97

299. Medina E, North RJ (1998) Resistance ranking of some common inbred mouse strains toMycobacterium tuberculosis and relationship to major histocompatibility complex haplotypeand Nramp1 genotype. Immunology 93: 270–74

300. North RJ, Medina E (1998) How important is Nramp1 in tuberculosis? Trends Microbiol. 6:441–43

301. Medina E, North RJ (1996) Evidence inconsistent with a role for the Bcg gene (Nramp1) inresistance of mice to infection with virulent Mycobacterium tuberculosis. J. Exp. Med. 183:1045–51

302. North RJ, Ryan L, LaCourse R, Mogues T, Goodrich ME (1999) Growth rate of mycobacteriain mice as an unreliable indicator of mycobacterial virulence. Infect. Immun. 67: 5483–85

303. Schell RF, Ealey WF, Harding GE, Smith DW (1974) The influence of vaccination on thecourse of experimental airborne tuberculosis in mice. J. Reticuloendothel. Soc. 16: 131–3821.

304. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM (2002) Dissemination of My-cobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cellimmunity. Infect. Immun. 70: 4501–9

305. Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ (2001) The relative importance ofT cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosisinfection in mice. 24. Medina E, North RJ. 1999. Genetically susceptible mice remain propor-tionately more susceptible to tuberculosis after vaccination. Immunology 96: 16–21 J. Exp.Med. 193: 271–80

306. Medina E, North RJ (1999) Genetically susceptible mice remain proportionately moresusceptible to tuberculosis after vaccination. Immunology 96: 16–21

307. McCune RM, Tompsett R (1956) Fate of Mycobacterium tuberculosis in mouse tissues asdetermined by the microbial enumeration technique. J. Exp. Med. 104: 737–61

308. Mitsos LM, Cardon LR, Ryan L, LaCourse R, North RJ, Gros P (2003) Susceptibility totuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosisreplication in the lungs. Proc. Natl. Acad. Sci. USA 100: 6610–15

309. Shi L, JungY-J, Tyagi S, Gennaro ML, North RJ (2003) Expression of Th1-mediated immunityin mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic ofnon-replicating persistence. Proc. Natl. Acad. Sci. USA 100: 241–46

310. Dunn PL, North RJ (1995) Virulence ranking of some Mycobacterium tuberculosis and My-cobacterium bovis strains according to their ability to multiply in the lungs, induce lungpathology and cause mortality in mice. Infect. Immun. 63: 3428–37

311. Dunn PL, North RJ (1996) Persistent infection with virulent but not avirulent Mycobacteriumtuberculosis in the lungs of mice causes progressive pathology. J. Med. Microbiol. 45: 103–9

312. Lurie MB (1932) The correlation between the histological changes and the fate of livingtubercle bacilli in the organs of tuberculous rabbits. J. Exp. Med. 55: 31–42

313. Smith DW, Harding GE (1977) Experimental airborne tuberculosis in the guinea pig. Am. J.Pathol. 89: 273–76

314. Gehr P, Mwangi DK, Ammann A, Maloiy GM, Taylor CR, Weibel ER (1981) Design of themammalian respiratory system. V. Scaling morphometric pulmonary diffusion capacity tobody mass: wild and domestic mammals. Respir. Physiol. 44: 61–86

315. Sapoval B, Filoche M, Weibel ER (2002) Smaller is better—but not too small: a physical scalefor the design of mammalian pulmonary acinus. Proc. Natl. Acad. Sci USA 99: 10411–16

316. Mackaness GB (1969) The influence of immunologically commited lymphoid cells onmacrophage activity in vivo. J. Exp. Med. 129: 973–92

Page 16: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

188 References

317. Ragno S, Romano M, Howell S, Pappin DJ, Jenner PJ, Colston MJ (2001) Changes ingene expression in macrophages infected with Mycobacterium tuberculosis: a combinedtranscriptomic and proteomic approach. Immunology 104: 99–108

318. Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, et al. (2001) Reprogramming of themacrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis:signaling roles of nitric oxide synthase-2 and phagocytic oxidase. J. Exp. Med. 194: 1123–40

319. Rook GA, Steele J,Ainsworth M, Leveton C (1987)A direct effect of glucocorticoid hormoneson the ability of human and murine macrophages to control the growth of M. tuberculosis.Eur. J. Respir Dis. 71: 286–91

320. Adcock IM (2001) Glucocorticoid-regulated transcription factors. Pulm. Pharmacol Ther. 14:211–19

321. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ (1999) Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163:3920–27

322. Means TK, Jones BW, Schromm AB, Shurtleff BA, Smith JA, et al. (2001) Differentialeffects of Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophageresponses. J. Immunol. 166: 4074–82

323. Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, et al. (2002) Toll-like receptor4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J.Immunol. 169: 3155–62

324. Kamath AB, Alt J, Debbabi H, Behar SM (2003) Toll-like receptor 4-defective C3H/HeJmice are not more susceptible than other C3H substrains to infection with Mycobacteriumtuberculosis. Infect. Immun. 71: 4112–18

325. Reiling N, Holscher C, FehrenbachA, Kroger S, Kirschning CJ, et al. (2002) Toll-like receptor(TLR) 2- and TLR4-mediated pathogen recognition in resistance to airborne infection withMycobacterium tuberculosis. J. Immunol. 169: 3480–84

326. Boom WH (1996) The role of T cell subsets in Mycobacterium tuberculosis infection. Infect.Agents Dis. 5: 73–81

327. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu. Rev. Immunol. 19: 93–129328. Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nat

Rev. Immunol. 1: 20–30.329. Boom WH (1999) γδ T cells and Mycobacterium tuberculosis. Microbes Infect. 1: 187–95330. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role

for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178:2249–54

331. Cooper AM, Dalton DK, Stewart TA, Griffen JP, Russell DG, Orme IM (1993) Disseminatedtuberculosis in IFN-γ gene-disrupted mice. J. Exp. Med. 178: 2243–47

332. Cooper AM, Magram J, Ferrante J, Orme IM (1997) Interleukin 12 (IL-12) is crucial tothe development of protective immunity in mice intravenously infected with Mycobacteriumtuberculosis. J. Exp. Med. 186: 39–45

333. Jung Y-J, LaCourse R, Ryan L, North RJ (2002) Evidence inconsistent with a negative in-fluence of T helper 2 cells on protection afforded by a dominant T helper 1 response againstMycobacterium tuberculosis lung infection in mice. Infect. Immun. 70: 6436–43.

334. Kaufmann SH, Flesch IE (1988) The role of T cell-macrophage interactions in tuberculosis.Springer Semin. Immunopathol. 10: 337–58

335. Mason CM, Dobard E, Shellito J, Nelson S (2001) CD4+ lymphocyte responses to pul-monary infection with Mycobacterium tuberculosis in naive and vaccinated BALB/c mice.Tuberculosis 81: 327–34

336. Murray HW, Nathan CF (1999) Macrophage microbicidal mechanisms in vivo: reactive nitro-gen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani.J. Exp. Med. 189: 741–46

337. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identifica-tion of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci.USA 94: 5243–48

Page 17: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 189

338. Scanga CA, MohanVP, Tanaka K,Alland D, Flynn JL, Chan J (2001) The inducible nitric oxidesynthase locus confers protection against aerogenic challenge of both clinical and laboratorystrains of Mycobacterium tuberculosis in mice. Infect. Immun. 69: 7711–17

339. Jung Y-J, LaCourse R, Ryan L, North RJ (2002) Virulent but not avirulent Mycobacteriumtuberculosis can evade the growth inhibitory action of a T helper 1-dependent, nitric oxidesynthase 2-independent defense in mice. J. Exp. Med. 196: 991–98

340. Cooper AM, Segal BH, Frank AA, Holland SM, Orme IM (2000) Transient loss of resistanceto pulmonary tuberculosis in p47phox47−−/−− mice. Infect. Immun. 68: 1231–34

341. Bodnar KA, Serbina NV, Flynn JL (2001) Fate of Mycobacterium tuberculosis within murinedendritic cells. Infect. Immun. 69: 800–9

342. Tascon RE, Soares CS, Ragno S, Stavopoulos E, Hirst EM, Colston MJ (2000) Mycobacteriumtuberculosis-activated dendritic cells induce protective immunity in mice. Immunology 99:473–80

343. Scanga CA, Mohan VP, Yu K, Joseoh H, Tanaka K, et al. (2000) Depletion of CD4 Tcells causes reactivation of murine persistent tuberculosis despite continued expression ofinterferon gamma and nitric oxide synthase 2. J. Exp. Med. 192: 347–58

344. Flynn JL, Scanga CA, Tanaka KE, Chan J (1998) Effects of aminoguanidine on latent murinetuberculosis. J. Immunol. 160: 1796–803

345. Winslow GM, Roberts AD, Blackman MA, Woodland DL (2003) Persistence and turnover ofantigen-specific CD4 T cells during chronic tuberculosis infection in the mouse. J. Immunol.170: 2046–52

346. Britton WJ, Palendira U (2003) Improving vaccines against tuberculosis. Immunol. Cell Biol.81: 34–45

347. Wiegeshaus EH, McMurray DN, Grover AA, Harding GE, Smith DW (1970) Host-parasiterelationships in experimental tuberculosis. Am. Rev. Respir. Dis. 102: 422–29

348. van Rie A, Warren R, Richardson M, Victor TC, Gie RP, et al. (1999) Exogenous reinfectionas a cause of recurrent tuberculosis after curative treatment. N. Engl. J. Med. 341: 1174–79

349. Caminero JA, Pena MJ, Campos-Herrero MI, Rodriguez JC, Afonso O, et al. (2001) Exoge-nous reinfection with tuberculosis on a European island with a moderate incidence of disease.Am. J. Respir. Crit. Care Med. 163: 717–20

350. Friedenstein AJ, Chailakhyan RK, Lalykina KS, (1970) The development of fibroblastcolonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell TissueKinet. 3:393–403.

351. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV, (1966) Osteogenesis in transplants ofbone marrow cells. J. Embryol. Exp. Morphol. 16:381–390; 1966.

352. Priller J, Flügel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass K,Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U (2001)Targeting of gene-modified hematopoietic cells to the central nervous system: Use of thegreen fluorescent protein uncovers microglial engraftment. Nat. Med. 7:1356–1361.

353. Warren MK, Rose WL, Beall LD, Cone J (1995) CD34+ cell expansion and expression oflineage markers during liquid culture of human progenitor cells. Stem cells 13(2): 167–174.

354. Ploemacher RE, van der Sluijs JP, van Beurden CAJ, Baert MR, Chan PL (1991) Useof limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulationg and spleen colony-forming hematopoietic stem cells in mouse. Blood78:2527–2533

355. De Haan G, Nijhof W, Van Zant G (1997) Mouse strain-dependent changes in frequencyand proliferation of hematopoietic stem cells during aging: correlation between lifespan andcycling activity. Blood 89:1543–1550

356. Metcalf D (2008) Hematopoietic cytokines. Blood 111:485–491357. Kondo M, Scherer DC, King AG, Manz MG, Weissman IL (2001) Lymphocyte development

from hematopoietic stem cells. Curr Opin Gen Develop 11:520–526358. Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K, Weissman IL (2000)

Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines.Nature 407:383–386

Page 18: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

190 References

359. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoidprogenitors in mouse bone marrow. Cell 91:661–672

360. Maestroni G (1995) Adrenergic regulation of haematopoiesis. Pharmacol Res 32:249–523361. Szilvassy SJ (2003) The biology of hematopoietic stem cells. Arch Med Res 34:446–460362. Ye M, Graf T (2007) Early decisions in lymphoid development. Curr Opin Immunol 19:123–

128363. Galoyan AA (2000) Neurochemistry of brain neuroendocrine immune system: signal

molecules. Neurochem Res 25:1343–1355364. Galoyan AA (1996) New polypeptides of hypothalamus: isolation and primary structure. Proc

Nathl Acad Sci Armenia 96:555–570365. Galoyan AA, Krieglstein J, Klumpp S, Danielian KE, Galoian KA, Kremers W, Bezirganyan

KB, Davtyan TK (2007) Effect of hypothalamic proline-rich peptide (PRP-1) on neuronaland bone marrow cell apoptosis. Neurochem Res 32:1898–1905

366. Ueda Y, Kondo M, Kelsoe G (2005) Inflammation and the reciprocal production ofgranulocytes and lymphocytes in bone marrow. J Exp Med 201:1771–1780

367. Aprikyan VS, Galoyan AA (1999) Antibacterial activity of a new hypothalamic peptide. ProcNathl Acad Sci Armenia 99:367–371

368. Aprikyan VS, Galoyan AA (1999) Immune-protective properties of a new hypothalamicpolypeptide in bacterial pathologies. Med Sci Armenia 39:23–30

369. Davtyan TK, Muradyan EB, Avanessiyan LA, Alexanyan YuT, Petrossyan HH, GaloyanAA (1998) The influence of biologically active hypothalamic polypeptides on Interleukin-2-dependent functions of human lymphocytes in culture. Neurokhimya 15:45–50

370. Galoyan AA, Sarkissian JS, Chavushyan VA, Sulkhanyan RM, Avakyan ZE, Avetisyan ZA,Abrahamyan OD, Grigoryan YuKh (2005) PRP-1 protective effects of proline-rich pep-tides against central and peripheral neurodegeneration following N. ischiadicus transection.Neurochem Res 30:487–505

371. Galoyan AA, Sarkissian JS, Chavushyan VA, Sulkhanyan RM, Avakyan ZE, Avetisyan ZA,Grigoryan YuKh, Abrahamyan OD (2005) Neuroprotective action of hypothalamic peptidePRP-1 at various time survival following spinal cord hemisection. Neurochem Res 30:507–525

372. Galoyan AA, Sarkissian JS, Kipriyan TK, Sarkissian EJ, Sulkhanyan RM, Grigorian YuKh,Khachatrian TS (2000) Comparison of the protection against neuronal injury by hypothalamicpeptides and by dexamethasone. Neurochem Res 25:1567–1578

373. Galoyan AA, Sarkissian JS, Kipriyan TK, Sarkissian EJ, Chavushyan E, Sulkhanyan RM,Meliksetyan IB,Abrahamyan SS, GrigorianYuKh,Avetisyan ZA, Otieva NA (2001) Protectiveeffects of proline-rich peptides against cobra venom and trauma induced neuronal injury.Neurochem Res 26:1023–1038

374. Galoyan AA, Shakhlamov VA, Aghadjanov MI, Vahradyan HG (2004) Hypothalamic proline-rich polypeptide protects brain neurons at aluminum neurotoxicosis. Neurochem Res29:1349–1357

375. Shakhlamov VA, Galoyan AA, Polyakova GN, Vahradyan HG, Simonian MA, AghadjanovMI, Bogdanova JM, Altuchova VJ, Kondakova LJ (2002) Biochemical and ultrastructuralequivalents of aluminum toxicosis and effect of proline-rich peptide of hypothalamus. ProcNathl Acad Sci Armenia 102:166–172

376. Kevorkian GA, Marukhyan GL,Arakelyan LN, GuevorkianAG, GaloyanAA (2001) Influenceof the hypothalamic proline-rich peptide on the level of 14C-glucose utilization during crushsyndrome. Neurochem Res 26:1023–1038

377. Galoyan AA, Sarkissian JS, Chavushyan VA, Abrahamyan SS, Avakyan ZE, Vagradyan HG,Poghossyan MV, GrigoryanYuKh (2004) Study of the new hypothalamic proline-rich peptide(PRP-1) protective effect on morpho-functional changes in rat hippocampus using a modelof Alzheimer’s disease induced by intracerebroventricular injection of beta-amyloid peptideAb (25–35). Neurokhimya 21:265–288

378. Aprikyan VS, Galoyan KA, Galoyan AA (1999) Hypothalamic polypeptides—a new familyof immunomodulators. J Neurochem 77:S68D

Page 19: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 191

379. Schneider A, Kuhn HG, Schabitz WR (2005) A role for G-CSF (granulocyte-colonystimulating factor) in the central nervous system. Cell Cycle 4:1753–1757

380. Schabitz WR, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH,Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Schneider A(2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmedcell death and drives neurogenesis. J Clin Invest 115:2083–2098

381. Schabitz WR, Kruger C, Pitzer C, Weber D, Laage R, Gassler N, Aronowski J, Mier W,Kirsch F, Dittgen T, Bach A, Sommer C, Schneider A (2008) A neuroprotective function forthe hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). JCerebral Blood Flow Metabol 28:9–43

382. Chailakhyan RK, Latsinik NV, Shamsutdinov AG, et al. (2002) Factors influencing the effec-tiveness of clonal expansion of cells which form fibroblast colonies in human bone marrowcultures. Dokl Akad Nauk 382(3): 417–420

383. Latsinik NV, Sidorovich SYu, FridensteinAJ (1981) The influence of bone marrow trypsiniza-tion on the effectiveness of fibroblast colony formation in monolayer cultures. Bull Exp BiolMed 9:356–360

384. Chailakhyan RK, Lalykina KS (1969) Spontaneous and induced differentiation of bone tissuein a population of fibroblast-like cells obtained from sustained monolayer cultures of bonemarrow and spleen. Dokl Akad Nauk USSR 187(2): 473–479

385. Chailakhyan RK, Fridenstein AJ, Vasilyev AV (1970) Clone formation in monolayer culturesof bone marrow. Bull Exp Biol Med 2:94–96

386. Fridenstein AJ, Chailakhyan RK, Lalykina KS (1970) The development of fibroblast coloniesin monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

387. Latsinik NV, Grosheva AG, Narovlyansky AN, et al. (1987) The clonal nature of fibroblastcolonies formed by bone marrow stromal cells in cultures. Bull Exp Biol Med 3:356–358

388. Keilis-Borok IV, Latsinik NV, SYu Epichina, et al. (1971) Fibroblast colony formation inbone marrow monolayer colonies assessed by H3 thymidine inclusion findings. Tsitologiya8(11): 1402–1409

389. Gerassimov YuV, Chailakhyan RK, Latsinik NV, et al. (2001) Changes in the numbers ofclonogenic stromal precursor cells in the hemopoietic and lymphoid organs during bonemarrow regeneration. Izvestiya Akad Nauk Biol Ser 6:693–703

390. Satomura K, Derubeis AR, Fedarko NS, et al. (1998) Receptor tyrosine kinase expression inhuman bone marrow stromal cells. J Cell Physiol 177:426–438

391. Owen M (1988) Marrow stromal stem cells. J Cell Sci 10:63–76392. Gronthos S, Simmons PJ (1995) The growth factor requirements of STRO-1 positive human

bone marrow stromal precursor under serum-deprived conditions in vitro. Blood 85(4): 929–940

393. Solchaga LA, Penik K, Porter WA, et al. (2005) FGF-2 enhances the mitotic and chondrogenicpotentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol203(2): 398–409

394. Hankemeier S, Keus M, Ziechen J, et al. (2005) Modulation of proliferation and differentiationof human bone marrow stromal cells by fibroblast growth factor 2: potential implications fortissue engineering of tendons and ligaments. Tissue Eng 11(1–2): 41–49

395. Bianco P, Riminicci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells:nature, biology and potential applications. Stem Cells 19(3): 180–192

396. Dominici M, Blanc K, Slaper-Cortenbach I, et al. (2006) Minimal criteria for defining mul-tipotent mesenchymal stromal cells. The International Society for Cellular Therapy: positionstatement. Cytotherapy 8(4): 315–317

397. De Laat SW, Boonstra J, Defisel HK, et al. (1999) Growth factor signaling. Int J Dev Biol43:681–691

398. Tsutsumi S, Shimazu A, Miyazaki K, et al. (2001) Retention of multilineage differentiationpotential of mesenchymal cells during proliferation in response to FGF. Biochem BiophysRes Commun 288(2): 413–419

Page 20: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

192 References

399. Kilian O, Flesch I, Wenisch S, et al. (2004) Effects of platelet growth factor on humanmesenchymal stem cells and human endothelial cells in vitro. Eur J Med Res 9(7): 337–344

400. Tamama K, Fan VH, Griffith LG, et al. (2006) Epidermal growth factor as a candidate for exvivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 24(3): 686–695

401. Bogdan Ch, Rollinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogenintermediates in innate and specific immunity. Curr Opin Immunol; 12: 64–76.

402. Hampton MB, Kettle AJ, Winterbourn ChC (1998) Inside the neutrophil phagosome:Oxidants, myeloperoxidase, and bacterial killing. Blood; 92: 3007–3017.

403. Segal AW, Abo A (1993) The biochemical basis of the NADPH oxidase of phagocytes. TrendsBiochem Sci; 18: 43–47.

404. Klebanoff SJ (1999) Oxygen metabolites from phagocytes; in Gallin JI, Snyderman R (eds):Basic Principles and Clinical Correlates. Philadelphia, Lippincott Williams & Wilkins, pp721–768.

405. Rizzi R, Bruno S, Dammacco R (1997) Behçet’s disease: An immune-mediated vasculitisinvolving vessels of all sizes. Int J Clin Lab Res; 27: 225–232.

406. Hamzaoui K, Hamzaoui A, Guemira F, Bessioud M, Hamza M, Ayed K (2002) Cytokine profile in Behçet’s disease patients. Scand J Rheumatol; 31: 205–210.

407. Alpsoy E, Kodeija V, Goerdt S, Orfanos CE, Zouboulis ChC (2003) Serum of patients withBehcet’s disease induces classical (pro-inflammatory) activation of human macrophages invitro. Dermatology; 206: 225–232.

408. Tavadyan LA, Sedrakyan GZ, Minasyan SH (2004) Antioxidant and pro-oxidant reactivi-ties of copper (II), manganese (II) and iron (III) 3, 5-di-i-propylsalicylate chelates duringperoxidation of alkylbenzenes. Transition Met Chem 29:684–696

409. Brad-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluateantioxidant activity. Lebensm Wiss Technol 28:25–30

410. Litwinenko G, Ingold KU (2003) Abnormal solvent effects on hydrogen atom abstractions1. The reactions of phenols with 2, 2-diphenyl-1-picrylhydrazyl in alcohols. J Org Chem68:3433–3438

411. Minasyan SH, Tavadyan LA, Antonyan AP, Davtyan HG, Parsadanyan MA, VardevanyanPO (2006) Differential pulse voltammetric studies of ethidium bromide binding to DNA.Bioelectrochemistry 68:48–55

412. Tavadyan LA, Tonikyan HG, Musaelyan MV, Barsegyan AE, Minasyan SH, Sorenson JRJ(2007) Anti-tert-butylperoxyl radical reactivities of manganese (III), cobalt (II) and nickel (II)salicylidene schiff base chelates. Int J Chem Kinet 39:431–439

413. Haliwell B, Gutteridge JMC (1998) Free radical in biology and medicine. Oxford UniversityPress, Oxford

414. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature408:239–247

415. Kohen R, Beit-Yannai E, Berry EM, Tirosh O (1999) Overall low molecular weight antioxidantactivity of biological fluids and tissues by cyclic voltammetry. Methods Enzymol 300:285–296

416. Simonyan GM, Simonyan RM,Aghamyan GR, Simonyan MA, GaloyanAA (2007) The effectof proline-rich polypeptide on reduction of methemoglobin and formation of superoxide bythe b558 III cytochrome and suprol metalloproteins in vitro. Neurokhimiya (RAS and NASRA) 24:37–40

417. Ingold KU (1961) Inhibition of autoxidation of organic substances in the liquid phase. ChemRev 61(6): 563–589

418. Denisov ET, Denisova TG (2000) Handbook of antioxidants: bond dissociation energies. Rateconstants, activation energies and enthalpies of reactions, 2nd edn. CRC Press, Boca Ration

419. Mardoyan VA, Tavadyan LA, Nalbandyan AB (1985) Reactivity of tert-butyl peroxyl radicalsin the liquid phase. Kinetic parameters of the reaction of tert-butyl peroxyl radical withsterically unhindered phenols. Chem Phys (Moscow) 4:1107–1112

420. Tavadyan LA, Khachoyan AA, Martoyan GA, Kamal-Eldin A (2007) Numerical revelationof the kinetic significance of individual steps in the reaction mechanism of methyl linoleateperoxidation inhibited by α-tocopherol. Chem Phys Lipids 147:30–45

Page 21: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 193

421. Kerman K, Vestergaard M, Miyki Ch, Yamamura S, Tamiya E (2007) Label-free electro-chemical detection of the phosphorylated and non-phosphorylated forms of peptides basedon tyrosine oxidation. Electrochem Commun 9:976–980

422. Moreno L, Merkoci A, Alegret S, Hernandez-Cassou S, Saurina J (2004) Analysis of aminoacids in complex samples by using voltammetry and multivariate calibration methods. AnalChim Acta 507:247–253

423. Huanq KJ, Luo DF, Xie WZ, Yu YS (2008) Sensitive voltammetric determination of tyrosineusing multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film- coated glassy carbonelectrode. Coloids Surf B Biointerfaces 61:176–181

424. Lin X-Q, Kang G-F, Zhu X-H (2008) Uracil-grafted carbon electrode: electrocatalyticbehavior of tryptophan, tyrosine, catecholamino and related compounds. Chin J Chem26:681–688

425. Mardoyan VA, Tavadyan LA, Nalbandyan AB (1986) Reactivity of tert-butyl peroxyradicalsin the liquid phase. Influence of the solvent on reactions of tert-butyl peroxyradical withbenzaldehyde and phenol. Chem Phys (Moscow) 5:1377–1383

426. Valgimigli L, Banks JT, Ingold KU (1995) Kinetic solvent effect on hydroxylic hydrogenatom abstractions is independent of the nature of the abstracting radical. Two extreme testsusing vitamin E and phenol. J Am Chem Soc 117:9966–9971

427. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert, CM, Kopin IJ (1979)Chronic Parkinsonism secondary to intravenous injection of meperidine analogues, PsychiatryRes. 1 249–254.

428. Maharaj DS, Saravanan, KS, Maharaj H, Mohanakumar KP, Daya S (2004) Acetaminophenand aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats, Neurochem. Int.44 355–360.

429. Thomas B, D. Muralikrishnan D, K.P. Mohanakumar KP (2000) In vivo hydroxyl radicalgeneration in the striatum following systemic administration of 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine in mice, Brain Res. 852 221–224.

430. Muralikrishnan D, Samantaray S, Mohanakumar KP (2003) D-Deprenyl protects nigrostri-atal neurons against 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine-induced dopaminergicneurotoxicity, Synapse 50 7–13.

431. Mohanakumar KP,. Hanbauer I, Chiueh CC (1998) Neuroprotection by nitric oxide againsthydroxyl radical-induced nigral neurotoxicity, J. Chem. Neuroanat. 14 195–205.

432. KnaryanV, Samantaray S,Varghese M, SrinivasonA, GaloyanA, Mihanakumar K (2006) Syn-thetic bovine proline-rich polypeptides generate hydroxyl radical and fail to protect dopamin-ergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergicneurotoxicity in mice. Neuropeptides, 40, 291–298.

433. Gu W, Holms V (2005) Dynamical binding of proline-rich peptides to their recognitiondomains. Biochim Biophys Acta. Dec 30; 1754(1–2):232–8.

434. Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV.Eukaryotic signaling domain homo-logues in archaea and bacteria (1999) Ancient ancestry and horizontal gene transfer. J MolBiol. Jun 18; 289(4):729–45.

435. Heldin CH, Osfman A, and Ronnstrand L (1998) Signal transduction via platelet-derivedgrowth factor receptors. Biochim Biophys Acta. Aug 19;1378(1):F79–113.

436. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell. Oct 13; 103(2):211–25.

437. Pawson T, Raina M, Nash P (2002) Interaction domains: from simple binding events tocomplex cellular behavior. FEBS Lett. Feb 20; 513(1):2–10.

438. Ren R, Mayer BJ, Cicchetti P, Baltimore D (1993) Identification of a ten-amino acid proline-rich SH3 binding site. Science. Feb 19; 259(5098): 1157–61.

439. Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL (1994) Structural basis forthe binding of proline-rich peptides to SH3 domains. Cell. Mar 11; 76(5): 933–45.

440. Koch CA,Anderson D, Moran MF, Ellis C, Pawson T (1991) SH2 and SH3 domains: elementsthat control interactions of cytoplasmic signaling proteins. Science. May 3; 252(5006):668–74.

Page 22: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

194 References

441. Reed JA, Clegg DJ, Smith KB, Tolod-Richer EG, Matter EK, Picard LS, Seeley RJ (2005)GM-CSF action in the CNS decreases food intake and body weight. J Clin Invest. Nov;115(11):3035–44.

442. Wolach B, van der Laan LJ, Maianski NA, Tool AT, van Bruggen R, Roos D, Kuijpers TW(2007) Growth factors G-CSF and GM-CSF differentially preserve chemotaxis of neutrophilsaging in vitro. Exp Hematol. Apr;35(4):541–50.

443. Zhang Y, Adachi Y, Iwasaki M, Minamino K, Suzuki Y, Nakano K, Koike Y, Mukaide H,Shigematsu A, Kiriyama N, Li C, Ikehara S (2006) G-CSF and/or M-CSF accelerate differ-entiation of bone marrow cells into endothelial progenitor cells in vitro. Oncol Rep. Jun;15(6):1523–7.

444. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, KimYJ, Soo Lee D, Sohn DW, HanKS, Oh BH, Lee MM, Park YB (2004) Effects of intracoronary infusion of peripheral bloodstem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolicfunction and restenosis after coronary stenting in myocardial infarction: the MAGIC cellrandomised clinical trial. Lancet. 363: 751–756.

445. Chen BD, Clark CR, Chou TH (1988) Granulocyte/macrophage colony-stimulating factorstimulates monocyte and tissue macrophage proliferation and enhances their responsivenessto macrophage colony-stimulating factor. Blood 71: 997–1002.

446. Kemper CA, Bermudez LE, Deresinski SC (1988) Immunomodulatory treatment of My-cobacterium avium complex bacteremia in patients with AIDS by use of recombinantgranulocyte-macrophage colony-stimulating factor. J Infect Dis. Apr;177(4):914–20.

447. Schäbitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain-derived neu-rotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood FlowMetab. May;17(5):500–6.

448. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Levesque JP, ChappelJ, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNAexpression in the bone marrow. Blood. Nov 1; 106(9):3020–7.

449. Galoian K, Scully S, Galoyan A (2009) Myc-oncogene inactivating effect by proline richpolypeptide (PRP-1) in chondrosarcoma JJ012 cells. Neurochem Res. Feb; 34(2): 379–85.

450. Galoian KA, Temple TH, Galoyan AA (2011) cytostatic effect of the hypothalamic cytokineprp-1 is mediated by mTOR and cMyc inhibition in high-grade chondrosarcoma // neurochem.Res. 36, (5): 812–8.

451. Druker BJ, Mamon HJ, Roberts TM (1989) Oncogenes, growth factors, and signaltransduction. New Engl. J. Med. 321:1383–1391.

452. Schaller MD, Borgman CA, Cobb BS,Vines RR, ReynoldsAB, Parsons JT (1992) pp125FAK,a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc NatlAcad Sci U S A. Jun 1; 89(11):5192–6.

453. Weinstein SL, Gold MR, DeFrancoAL (1991) Bacterial lipopolysaccharide stimulates proteintyrosine phosphorylation in macrophages. Proc NatlAcad Sci U SA. May 15; 88(10):4148–52.

454. Szabó C, Mitchell JA, Thiemermann C, Vane JR (1993) Nitric oxide-mediated hyporeactivityto noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br JPharmacol. Mar; 108(3): 786–92.

455. Ruetten H, Thiemermann C (1997) Effects of tyrphostins and genistein on the circulatoryfailure and organ dysfunction caused by endotoxin in the rat: a possible role for proteintyrosine kinase. Br J Pharmacol. Sep; 122(1): 59–70.

456. Neubauer A, Fiebaler A, et al. (1994). Expression of axl, a transforming receptor tyrosinekinase in normal and malignant hematopoiesis. Blood v. 84, N 6, pp.1931–1941

457. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knaben-hans C, Macdonald HR, Trumpp A (2004) cMyc controls the balance between hematopoieticstem cell self-renewal and differentiation. Genes Dev. Nov 15;18(22):2747–63.

458. Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J (2003)Progression through key stages of haemopoiesis is dependent on distinct threshold levels ofc-Myb. EMBO J. 2003 Sep 1; 22(17): 4478–88.

Page 23: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

References 195

459. DePinho RA, Schreiber-Agus N, Alt FW (1991) myc family oncogenes in the developmentof normal and neoplastic cells. Adv Cancer Res. 57:1–46.

460. Cogswell JP, Cogswell PC, Kuehl WM, Cuddihy AM, Bender TM, Engelke U, Marcu KB,Ting JP (1993) Mechanism of cMyc regulation by c-Myb in different cell lineages. Mol CellBiol. May;13(5):2858–69.

461. Chekhonin V, Gurina O, Ryabukhin I, Savchenko E, Galoyan AA (2001) Immuno-chemicalstudy of the effect of neurotrophins on the GFAP synthesis in astrocyte culture. Biochem-ical and molecular-biological aspects of the brain immune system (encyclopedia Armenicapublishing house), Yerevan, P. 140–145

462. Collins S, Denou E, Verdu E, Bercik P (2009) The putative role of the intestinal microbiotain the irritable bowel syndrome. Dig Liver Dis. 41(12): 850–853.

463. Fujimura KE, et al. (2010) Role of the gut microbiota in defining human health. Expert RevAnti Infect Ther. April; 8(4): 435–454.

Page 24: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

Index

AAnthrax, 43, 57–59, 61–64, 66–68, 71, 73, 74,

163, 164, 166, 168Antibacterial, 41, 43, 44, 49–52, 66, 67, 115,

163, 164, 166, 171Antibodies, 8, 12, 47, 67, 164Antioxidant-antiradical, 153Antiviral, 1, 53, 54

BBacillus anthracis, 55, 57–59, 62–68, 71, 73,

164, 171, 172Bone marrow, 126, 134, 137, 138, 143–151,

168, 169, 171, 172Brain, 7, 8, 11, 12, 16, 19, 21, 22, 114, 143,

166, 169Brain cytokines, 52, 77

CChemokines, 1, 9–12, 126Chondrosarcoma, 168, 171Clostridium perfringens, 103–105, 111,

164, 169cMyc, 165, 168, 171, 172Cytokines, 1, 6–8

DDefense system, 172

EElectron donating, 154Endogenous regulators, 172Episodic strain, 58, 59, 61, 64, 66, 73

GGalarmin, 55, 69, 70, 105, 154, 164–166, 168,

170, 172Gas gangrene, 43, 103–105, 108, 110–112,

115, 163, 164, 167

HHematopoietic, 1, 137, 138, 143, 163, 167,

168, 170, 172Highly contagious diseases, 170Hypothalamus, 7, 15, 16, 18, 19, 21, 22, 25, 26,

58, 130, 138, 143, 163, 172

IImmune system, 2, 11, 18, 20, 22, 57, 58, 68,

110, 119, 153, 154, 163, 170, 172Immunocompetent cells, 19, 22, 52Immunomodulators, 22, 58, 163, 172Immunophilin, 18, 163Infectious, 43, 71, 110, 117, 122, 153, 164,

166, 170, 172Interferon, 1, 52, 134, 167Interleukins, 1, 9, 19, 58

MMacrophage inhibitory factor (MIF), 22, 23Macrophages, 22, 44, 47–49, 66, 122, 128,

153, 163Malignancies, 168, 170Methicillin resistant Staphylococcus aureus,

see MRSAMRSA, 43, 55, 75, 77, 163, 164mTOR, 166, 168Mycobacterium tuberculosis, 114, 121, 130,

132, 133, 164, 169

NNeurodegenerative diseases, 170Neuroendocrine, 29, 31, 58, 77, 170, 171Neurohormones, 53, 77, 112, 172Neurohumoral axis, 172Neurohypophysis, 21, 138

A. A. Galoyan, Brain Immune System Signal Molecules in Protection from Aerobic 197and Anaerobic Infections, Advances in Neurobiology 6,DOI 10.1007/978-1-4614-3667-6, © Springer Science+Business Media New York 2012

Page 25: References - Springer978-1-4614-3667-6/1.pdf · Allain F, DenysA, DenysA, Spik G (1996) Cyclophilin B mediates cyclosporineA incorporin A incorporate in human bloodT-lymphocytes through

198 Index

Neurons, 7, 8, 11–13, 19, 21, 22, 54, 58, 114,143, 163, 166

Neurosecretion, 33

OOrganism, 11, 43, 57, 58, 66, 67, 134, 146,

149–151, 160

PProline rich peptides, 33, 37, 38, 52, 163PRP-1, 41, 44, 47, 48, 52–54, 137, 141,

143, 168

RReceptors, 1, 2, 5–12, 21, 49, 54, 67, 68, 126,

138, 139, 153, 163, 166, 168, 171, 172

TThymosin, 15, 21, 163Tyrosine kinase, 5, 12, 68, 69, 71, 74, 115,

166–169, 171, 172Tyrosine kinase inhibitor, 71, 115, 166