references - springer978-1-4612-4244-4/1.pdf · references abraham, ... vectors. tensors and the...

40
References Abraham, R.H., and Shaw, C.D. (1985). Dynamics. Geometry of Behavior, 3 vol., Aerial Press, Santa Cruz, California. Abramovich, G.N. (1963). The Theory of Turbulent Jets, MIT Press, Cambridge, Massachusetts. Absi, J.N. (1994). Contributions to the study of liquid and gas lubricated grooved bearings and seals (in French). Ph. D. Thesis, University of Poitiers. Allen, D.N., and Southwell, R.V. (1955). Q. J. Appl. Math. 8, 129-145. Anton, I. (1984). Cavitation (in Romanian), Publishing House of the Academy, Bucharest. Aoi, T. (1955). J. Phys. Soc. Jpn. 10, 119-129. Appel, P. (1932). Treatise of Rational Mechanics (in French), 3 vol., Gauthiers-Villars, Paris. Archard, J.F. (1961). Lubrication at point contact. Proc. R. Soc. London 261,532. Aristotle, A.M. (1948). Matrix and Tensor Calculus, John Wiley, New York, Arnold, V.I. (1986). Catastrophe Theory, Springer, New York. Arris, R. (1962). Vectors. Tensors and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey. Ashley, H., and Landahl, M. (1960). Aerodynamics of Wings and Bodies, Addison- Wesley, Reading, Massachusetts. AtIee Jackson, E. (1990), Perspectives of Nonlinear Dynamics, 2 vol., Cambridge University Press. Ausman, J.S. (1957). The fluid dynamic theory of gas lubricated bearings. ASME Trans. 79, 1218-1224. Bailey, P.B., Shampine, L.F., and Waltman, P.E. (1968). Nonlinear 1Wo Point Boundary Value Problems, Academic Press, New York. Bairstow, L., Cane, B.M., and Lang, E.D. (1923). Philos. Trans. R. Soc. London Al23, 383-432. Barlow, A.G., Erginsav, A., and Lamb, J. (1968). Visco-elastic relaxation in liquid mixtures. Proc. R. Soc. London A309, 473.

Upload: hoangdiep

Post on 03-Jul-2018

241 views

Category:

Documents


0 download

TRANSCRIPT

References

Abraham, R.H., and Shaw, C.D. (1985). Dynamics. Geometry of Behavior, 3 vol.,

Aerial Press, Santa Cruz, California.

Abramovich, G.N. (1963). The Theory of Turbulent Jets, MIT Press, Cambridge,

Massachusetts.

Absi, J.N. (1994). Contributions to the study of liquid and gas lubricated grooved bearings and seals (in French). Ph. D. Thesis, University of Poitiers.

Allen, D.N., and Southwell, R.V. (1955). Q. J. Appl. Math. 8, 129-145.

Anton, I. (1984). Cavitation (in Romanian), Publishing House of the Academy,

Bucharest.

Aoi, T. (1955). J. Phys. Soc. Jpn. 10, 119-129.

Appel, P. (1932). Treatise of Rational Mechanics (in French), 3 vol., Gauthiers-Villars,

Paris.

Archard, J.F. (1961). Lubrication at point contact. Proc. R. Soc. London 261,532.

Aristotle, A.M. (1948). Matrix and Tensor Calculus, John Wiley, New York,

Arnold, V.I. (1986). Catastrophe Theory, Springer, New York.

Arris, R. (1962). Vectors. Tensors and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey.

Ashley, H., and Landahl, M. (1960). Aerodynamics of Wings and Bodies, Addison­Wesley, Reading, Massachusetts.

AtIee Jackson, E. (1990), Perspectives of Nonlinear Dynamics, 2 vol., Cambridge University Press.

Ausman, J.S. (1957). The fluid dynamic theory of gas lubricated bearings. ASME Trans. 79, 1218-1224.

Bailey, P.B., Shampine, L.F., and Waltman, P.E. (1968). Nonlinear 1Wo Point Boundary Value Problems, Academic Press, New York.

Bairstow, L., Cane, B.M., and Lang, E.D. (1923). Philos. Trans. R. Soc. London Al23,

383-432.

Barlow, A.G., Erginsav, A., and Lamb, J. (1968). Visco-elastic relaxation in liquid mixtures. Proc. R. Soc. London A309, 473.

450 References

Barlow, E.J. (1967). Self-acting foil bearings of infinite width. ASME Trans. Ser. F, 1. Lubr. Technol. 89, 341-345.

Batchelor, G.K. (1951). Note on a class of solutions of the Navier-Stokes equations representing steady nonrotationally symmetric flow. Q. 1. Mech. Appl. Math. 4,29-41.

Batchelor, G.K. (1956). The Theory of Homogeneous Turbulence, Cambridge University Press.

Batchelor, G.K. (1967). An Introduction to Fluid Dynamics, Cambridge University

Press.

Becker, E. (1960). Eine einfache verallgemeinung der Rayleigh grenzschicht. Z. Agnew Math. Phys. 11, 146-152.

Becker, E. (1977). Applied Fluid Mechanics (in German), Teubner, Stuttgart.

Becker, E., and Burger, W. (1975). Mechanics of Continua (in German), Teubner,

Stuttgart.

Becker, R. (1921/1922). Stosswelle und detonazion. Z. Phys. 8,321-322.

Bejan, A (1994). Contact melting heat transfer and lubrication. Advances in Heat Transfer 24, Academic Press, New York, 1-38.

Belotserkowsky, S.M., Editor, (1974). Numerical Solutions of Present Gas Dynamics Problems (in Russian), Nauka, Moscow.

Benard, H. (1900). Cell vortices in a liquid layer (in French). Rev. Gin. Sci. Pures Appl. 11,1261-1271; 1309-1328.

Beraneck, L.L. (1954). Acoustics, McGraw-Hili, New York.

Berker, R. (1951). C. R. Acad. Sci. Paris 232, 148-149.

Berker, R. (1963). Integration of flow equations of a viscous incompressible fluid (in French), in: Handbook of Physics (S. Flugge and C. Truesdell, Eds.), vol. VIII12, p. 1-384, Springer, Berlin.

Berman, AS. (1953). 1. Appl. Phys. 24, 1232-1235.

Betchov, R., and Criminate, W.O. (1967). Stability of Parallel Flows, Academic Press,

New York.

Betz, A (1915). Untersuchungen einer Joukowskyschen Trangfliiche. Z. Math. 6, 173-

179.

Betz, A (1956). Introduction to the Theory of Hydraulic Machinery, Pergamon Press,

London.

Bingham, E.C. (1922). Fluidity and Plasticity, McGraw-Hili, New York.

Birchoff, G. (1960). Hydrodynamics, Princeton University Press, Princeton, New

Jersey.

References 451

Birchoff, G., and Zarandonello, E.H. (1957). Jets, Wakes, and Cavities, Academic

Press, New York.

Bird, R.B., Stewart, W.E., and Lightfoot, E.N. (1960). Transport Phenomena, John Wiley, New York.

Bjerknes, V., Bjerknes, J., Solberg, H., and Bergen, T. (1933). Physical Hydrodynamics (in German), Springer, Berlin.

Blasius, H. (1908). Boundary layers in fluids of low friction (in German). Z. Math.

Phys. 57, 1-37.

Block, H., and van Rossum, J.J. (1953). The foil bearing, a new departure in hydrodynamic lubrication. Lubr. Eng. 9,310-320.

Block, MJ. (1956). Surface tension as the cause of Benard cells and surface deformation in a liquid film. Nature 178, 650-651.

BOdewadt, V.T. (1940). Die Drehstromung tiber festen Grund. Z. Angew. Math. Mech.

20,241-253.

Boothroyd, R.G. (1971). Flowing Gas-Solid Suspensions, Chapman and Hall, London.

Boussinesq, J. (190111903). The Analytical Heat Theory (in French), 2 vol., Gauthiers­Villars, Paris.

Bradley, J.N. (1962). Shock Waves in Chemistry and Physics, John Wiley, New York.

Bradshaw, W.P. (1971). Experimental Fluid Mechanics, Pergamon Press, Oxford.

Bratianu, C. (1983). Finite Element Methods in Fluid Dynamics (in Romanian), Publishing House of the Academy, Bucharest.

Brebbia, c.A. (1978). The Boundary Element Method for Engineers, Pentech Press, London.

Bridgman, P.W. (1949). The Physics of High Pressure, C. Bell and Sons Ltd., London.

Brillouin, M. (1907). Lectures on the Viscosity of Liquids (in French), 2 vol., Gauthiers­Villars, Paris.

Brun, E.A., Martinot-Lagarde, A., and Methieu, J. (1970). Fluid Mechanics (in French), 3 vol., Dunod, Paris.

Burgdorfer, A. (1959). The influence of molecular mean free path on the performance of

hydrodynamic gas lubricated bearings. ASME Trans. Ser. D, J. Basic Eng. 81,94-100.

Burgers, J.M. (192111922). Proc. Acad. Sci. Amsterdam 23,1082-1107.

Caldonazzo, B. (1926). Rend. R. 1st. Lomb. Sci. Lett. 52,657-665.

Cameron, A. (1966). Principles of Lubrication, Longmans, London.

Cameron, A. (1971). Basic Lubrication Theory, Longmans, London.

452 References

Carafoli, E., and Constantinescu, V.N. (1981). Dynamics of Incompressible Fluids (in Romanian), Publishing House of the Academy, Bucharest.

Carafoli, E., and Constantinescu, V.N. (1984). Dynamics of Compressible Fluids (in

Romanian), Publishing House of the Academy, Bucharest.

Carlsaw, H.S., and Jaeger, J.C. (1948). Conduction of Heat in Solids, Clarendon Press,

Oxford.

Carrier, G.F., and DiPrima, R.C. (1957). 1. Math. Phys. 35,359-383.

Casal, P. (1950). C. R. Acad. Sci. Paris 230, 178-179.

Ceaplighin, S.A. (1949). Collected Works (in Russian), Gostehizdat, Moscow.

Cebecci, T., and Smith, A.M.O. (1974). Analysis of Turbulent Boundary Layers, Academic Press, New York.

Chandrasenkhar, S. (1961). Hydrodynamic and Hydromagnetic Stability, Oxford

University Press.

Chang, P.A. (1970). Separation of Flow, Pergamon Press, London.

Chang, T.S., and Frederick, D. (1965). Continuum Mechanics, Allyn and Bacon,

Boston.

Chapman, A.J. (1967). Heat Transfer, 2 vol., Macmillan, New York.

Chapman, S., and Cowling, T.G. (1970). The Mathematical Theory of Non-Uniform

Gases, Cambridge University Press.

Charm, S.E., and Kurtland, G.S. (1974). Blood Flow and Microcirculation, John Wiley,

New York.

Childs, D. (1993). Turbomachinery Rotor Dynamics, John Wiley, New York.

Childs, D.W. (1983). Finite length solution for the rotordynamic coefficients of

turbulent annular seals. ASME Trans. Ser. F, 1. Lubr. Technol. 105,437-444.

Chorin, A.J., and Marsden, J.E. (1979). A Mathematical Introduction to Fluid Mechanics, Springer, New Yrok.

Chow, C.Y. (1979). An Introduction to Computational Fluid Mechanics, John Wiley,

New York.

Chow, V.T. (1959). Open Channel Hydraulics, McGraw-Hili, New York.

Christensen, R.M. (1971). Theory of Viscoelasticity, Academic Press, New York.

Christopherson, D.G., and Dowson, D. (1959). Proc. R. Soc. London A251, 550-564.

Chung, T.J. (1978). Finite Element Analysis in Fluid Dynamics, McGraw-Hili, New

York.

Cisotti, U. (1922). Plane Hydrodynamics (in Italian), 2 vol., Vlrico Hoepli, Milano.

References 453

Cisotti. U. (1924). Atti Accad. Lincei 33.161-167.

Cochran. W.G. (1934). The flow due to a rotating disk . Proc. Cambridge. Philos. Soc. 30. 365-375.

Cole. J.A.. and Hughes. C.J. (1956). Oil flow and film extent in complete journal bearings. Engineer 201.255-258; 263-265.

Cole. J.D. (1968). Perturbation Methods in Applied Mathematics. Blaisdell. London.

Coleman. B. (1965). Wave Propagation in Dissipative Materials. Springer. New York.

Coles. D.E .• and Hirst. E.A .• Editors (1968). Proceedings on Computational Turbulent Boundary Layers. 2 vol.. Stanford University Press. Stanford. California.

Collins. R.E. (1961). Flow of Fluids through Porous Materials. Reinhold. New York.

Collins. W.D. (1954). Matematika 1. 125-130.

Collins. W.D. (1958). Matematika 5.118-121.

Comolet. E. (1952). Radial flow of a viscous compressible fluid between two parallel planes (in French). C. R. Acad. Sci. Paris 253. 1190-1193.

Como let. E. (1966). Experimental Fluid Mechanics (in French). 3 vol.. Masson. Paris.

Constantinescu. Y.N. (1955a). Considerations on the analysis of gas lubricated infinitely-long journal bearings (in Romanian). St. Cercet. Mec. Api. 6. 377-400.

Constantinescu, Y.N. (1955b). On some properties and limiting solutions of gas lubrication equations (in Romanian). Com. Acad. Bucharest 5. 1317-1321 .

Constantinescu. Y.N. (1955c). Pressure distribution in infinitely-long gas lubricated plane sliders (in Romanian). Com. Acad. Bucharest 5.377-383.

Constantinescu, V.N. (1956a). On the analysis of infinitely-long gas lubricated bearings composed by plane surfaces (in Romanian). St. Cercet. Mec. ApI. 7.741-771.

Constantinescu. V.N. (1956b). On the influence of heat transfer in flow of gases in thin layers (in Romanian). Com. Acad. Bucharest 6. 989-993.

Constantinescu, Y.N. (1960). On asymptotic solutions of gas lubrication equations. Com. Acad. Bucharest 10. 941-945.

Constantinescu. Y.N. (1961). Flow with friction of a gas between parallel surfaces (in Romanian) . St. Cercet. Mec. Appl. 12,809-826

Constantinescu. Y.N. (1964). On some secondary effects in self-acting gas-lubricated bearings. ASLE Trans. 7,257-268.

Constantinescu, Y.N. (1968a) . lndustrial Applications of Gas Bearings (in Romanian). Publishing House of the Academy, Bucharest.

Constantinescu, Y.N. (1968b). Lubrication in Turbulent Regime. U. S. Atomic Energy CommissionlDivision of Technical Information, U. S. Government Printing Office,

454 References

AEC-tr-6959, Washington, D.C. (Romanian Edition, Publishing House of the Academy, Bucharest, 1965).

Constantinescu, V.N. (1969a). Gas Lubrication, ASME Publications, New York (Romanian Edition, Publishing House of the Academy, Bucharest, 1963).

Constantinescu, V.N. (1969b). Note on the influence of heat transfer between the surfaces as a secondary effect in gas lubrication. ASME Trans. Ser. F, J. Lubr. Technol., 91, 194-198.

Constantinescu, V.N. (1970). Discussion to paper: The structure of liquids, by H. Eyring and M.S. Thon. In: Interdisciplinary Approach to the Lubrication of Concentrated Contacts (Ku, P. M., Editor), NASA SP-237, 269-272.

Constantinescu, V.N. (1973). On the influence of inertia forces in hydrostatic turbulent lubrication. Rev. Roum. Sci. Tech. Ser. Mec. Appl. 18,283-310.

Constantinescu, V.N. (1975). On dynamic effects due to inertia forces in lubricating films. Proceedings of the Leeds-Lyon Symposium on Superlaminar Flow in Bearings, Institite of Mechanical Engineers, London, 79-105.

Constantinescu, V.N. (1986). Note on a vector form of the dissipation function. Rev. Roum. Sci. Tech. Ser. Mec. Appl. 31, 109-110.

Constantinescu, V.N. (1987a). Dynamics of Viscous Fluids in Laminar Flow (in Romanian), Publishing House of the Academy, Bucharest.

Constantinescu, V.N. (1987b). Influence of inertia forces in externally-pressurized journal bearings operating at large Reynolds numbers. Rev. Roum. Sci. Tech. Ser. Mec. Appl. 32, 625-638.

Constantinescu, V.N. (1988). On entrance conditions in lubricating films at large Reynolds numbers (in Romanian). St. Cercet. Mec. Apl. 47,369-376.

Constantinescu, V.N. (1993). Dynamics of Viscous Fluids; Stability of Laminar Flow, Publishing House of the Academy, Bucharest.

Constantinescu, V.N., and Castelli, V. (1969). On local compressibility effect in spiral­groove bearings. ASME Trans. Ser. F, 1. Lubr. Technol. 91, 79-86.

Constantinescu, V.N., and Dimofte, F. (1987). On the influence of the Mach number on pressure distribution in a gas lubricated step bearing. Rev. Roum. Sci. Tech. Ser. Mec. Appl. 32,51-66.

Constantinescu, V.N., and Galetuse, S. (1974). On the possibilities of improving the accuracy of the evaluation of inertia forces in laminar and turbulent films. ASME Trans. Ser. F, J. Lubr. Technol. 96, 69-79.

Constantinescu, V.N., and Galetuse, S. (1976). Pressure drop due to inertia forces in step bearings. ASME Trans. Ser. F, J. Lubr. Technol. 98, 167-174.

References 455

Constantinescu, V.N., and Galetuse, S. (1985). On laminar and turbulent flow in

conical nozzles (in Romanian). St. Cercet. Mec. Api. 44, 323-334.

Constantinescu, V.N., and Hsing, F.C. (1971). A qualitative study of gas bearings

operating at high subsonic and supersonic tangential speeds. ASME Trans. Ser. E, J. Appl. Mech. 38,803-812.

Constantinescu, V.N., and Stanoiu, L. (1974). Rep. I.N.C.R.E.S.T., Bucharest.

Constantinescu, V.N., Galetuse, S., and Kennedy F.E. (1975). On the comparison between lubrication theory including turbulence and inertia forces and some existing experimental data. ASME Trans. Ser. F, J. Lubr. Technol. 97,439-449.

Constantinescu, V.N., Galetuse, S., and Smith, R.N. (1979). Laminar and turbulent flow in a liquid layer attached to a moving surface. Rev. Roum. Sci. Tech. Ser. Mec. Appl. 24,333-345.

Constantinescu, V.N., Nica, A., Pascovici, M.D., Ceptureanu, G., and Nedelcu, S. (1985). Sliding Bearings, Allerton Press, New York (Romanian Edition, Technical Press, Bucharest, 1980).

Constantinescu, V.N., Pan, C.H.T., et al. (1969). Short-time lubricant behavior in elastohydrodynamics contacts. MTI-G9-292, Mechanical Technology Inc., Latham, New York.

Constantinescu, V.N., Smith, R.N., and Galetuse, S. (1980a). Influence of inertia forces on film rupture in laminar and turbulent lubrication. ASLE Trans. 23, 61-69.

Constantinescu, V.N., Smith, R.N., and Pascovici, M.D. (1980b). Note on the influence of unequal temperature in liquid lubrication. Rev. Roum. Sci. Tech. Ser. Mec. Appl. 18, 113-124.

Cooke, J. C. (1958). Z. Angew. Math. Mech. 38, 349-356.

Cooper, N.G. (1989). From Cardinals to Chaos, Cambridge University Press.

Couette, M. (1890). Ann. Chim. Phys. 21,433-510.

Courant, R., and Friedericks, K.O. (1971). Supersonic Flow and Shock Waves, Interscience Publishers, New York.

Coyne, J.C., and Elrod, H.G. (197011971). Conditions for rupture of a lubricating film. ASME Trans. Ser. F, 1. Lubr. Technol. 92,451-456; 93, 156-162.

Craick, A.D.D. (1988). Wave Interaction and Fluid Flows, Cambridge University Press.

Cristescu, N., and Gioda, G., Editors. (1994). Viscoplasticity ojGeomaterials, Springer, Wien.

Cristescu, N., and Suliciu, I. (1976). Viscoplasticity (in Romanian), Technical Press, Bucharest.

Curle, N. (1962). The Laminar Boundary Layer Equations, Oxford University Press.

456 References

Curle, N., and Davies, H.J. (1971). Modern Fluid Dynamics, Van Nostrand, London.

Currie, I.G. (1993). Fundamental Mechanics of Fluids, McGraw-Hili, New York.

Darcy, H. (1896). The Public Fountains of the City of Dijon (in French), Dalmont, Paris.

Davies, I.T. (1972). Turbulence Phenomena, Academic Press, New York.

Dean, W.R. (1944). On the shearing motion past a projection. Proc. Cambridge Phi/os. Soc. 40, 19-36; Note on the shearing motion past a projection. Proc. Cambridge Phi/os. Soc. 40,214-222.

Dean, W.R. (1951). Slow motion of a viscous liquid in a semi-infinite channel. Proc. Cambridge Phi/os. Soc. 47, 127-141.

Defant, A. (1961). Physical Oceanography, 2 vol., Pergamon Press, New York.

Defay, Y.R., and Prigogine, I. (1966). Surface Tension and Adsorption, Longmans, London.

Dimofte, F. (1988). Private communication.

Dinu, M. (1983). Rotation of Fluid Systems (in Romanian), Scientific and Encyclopedic Press, Bucharest.

DiPrima, R.C. (1969). Higher order approximations in the asymptotic solution of the Reynolds equation for slider bearings at high bearings numbers. ASME Trans. Ser. F, J.

Lubr. Technol. 91,45-51.

DiPrima, R.e., and Stuart, T. (1972). Nonlocal effects in the stability of flow between eccentric rotating cylinders. J. Fluid Mech. 53, Part 3,393-415.

Dolittle, A.K. (1951). Studies in Newtonian flow. II. The dependency of the viscosity on free-space . J. Appl. Phys. 22, 1471-1475.

Dorrance, W.H. (1962). Viscous Hypersonic Flow, McGraw-Hill, New York.

Dowson, D. (1962). A generalized Reynolds equation for film fluid lubrication. Int. J.

Mech. Sci. 4, 159-170.

Dowson, D. (1982). History ofTribology, Pergamon Press, Oxford.

Dowson, D., and Higginson, G.R. (1966). Elasto-Hydrodynamic Lubrication, Pergamon

Press, Oxford.

Dragos, L. (1983). Principles of the Mechanics of Continuous Media (in Romanian),

Technical Press, Bucharest.

Drazin, P.D., and Reid, W.H. (1981). Hydrodynamic Stability, Cambridge University Press.

Drazin, P.G., and Johnson, R.S. (1989). Solitons: an Introduction, Cambridge University Press.

References 457

Drew, D.A., and Flaherty, J.E., Editors. (1986). Mathematics Applied to Fluid Mechanics and Stability, Proc. Conference Dedicated to Richard C. DiPrima, SIAM, Philadelphia.

Dryden, H.L., Murnagham, F.D., and Bateman, H. (1950). Hydrodynamics, Dover, New

York.

DuBois, G.B., and Ocvirk, F.W. (1953). Analytical derivation and experimental

evaluation of short bearing approximation for full journal bearings. NACA Rep. 1157.

Durand, F., Editor. (1935). Aerodynamic Theory, 6 vol., Springer, Berlin.

Dutton, J.C., and Purtell, L.P. (1993). Separated Flows, ASME Publications, New

York.

Dyke, M. van (1964). Perturbation Methods in Fluid Mechanics, Academic Press, New

York.

Eck, B. (1980). Applied Fluid Mechanics (in German), Springer, Berlin.

Eckart, C. (1960). Hydrodynamics of Oceans and Atmospheres, Pergamon Press, New

York.

Eckert, E.R.G., and Drake, R.M. (1972). Analysis of Heat and Mass Transfer, McGraw-Hili, New York.

Eckhaus, W. (1965). Studies in Non-Linear Stability Theory, Springer, Berlin.

Eckhaus, W. (1979). Asymptotic Analysis of Singular Perturbations, North Holland,

Amsterdam.

Einstein, A (1920). Schallausbreitung in Teilweise Dissoziirten Gasen. Sitzber. Akad. Wiss. Berlin, Math.-Phys. CI., 380.

Eirich, F.R., Editor. (1960). Rheology, 3 vol., Academic Press, New York.

Elrod, H.G., and Burgdorfer, A (1959). Refinement of the Theory of Gas Lubricated

Journal Bearings of Infinite Length. Proceedings of the First International Symposium on Gas Lubricated Bearings, ONR, Washington, 93-118.

Emmons, H. E., Editor. (1958). Fundamentals of gas dynamics. In: High-Speed Aerodynamics and Jet Propulsion, vol. III, Princeton University Press, Princeton, New Jersey.

Eppler, R., and Farel, H., Editors. (1980). Laminar-Turbulent Transition, Springer,

Berlin.

Eringen, AC. (1962). Non-Linear Theory of Continuous Media, McGraw-Hili, New

York.

Eringen, A.C. (1967). Mechanics of Continua, John Wiley, New York.

Eshel, A., and Elrod, H. (1965). The theory of the infinitely-wide, perfectly flexible

self-acting foil bearings. ASME Trans. Ser. F, J. Lubr. Technol. 87, 831-836.

458 References

Eskinazi, S. (1967). Vector Mechanics of Fluids and Magnetojluids, Academic Press, New York.

Eskinazi, S. (1975). Fluid Mechanics and Thermodynamics of Our Environment, Academic Press, New York.

Evans, H. (1968). Laminar Boundary Layer, Addison-Wesley, Reading, Massachusetts.

Eyring, H., and Jhon, M.S. (1969). Significant Liquid Structures, John Wiley, New

York.

Fantino, B., Frene, J., and Godet, M. (1971). Conditions for the use of Reynolds'

equation in the mechanics of thin films (in French). C. R. Acad. Sci. Paris 272, 691-

693 .

Favre, A., Editor. (1964). The Mechanics of Turbulence, Gordon and Breach, New

York.

Favre, A., Kovasznay, L.S.G., and Dumas, R. (1976). The Turbulence in Fluid Mechanics (in French), Gauthiers-Villars, Paris.

Faxen, H. (1921). Influence of walls on the drag of a small sphere moving in a viscous

fluid (in German), Ph. D. Thesis, Uppsala University.

Faxen, H. (1922). Ann. Phys. 4,89-112.

Faxen, H. (1922/1923). Ark. Mat. Astron. Fys. 17.

Faxen, H. (1927). Nova Acta Regiae Soc. Sci. Ups.

Fishenden, M., and Saunders, O.A. (1950). An Introduction to Heat Transfer, Oxford

University Press.

Flugge, S., and Truesdell, C., Editors. (1960). Encyclopedia of Physics, vol. Vill-IX, Fluid Mechanics I-III, Springer, Berlin.

Fraper, R.A. (1926). Philos. Trans. R. Soc. London A225, 93-130.

Frazer, R.A. (1925). On the motion of a circular cylinder in a viscous fluid. Phi/os. Trans. R. Soc. London A225, 93-130.

Frene, J., Nicolas, D., Deguerce, B., Berthe, D., and Godet, M. (1990). Hydrodynamic Lubrication (in French), Eyrolles, Paris.

Frenkel, I.I. (1955). Kinetic Theory of Liquids, Dover, New York.

Friedlander, S. (1980). Introduction to the Mathematical Theory of Geophysical Fluid

Dynamics, North Holland, Amsterdam.

Friedlander, S.K., and Topper, L. (1961). Sound Pulses, John Wiley, New York.

Friedrickson, A.G. (1964). Principles and Applications of Rheology, Prentice-Hall,

Englewood Cliffs, New Jersey.

References 459

Frossling, N. (1940). Verdunstung, Warmeiibertragung und Geschwindigkeitsverteilung

bei zweidimensionaler und rotationssymetrischer laminarer Grenzschichtstromung. Lunds Univ. Arssk. Avd. 35.

Froude, W. (1955). Papers, Institute of Naval Architects, London.

Fuhrmann, G. (1910). Theoretische und Experimentelle Untersuchungen an Ballonmodellen. Thesis, GiJttingen. Jahrb. der Motorluftschiff. 63, 1911/1912.

Fuller, D.D. (1984). Theory and Practice of Lubrication for Engineers, John Wiley, New York.

Fung, Y.c., and Perrone, N., Editors (1972). Biomechanics, Prentice-Hall, Englewood Cliffs, New Jersey.

Galdi, G.P., and Rionero, S. (1985). Weighted Energy Method in Fluid Dynamics and Elasticity, Lecture Notes in Mathematics 1134, Springer, Berlin.

Gallanger, R.H., Oden, J.T., Taylor, C., and Zinkiewics, O.C. (1975). Finite Elements in Fluids, 2 vol., John Wiley, New York.

Gaydon, A.G., and HurJe, I. (1963). The Shock Tube in High Temperature Chemical Physics, Reinhold, New York.

Georgescu, A. (1985). Hydrodynamic Stability Theory, Martinus Nijhoff, Boston.

Gerbers, W. (1951). Zum instationare laminare Stromung einer incompressibler zahen Fliissigkeit in Kreiszylindrischen Rohren. Z. Angew. Phys. 3, 167-271.

Gerhart, P.M., and Gross, R.I. (1985). Fundamentals of Fluid Mechanics, Addison­Wesley, Reading, Massachusetts.

Germain, P. (1973). Lectures on the Mechanics of Continuum Media (in French), Masson, Paris.

Ghermani, D. (1945). Theoretical and Applied Hydraulics (in Romanian), Ideea, Bucharest.

Gilmore, R. (1981). Catastrophe Theory for Scientists and Engineers, John Wiley, New York.

Ginewsky, A.S. (1969). Theory of Turbulent Jets (in Russian), Mashinovedenie, Moscow.

Giqueaux, M. (1957). Theoretical Fluid Mechanics (in French), Beranger, Paris.

Glasstone, S., Laidler, K.J., and Eyring, H. (1941). The Theory of Rate Processes, McGraw-Hill, New York.

Godounov, S., Zabrodine, A., Ivanov, M., Kraiko, A., and Prokopov, G. (1979). Numerical Solution of Gas Dynamics Multidimensional Problems (in French), Mir, Moscow.

460 References

Goldshtik, M.A. (1982). Structural Turbulence (in Russian), Izd. Severn. Otd. Akad. Nauk SSSR, Novosibirsk.

Goldstein, S. (1929). The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers. Proc. R. Soc. London A123, 21-225; 225-231.

Goldstein, S., Editor (1938). Modern Developments in Fluid Dynamics, Oxford University Press.

Goldstein. S. (1959). Lectures on Fluid Dynamics, Cambridge University Press.

Golubev, V.V. (1959). Viscosity of Gases and of Gas Mixtures (in Russian), GfITL, Moscow.

Golubitsky, M., and Schaeffer, D. (1985). Singularity and Groups in Bifurcation Theory, Springer, New York.

Gortier, H. (1975). Dimensional Analysis, Springer, Berlin.

Gossman, A.D., Pun, W.H., Runchal, A.K., Spalding, D.B., and Wolfshtein, D.B.

(1969). Heat and Mass Transfer in Recirculating Flows, Academic Press, New York.

Goursat, E. (1898). On equation MIl = 0 (in French). Bull. Soc. Math. France 26, 236-237.

Graetz, L. (1883). Ann. Phys. Chem. 18,79.

Graetz, L. (1885). Ann. Phys. Chem. 25, 337.

Grassam, N.S., and Powell, J.W. (1964). Gas Lubricated Bearings, Butterworths, London.

Green, G. (1944). Solutions of some problems in viscous flow. Philos. Mag. 35, 250-262.

Greenspan, H.P. (1968). The Theory of Rotating Fluids, Cambridge University Press.

Grimson, J. (1971). Advanced Fluid Dynamics and Heat Transfer, McGraw-Hill, New

York.

Grinnell, S.K. (1956). Flow of a compressible fluid in a thin passage. ASME Trans. 78, 765-776.

Groot, S.R. de, and Mazur, P. (1962). Non-Equilibrium Thermodynamics, North

Holland, Amsterdam.

Gross, E.P., and Ziering, S. (1958). Kinetic theory of linear shear flow. Phys. Fluids 1,

215-224.

Gross, W.A. (1962). Gas Film Lubrication, John Wiley, New York.

Gross, W.A., Matsch, L.A., Castelli, V., Eshel, A., Vohr, J.H., and Wildmann, M.

(1980). Fluid Film Lubrication, John Wiley, New York.

References 461

Gumbel, L. (1921). Vergleich der Ergebnisse der rechnerischen Behandlung des LagerschmierungsprobJem mit neuren Versuchergebnissen. Monatsbl. d. Berlin, Bezirk

V. D. I. 125, 8 September.

Gyarmati, I. (1970). Non-Equilibrium Thermodynamics, Springer, Berlin.

Hadamard, J. (1911/1912). c. R. Acad. Sci. Paris 152, 1735-1738, 1911; 154, 109, 1912.

Hadamard, J. (1949). Lectures on Wave Propagation and on Equations of Hydrodynamics, Chelsea Publications, London.

Hagen, G. (1839). Uber die Bewegung des Wassers in einer zylidrischen Rohren. Pogg. Ann. 46, 423-442.

Hamel, G. (1916). Spiralformige Bewegung ziiher Flussigkeiten. lahrber. d. Dt. Mat. Ver., 34-60.

Hamilton, D.B., Walowit, J.A., and Allen, C.M. (1967). A theory of lubrication by microirreguJarities. ASME Trans. Ser. D,l. Basic Eng. 84, 177-185.

Hamrock, BJ. (1993). Fundamentals of Fluid Film Lubrication, McGraw-Hili, New York.

Hamrock, B.J., and Dowson, D. (1981). Ball Bearing Lubrication (The

Elastohydrodynamics of Elliptical Contacts), John Wiley, New York.

Hansen, A.G. (1981). Similarity Analysis of Boundary Value Problems in Engineering, Prentice-Hall, Englewood Cliffs, New Jersey.

Happel, J., and Brenner, H. (1965). Low Reynolds Number Hydrodynamics, Prentice­Hall, Englewood Cliffs, New Jersey.

Harrison, W. (1913). The hydrodynamic theory of lubrication with special reference to air as a lubricant. Trans. Cambro Philos. Soc. 22, 37-54.

Harrison, WJ. (1924). Trans. Cambro Philos. Soc. 23, 71-88.

Hashimoto, H., Wada, S., and Yoshida, T. (1989). Pressure boundary conditions of high-speed thrust bearings. lSME Int. 1. 32, 269-280.

Hausenblas, H. (1950). Die nicht isotherme Stromung einer ziihen Flussigkeit durch eine Spalte und Kapillarrohren.Ing. Arch. 18, 151-166.

Haywood, R.W. (1972). Thermodynamic Tables, Cambridge University Press.

Hele Shaw, HJ.S. (1898). Trans. Instr. Nav. Archit. 46, 21-46.

Henderson, F.M. (1966). Open Channel Flow, Macmillan, New York.

Hersey, M.D., and Hopkins, R. (1954). Viscosity of Lubricants under Pressure, ASME Publications, New York.

462 References

Herzfeld, KF., and Litowitz, TA (1959). Absorbtion and Dispersion of Ultrasonic Waves, Academic Press, New York.

Hess, S.L. (1959). Introduction to Theoretical Meteorology, Henry Holt, New York.

Hiemenz, K (1911). Die Grenzschicht an einem in den gleichfOrmigen Fltissigkeitsstrom eingetauchten geradem Kreiszylinder. Dinglers Poly tech. 1. 326, 321.

Hilpert, R. (1933). Forsch. Ingenieurwes. 4,215-224.

Hinze, J.~. (1975). Turbulence: an Introduction to Its Mechanics and Theory, McGraw-Hili, New York.

Him, G.A. (1854). Study of the main phenomena of mediate friction and on various ways of determining the mechanical value of matter employed in lubrication of machinery (in French). Bull. Soc. Ind. Mulhouse 26.

Hirschfelder, J.~., Curtiss, C.F., and Bird, R.B. (1954). Molecular Theory of Gases and Liquids, John Wiley, New York.

Hoffman, E. (1936). Der Einfluss grosser Zahigkeit bei der Stromung urn der Zylinder und urn der Kugel. ZAMM 16, 153-164; Forsch. Ingenieurwes. 17, 1-10.

Holloway, G., and West, BJ., Editors (1983). Predictability of Fluid Motions,

American Institute of Physics, New York.

Homann, F. (1936). Forsch.lngenieurwes. 7, 1-10.

Hort, W. (1920). Z. Tech. Phys. 1,213-221.

Howarth, L. (1935). On the calculation of the steady flow in the boundary layer near the surface of a cylinder in a stream. ARC, R. M. 1632.

Howarth, L. (1951). Some aspects of the Rayleigh's problem for a compressible fluid. Q. 1. Mech. Appl. Math. 4, 157-169.

Howarth, L., Editor (1953). Modern Developments in Fluid Dynamics, 2 vol., Oxford University Press.

Huebner, KH. (1975). Finite Element Methodfor Engineers, John Wiley, New York.

Hunter, S.c. (1976). Mechanics of Continuous Media, Ellis Horwood, New York.

Iacob, C. (1959). Mathematical Introduction to Fluid Mechanics (in French),

Gauthiers-Villars, Paris.

I1iushin, AA (1978). Mechanics of Continuous Media (in Russian), Moscow

University Press.

Illingworth, C.R. (1950). Proc. Cambridge Phi/os. Soc. 46,603.

Imai, I. (1954). Proc. R. Soc. London A224, 141-160.

Ionescu, D.G. (1963). The method of analytical functions in the hydrodynamics of viscous liquids (in French). Rev. Roum. Sci. Tech. Ser. Mec. Appl. 7,675-709.

References 463

Ionescu, D.G. (1967). On general solutions of the flow equations of viscous fluids (in Russian). Prikl. Mat. Mekh. 3,586-589.

Ionescu, D.G. (1971). Circle and cylinder theorems for slow viscous flow. J. Mec. 10, 345-355.

Ionescu, D.G. (1976). Introduction to Hydraulics (in Romanian), Technic Press,

Bucharest.

Iordache, O. (1981). Polystochastic Processes Applied to Transfer Phenomena (in Romanian), Publishing House of the Academy, Bucharest.

Jeffery, G.B. (1915). Steady motions of a viscous flow. Philos. Mag. 29,455-465.

Jeffery, G.B. (1922). Proc. R. Soc. London AI01, 169-174.

Jones, A., Gray, A., and Hutton, R. (1987). Manifolds and Mechanics, Cambridge University Press., Math.-Phys. Kl., 509-517.

Joseph, D.D. (1976). Stability of Fluid Motion, 2 vol., Springer, Berlin.

Joukowsky, N.E. (1952). Selected Papers (in Romanian), Publishing House of the Academy, Bucharest.

Joukowsky, N.E., and Ceaplighin, S.A. (1904). On friction in a lubricating film between a journal and a bearing (in Russian). Tr. Otd. Fiz. Nauk Obsh. Lioub. Estestv. 13, Part 1.

Kahlert, N. (1948). Der Einfluss der Traghertskrafte in der hydrodynamischen Schmiermitteltheorie. Ing. Arch. 12,321-342.

Kanwal, R.P. (1955). Q. J. Appl. Math. 8, 146-163; ZAMM 35, 17-22.

Kapitsa, P.L. (1955). Lubrication of cylinders and of spheres (in Russian). Z. Techn. Phys. 25, 747.

Kaplun, S. (1967). Fluid Mechanics and Singular Perturbations, Academic Press, New York.

Kaplun, S., and Lagerstrom, P.A. (1957). Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers. J. Math. Sech. 6,585-593.

Karman, T. von (1912). Nachr. Ges. Wiss. Gottingen.

Karman, T. von (1921). Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233-252; NACA T. M. 1092, 1946.

Karman, T. von (1954). Aerodynamics, Cornell University Press.

Karman, T. von (1956). Collected Works, 4 vol., Butterworths, London.

Karman, T. von, and Biot, M. (1956). Mathematical Methods in Engineering, McGraw­Hill, New York.

Kato, H., and Furuya, O. (1991). Cavitation, ASME Publications, New York.

464 References

Kato, Y., and Soda, N. (1952). Theory of lubrication by compressible fluid with special reference to air bearing. Proc. 2nd Nat. Congr. Appl. Mech. Jpn. 267-270.

Kawakuti, M. (1953a). J. Phys. Soc. Jpn. 8,747-757.

Kawakuti, M. (1953b). Q. J. Appl. Math. 12,261-263.

Kawakuti, M. (1954). J. Phys. Soc. Jpn. 9, 303.

Kays, W.M. (1966). Convective Heat and Mass Transfer, McGraw-Hill, New York.

Kennard, E.H. (1938). Kinetic Theory of Gases, McGraw-Hill, New York.

Kennedy, F.E., Constantinescu, V.N., and Galetuse, S. (1975). A numerical method for

studying inertia effects in thin film lubrication. Proceedings of the Leeds-Lyon Symposium on Superlaminar Flow in Bearings, Institute of Mechanical Engineers, London, 174-182.

King, L.V. (1914). Philos. Trans. R. Soc. London A214, 373-432.

Kirchoff, G. (1883). Lectures on Mathematical Physics (in German), Leipzig.

Klime, S.1., Cockrell, V., Morkovin, M.V., and Sovran, G., Editors (1968). Proceedings on Computational Turbulent Boundary Layers, Stanford University Press, Stanford,

California.

Kline, S.T. (1965). Similitude and Approximation Theory, McGraw-Hill, New York.

Knapp, R.T., Daily, J.W., and Hammitt, F.G. (1971). Cavitation, McGraw-Hill, New

York.

Knudsen, M. (1950). Kinetic Theory of Gases, John Wiley, New York.

Kocin, N.E., Kibei, LA., and Rose, N.V. (1963). Theoretical Hydromechanics (in Russian), 2 vol., Fizmatghiz, Moscow.

Korowchinsky, M.V. (1959). Theoretical bases of sliding bearings operation (in Russian), Gos. Nauchno. Techn. Izd. Mashinostr. Lit., Moscow.

Kramers, H. (1946). Physica 12, 61-80.

Ku, P.M., Editor (1970). Interdisciplinary Approach to the Lubrication of Concentrated

Contacts, NASA SP-237, Washington.

Ku, P.M., Editor (1973). Interdisciplinary Approach to Liquid Lubricant Technology,

NASA SP-318, Washington.

Kuchemann, D. (1977). The Aerodynamic Design of Aircraft, Pergamon Press, Oxford.

Kuhn, E.C., and Yates, C.C. (1964). Fluid inertia effects on the film pressure between axially-oscillating parallel circular plates. ASME Trans. 7, 299-303.

Kuwahara, S. (1958). J. Phys. Soc. Jpn. 12,219-299; 13,506-519.

Kuwahara, S. (1959). J. Phys. Soc. Jpn. 14,522-527.

References 465

Lachmann, G.V., Editor (1961). Boundary Layer and Flow Control, 2 vol., Pergamon Press, London.

Ladenburg, R. (1906/1907). Ann. Phys. 22, 287-309,1906; 23, 447-458,1907.

Ladijenskaia, O.A. (1963). The Mathematical Theory of Viscous Incompressible Flow,

Gordon and Breach, London.

Lagerstrom, P.A., Editor (1964). Theory of Laminar Flow, Princeton University Press.

Lagerstrom, P.A., and Cole, J.D. (1954). Examples illustrating expansion procedures for

the Navier-Stokes equations. J. Rat. Mech. Anal. 4,817-882.

Lagerstrom, P.A., Cole, J.D., and Trilling, L. (1949). Problems in the theory of

compressible fluids. GALCT Rep.

Lamb, H. (1911). On the uniform motion of a sphere through a viscous fluid. Phi/os.

Mag. 21, 112-121.

Lamb, H. (1952). Hydrodynamics, Dover, New York.

Landau, L.D., and Lifschitz, E.M. (1968). Mechanics of Fluids (in French), Mir,

Moscow.

Langlois, W.E. (1964). Slow Viscous Flow, Macmillan, New York.

Launder, B.E., and Leschzinger, M.A. (1975). Flow in finite width thrust bearings

including inertial effects. Part I. Laminar flow; Part II. Turbulent flow. ASME Trans.

Ser. F, J. Lubr. Techno!. 100, 330-334.

Launder, B.E., and Spalding, D.B. (1972). Mathematical Models of Turbulence,

Academic Press, New York.

Lavrenziev, M., and Shabat, B. (1980). Hydrodynamic Effects and Mathematical Models (in French), Mir, Moscow.

Lees, L., and Lin, C.C. (1964). Theory of laminar flow. In: High Speed Aerodynamics and Jet Propulsion, Princeton University Press, Princeton, New Jersey.

Levich, V.G. (1962). Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey.

Lew, H.S., and Fung, Y.c. (1970). J. Biomech. 3,23-28.

Lewis, J.A., and Carrier, G.F. (1949). Q. J. Mech. Appl. Math. 7,228-234.

Licht, L. (1969). An experimental study of high speed rotors supported by air lubricated

foil bearings. ASME Trans. Ser. F, J. Lubr. Techn. 91,477-505.

Liepman, H.W., and Roshko, A. (1957). Elements of Gas Dynamics, John Wiley, New

York.

Lightfoot, E.N. (1974). Transport Phenomena and Living Systems, John Wiley, New

York.

466 References

Lighthill, M.J. (1956). Viscosity effects in waves of finite amplitude. In: Survey in Mechanics (G.K. Batchelor and R.M. Davies, Editors), Cambrige University Press.

Lighthill, M.J. (1975). Mathematical Biofluiddynamics, SIAM Publications, Philadelphia.

Lighthill, M.J. (1978). Waves in Fluids, Cambridge University Press.

Lin, C.C. (1943). On the Motion of Vortices in Two Dimensions, University of Toronto Press.

Lin, C.c. (1955). The Theory of Hydrodynamic Stability, Cambridge University Press.

Lin, C.c. (1958). Laminar flow and transition to turbulence. In: High Speed Aerodynamics and Jet Propulsion, vol. IV, Princeton University Press, Princeton, New Jersey.

Lin, c.c. (1959). Turbulent flow and heat transfer. In: High Speed Aerodynamics and

Jet Propulsion, vol. V, Princeton University Press, Princeton, New Jersey.

Ling, F.F. (1973). Surface Mechanics, John Wiley, New York.

L1iboutry, L.A. (1987). Very Slow Flow of Fluids. Kluwer, Copenhagen.

Lodge, A.S. (1964). Elastic Liquids, Academic Press, New York.

Loitziansky, L.G. (1962). Laminar Boundary Layer (in Russian), GIFML, Moscow.

Loitziansky, L.G. (1963). Mechanics of Liquids and Gases, Pergamon Press, Oxford.

Loitziansky, L.G. (1973). Mechanics of Liquids and Gases (in Russian), Nauka, Moscow.

Lorenz, E.N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141.

Lugt, H.J. (1979). Motion of Vortices in Nature and Technique (in German), Braun, Karlsruhe.

Lumley, J.L. (1970). Stochastic Tools in Turbulence, Academic Press, New York.

Malavard, L. (1974). Hydronautics and Hydromechanics (in French), Springer, Berlin.

Mandelbrodt, B. (1983). The Fractal Geometry of Nature, W.H. Freeman, San

Francisco.

Martin, B. (1967). Some analytical solutions for viscometric flows of power law fluids.

J. Nonlinear Mech. 2,285.

Martin, H.M. (1916). The lubrication of gear teeth. Engineer 102, 119.

Massey, R.S. (1975). Mechanics of Fluids, Van Nostrand Reinhold, London.

Masson, W.P., Editor (1964-1973). Physical Acoustics. Principles and Methods, 10 vol., Academic Press, New York.

Maxwell, C. (1952). Scientific Papers, Dover, New York.

References 467

McCormack, P.D., and Crane, L. (1973). Physical Fluid Dynamics, John Wiley, New York.

McCormick, M.E. (1973). Ocean Engineering Wave Mechanics, John Wiley, New York.

McDonald, D.A. (1974). Blood Flow in Arteries, Arnold, London.

Meksyn, D. (1961). New Methods in Laminar Boundary Layer Theory, Pergamon Press,

London.

Meyer, O.E. (188711891). Ann. Phys. Chem. 32,642-659, 1887; 43, 1-14, 1891.

Meyer, R.E. (1971). Introduction to Mathematical Fluid Dynamics, John Wiley, New

York.

Michell, A.G.M. (1950). Lubrication: its Principles and Practice, Blackie & Sons, London.

Millaps, K., and Pohlhausen, K. (1953). Thermal distribution in Jeffery-Hamel flows

between nonparallel walls. J. Aero. Sci. 20, 187-196.

Miller, D.C. (1935). Anecdotal History of the Science of Sound, Macmillan, New York.

Milne, A.A. (1958). A theory of grease lubrication of a slider bearing. Proc. 2nd Int.

Congr. on Rheology.

Milne, A.A. (1959). On the effect of lubricant inertia in the theory of hydrodynamic

lubrication. ASME Trans. Ser. D, J. Basic Eng. 81, 239-244.

Milne-Thomson, L.M. (1940). Proc. Cambridge Philos. Soc. 36.

Milne-Thomson, L.M. (1966). Theoretical Aerodynamics, Macmillan, London.

Milne-Thomson, L.M. (1968). Theoretical Hydrodynamics, Macmillan, London.

Milne-Thomson, L.M. (1969). The circle theorem and the cylinder theorem. Rev. Roum. Sci. Tech. Ser. Mec. Appl. 14,399-409.

Mises, R. von (1927). Bemerkungen zur Hydrodynamik. Z. Angew. Math. Mech. 7, 225-231.

Mises, R. von, and Friedrichs, K.O. (1971). Fluid Dynamics, Springer, Berlin.

Monin, A.S., and Yaglom, A.M. (1971). Statistical Fluid Mechanics; Mechanics of

Turbulence, MIT Press, Cambridge, Massachusetts.

Monsen, J.E., and McCracken, M. (1976). The Hopf Bifurcation and Its Applications, Springer, Berlin.

Morduchow, M., and Libby, P.A. (1949). On a complete solution of the one­

dimensional flow equations of a viscous, heat conducting compressible gas. J. Aero. Sci.

16.

468 References

Mori, H., and Miyamatsu, Y. (1969). Theoretical flow models for externally-pressurized gas bearings. ASME Trans. Ser. F. J. Lubr. Technol. 91, 181-193.

Morse, F.M., and Feshbach, H. (1953). Methods of Theoretical Physics, 2 vol., McGraw-Hill, New York.

Morse, P.M., and Ingard, K. (1961). Linear acoustic theory. In: Handbook of Physics (S.

Fliigge, Editor), vol. III 1 , Springer, Berlin.

Mujdermann, E.A. (1966). Spiral Groove Bearings, Macmillan, London.

Miiller, W. (1928). Mathematical Fluid Dynamics (in German), Springer, Berlin.

Miiller, W. (1932). Introduction in the Theory of Viscous Fluids (in German), Akademische Verlaggesellschaft, Leipzig.

Miiller, W. (1936). Zum Problem des Anlaufstromung einer Fliissigkeit im geraden Rohr mit Kreisring und Kreisquerschnitt. Z. Angew. Math. Mech. 16,227-238.

Mushelishvili, N.J. (1927). On approximate solution of the biharmonic equation (in

French). C. R. Acad. Sci. Paris. 185, 1411-1419.

Mushelishvili, N.J. (1945). Some basic problems of the mathematical theory of elasticity (in Russian). Akad. Nauk SSSR, Moscow.

Muskat, M. (1937). The Flow of Homogeneous Fluids through Porous Media, McGraw­

Hill, New York.

Nayfeh, A.H. (1973). Perturbation Methods, John Wiley, New York.

Neale, N.J., Editor (1973). Tribology Handbook, Butterworths, London.

Nehari, Z. (1952). Conformal Mappings, McGraw-Hill, New York.

Neil Rasband, S. (1990). Chaotic Dynamics of Non-Linear Systems, John Wiley, New

York.

Nicolis, G., and Prigogine, I. (1977). Self-Organization in Non-Equilibrium Systems. From Dissipative Structures to Order through Fluctuations, John Wiley, New York.

Nielsen, J.N. (1960). Missile Aerodynamics, McGraw-Hill, New York.

Oberbeck, A. (1876). J. Rein. Angew. Math. 81, 62-80.

Oberbeck, A. (1879). Uber die Warmleitung des Fliissigkeiten bei Beriicksichtigung der Stromungen inflolge von Temperaturdifferenzen. Ann. Phys. Chem. 7, 271-292.

O'Connor, J.J., Editor (1968). Standard Handbook of Lubrication Engineering,

McGraw-Hill, New York.

Oden, J.T., Editor (1980). Computational Methods in Nonlinear Mechanics, North

Holland, Amsterdam.

Olroyd, J.G. (1950). The formulation of rheological equations of state. Proc. R. Soc. London A200, 523.

References 469

Oroveanu, T. (1967). Mechanics of Viscous Fluids (in Romanian), Publishing House of the Academy, Bucharest.

Oseen, C.W. (1910). On the Stokes' problem and on the fundamental problems of hydrodynamics (in German). Ark. Math. Astron. Phys. 6; also: 7, 1912; 9, 191311914.

Oseen, C.W. (1915). Arch. Math. Phys. 24, 108-114.

Oseen, C.W. (1927). New Methods and Results in Hydrodynamics (in German), Akademische Verlaggesellschaft Geesr & Portig, Leipzig.

Oswatitsch, K. (1977a). Fundamentals of Gas Dynamics (in German), Springer, Wien.

Oswatitsch, K. (1977b). Special Problems of Gas Dynamics (in German), Springer, Wien.

Pai, S.l. (1954). Fluid Dynamics of Jets, Van Nostrand, Princeton, New Jersey.

Pai, S.1. (1957). Viscous Flow Theory, 2 vol., Van Nostrand, Princeton, New Jersey.

Pai, S.l. (1962). Magnetogasdynamics and Plasma Dynamics, Springer, Wien.

Pal, B. (191911920). Bull. Calcutta Math. Soc. 10,81-94; 11,43-50.

Pan, C.H.T. (1967). On asymptotic analysis of gaseous squeeze-film bearings. ASME

Trans. Ser. F, J. Lubr. Techno!' 89, 245-253.

Pan, C.H.T. (1974). Calculation of pressure, shear and flow in lubricating films for high-speed bearings. ASME Trans. Ser. F, J. Lubr. Technol. 96, 80-94.

Pancev, S. (1971). Random Fluctuations and Turbulence, Pergamon Press, New York.

Pantakar, S.V., and Spalding, D.B. (1970). Heat and Mass Transfer in Boundary

Layers, Intertext, London.

Patterson, O.N. (1965). Molecular Flow of Gases, John Wiley, New York.

Pearson, J.R.A. (1958). On convection cells induced by surface tension. J. Fluid Mech. 4,489-500.

Pearson, J.R.A., and Walters, K., Editors (1975). Theoretical Rheology, Applied Interscience Publishers, London.

Peclet, J.C.E. (1860). Treatise on Heat (in French), Paris.

Peres, J. (1936). Lectures on Fluid Mechanics (in French), Gauthiers-Villars, Paris.

Petrov, N. (1883). Friction in machines and the effect of lubricant (in Russian). Eng. J.

St. Petersburg 71-140; 228-279; 377-346; 535-564.

Phillips, O. (1966). The Dynamics of the Upper Ocean, Cambridge University Press.

Piercy, N.A.V., Hooper, M.S., and Winng, V. (1933). Philos. Mag. 15,647-676.

Pinkus, 0., and Stemlicht, B. (1961). Theory of Hydrodynamic Lubrication, McGraw­Hill, New York.

470 References

Pistolesi, E. (1932). Aerodinamica (in Italian), Unione Tipografica Editrice, Torino.

Pohlhausen, K. (1921). On the approximate integration of the differential equations of the laminar friction layer (in German). ZAMM I, 252-268.

PoiseuiIIe, J.L.M. (1840/1841). Experimental research on the motion of liquids in tubes

of small diameter (in French). C. R. A cad. Sci. Paris 11, 961-967; 1041-1049; 12, 112-

115.

Poncin, H. (1940). J. Math. Pures et Appl. 9, 163-195.

Power, G., and Scott-Hutton, D.L. (1955). The slow steady motion of a liquid past a

semi-elliptical boss. Pacific J. Math. 5, 953-962.

Power, G., and Scott-Hutton, D.L. (1956). The slow steady motion past a semi-infinite

plate. Pacific J. Math. 6,327-349.

Power, G., and Scott-Hutton, D.L. (1957). Slow shearing motion over a hollow. J.

Franklin Inst. 63,431-439.

Prager, W. (1961). Introduction to Mechanics of Continua, Ginn and Co., New York.

PrandtI, L. (1904). Uber Flussigkeitsbewegung bei sehr kleiner Reibung. Proc. 3rd

Math. Congr., Heidelberg, 484-491.

Prandtl, L. (1914). Der Luftwiederstand von Kugeln. Ges. Wiss. Gottingen, Math. Phys.

KI.,177-190.

PrandtI, L. (193111932). Anschauche und niizliche Mathematik, Lecture Notes,

University of Gottingen.

PrandtI, L. (1942). Collected Works (in German), 3 vol., Springer, Berlin.

Prandtl, L. (1952). Essentials of Fluid Dynamics, BIackie & Sons, New York.

PrandtI, L., and Tietjens, O. (1954). Hydro and Aerodynamics (in German), 2 vol.,

Springer, Berlin.

PrandtI, L., Oswatitsch, K., and Wieghart, K. (1960). Essentials of Fluid Dynamics (in

German), Viewig, Braunschweig.

Prigogine, I. (1947). Thermodynamics of Irreversible Processes (in French), Dunod,

Paris.

Proudman, I., and Pearson, J.R.A. (1957). Expansions at small Reynolds numbers for

the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237-262.

Putre, H.A. (1970). Computer solution of unsteady Navier-Stokes equations for an

infinite hydrodynamic step bearing. NASA TN-D-5682, Lewis Research Center.

Putterman, SJ. (1974). Superjluid Hydrodynamics, North Holland, Amsterdam.

Raimondi, A. (1961). A numerical solution for the gas lubricated journal bearings of

finite length. ASLE Trans. 4, 131-155.

References 471

Rankivi, A.I., and Callander, R.A. (1975). Advanced Fluid Dynamics, Arnold, London.

Rayleigh, Lord (1911) . On the motion of solid bodies through viscous liquid. Philos.

Mag. 21,697-711.

Rayleigh, Lord (1912). Notes on the theory of lubrication. Philos. Mag. 35, 1-12.

Rayleigh, Lord (1916). On convection currents in a horizontal layer of fluid when the

higher temperature is under side. Philos. Mag. 32, 529-556.

Rayleigh, Lord (1917). A simple problem in forced lubrication. Engineer 104, 617-620.

Rayleigh, Lord (1945). The Theory of Sound, 2 vol., Dover, New York.

Rayleigh, Lord (1964). Scientific Papers, Dover, New York.

Rebuffet, P. (1969). Experimental Aerodynamics (in French), 2 vol., Dunod, Paris.

Ree, T., and Eyring, H. (1955). Theory of non-Newtonian flow. IT. Solution system of

high polymers. 1. Appl. Phys. 26, 500.

Reeves, B.L., and Kippenham, C.I. (1962). A particular class of similar solutions of the

equations of motion and energy of a viscous fluid. 1. Aero-Space Sci. 29, 38-74.

Reichardt, E., and Lund, 1.W. (1975). The influence of fluid inertia on the dynamic

properties of journal bearings. ASME Trans. Ser. F,l. Lubr. Technol. 97, 159-167.

Reid, R.C., and Sherwood, T.K. (1966). The Properties of Gases and Liquids, McGraw­

Hill, New York.

Reiner, M. (1960). Lectures on Theoretical Rheology, North Holland, Amsterdam.

Reiner, M. (1969). Deformation, Strain and Flow; an Elementary Introduction to Rheology, H.K. Lewis, London.

Reynolds, O. (1886). On the theory of lubrication and its application to Mr. Beauchamp

Tower's experiments, including an experimental determination of the viscosity of olive

oil. Philos. Trans. R. Soc. London 177, part I, 157-234.

Reynolds, O. (1903). Papers on Mathematical and Physical Subjects, 3 vol., Cambridge University Press.

Reynolds, R.I. (1974). Turbulent Flow in Engineering, lohn Wiley, New York.

Richardson, E.G., and Tyler, E. (1929). Proc. Phys. Soc. London 12, 1-5.

Riegels, F. (1961). Airfoil Sections, Butterworths, London.

Rinehart, 1.S., and Pearson, 1. (1963). Explosive Working of Metals, Macmillan, New

York.

Roache, P.I. (1976). Computational Fluid Dynamics, Hermosa Publishers,

Albuquerque, New Mexico.

472 References

Roger, M.G., and Lance, G.N. (1960). The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disk. J. Fluid Mech. 7, 617-631.

Rohsenow, W.M., and Choi, H.Y. (1961). Heat, Mass, and Momentum Transfer, Prentice-Hall, Englewood Cliffs, New Jersey.

Rohsenow, W.M., and Hartnett, J.P. (1973). Handbook of Heat Transfer, McGraw-Hili,

New York.

Rosenhead, L. (1954). Discussion on the first and second viscosities of fluids. Proc. R. Soc. London A226.

Rosenhead, L. (1963). Laminar Boundary Layers, Oxford University Press.

Rosenhead, L., Editor (1968). Laminar Boundary Layer, Clarendon Press, Oxford.

Roshko, A. (1954). On the development of turbulent wakes from vortex sheets. NACA Rep. 1191.

Rossini, F. D., Editor (1955). Thermodynamics and physics of matter. In: High Speed Aerodynamics and Jet Propulsion, vol. T, Princeton University Press, Princeton, New

Jersey.

Rouse, H., and Ince, S. (1957). History of Hydraulics, State University of Iowa Press.

Rowlinson, J.S. (1969). Liquids and Liquid Mixtures, Butterworths, London.

Roy, M. (1970). Mechanics of Continuous and Deformable Media (in French),

Gauthiers-Villars, Paris.

Ryhming, I.L. (1985). Dynamics of Fluids (in French), Presses Poly techniques

Romandes.

Sauer, R. (1952). Mathematical Methods of the Theory of Gas Flow (in French), Gauthiers-Villars, Paris.

Schaaf, S.A., and Chambre, PL (1961). Flow of Rarefied Gases, Princeton University Press, Princeton, New Jersey.

Schaaf, S.A., and Sherman, F.S. (1953). Skin friction in slip flow. J. Aero. Sci. 21, 85-

90.

Scheidegger, A. E. (1963). Hydrodynamics in porous media. In: Handbook of Physics

(Fliigge, S., Editor), vol. VIIJ/2, Springer, Berlin.

Scheinberg, S.A. (1953). Gas lubrication of sliding bearings (in Russian). Friction and

Wear in Machinery 8, 107-204

Schlichting, H. (1934). Laminare Kanale in Laufstromung. Z. Angew. Math. Mech. 14,

368-373.

Schlichting, H. (1978). Boundary Layer Theory, Springer, Berlin.

Schlichting, H., and Truckenbrodt, E. (1952). Z. Angew. Math. Mech. 32,97-111.

References 473

Schlichting, H., and Truckenbrodt, E. (1960). Aerodynamics of Airplanes (in German), 2 vol., Springer, Berlin.

Schmieden, C. (1928). Z. Angew. Math. Mech. 8,460-479.

Schneider, W. (1968). Mathematical Methods of Fluid Mechanics (in German), Vieweg, Braunschweig.

Schowatter, W.R. (1978). Mechanics of Non-Newtonian Fluids, Pergamon Press,

Oxford.

Schubauer, G.B., and Tchen, C.M. (1961). Turbulent Flows, Princeton University Press, Princeton, New Jersey.

Schultz-Grunow, F. (1935). Z. Angew. Math. Mech. 15, 191-198.

Scott Blair, C.W. (1969). Elementary Rheology, Academic Press, New York.

Sears, W.R. (1954). General theory of high-speed aerodynamics. In: High Speed

Aerodynamics and Jet Propulsion, vol. VI, Princeton University Press.

Sedov, L.I. (1952). Plane Problems of Hydrodynamics and Aerodynamics, John Wiley,

New York.

Sedov, L.I. (1972). Similarity and Dimension Analysis in Mechanics (in French), Mir,

Moscow.

Sedov, L.I. (1975). Mechanics of Continuous Media (in French), Mir, Moscow.

Seeger, J., and Temple, G., Editors (1965). Research Frontiers in Fluid Dynamics, John Wiley, New York.

Seigel, R., Sparrow, E.M., and Hallman, T.M. (1958). Appl. Sci. Res. A7, 386-392.

Sen, D.K. (1920). Proc. Benares Math. Soc. 2, 1-11.

Sewell, MJ. (1987). Maximum and Minimum Principles, Cambridge University Press.

Sexl, T. (1930). Z. Phys. 61, 349-362.

Shames, I. H. (1962) . Mechanics of Fluids, McGraw-Hili, New York.

Shanks, D. (1955). Nonlinear transformation of divergent and slowly convergent sequences. J. Math. Phys. 34, 1-42.

Shaw, M., and Macks, E. (1955). Analysis and Lubrication of Bearings, McGraw-Hili,

New York.

Sheinberg, S.A. (1953). Gas lubrication of sliding bearings (in Russian). Trenie lznos

Mash. 8, 107-204.

Sherman, F.S. (1955). NACA T.N. 3298.

Sherman, F.S. (1990). Viscous Flow, McGraw-Hili, New York.

474 References

Skelland, AH.P. (1967). Non-Newtonian Flow and Heat Transfer, John Wiley, New York.

Slattery, J.S. (1978). Momentum, Energy, and Mass Transfer in Continua, Robert E. Krieger, New York.

Slezkin, N.A. (1935). Flow of a viscous fluid in a conical nozzle and between two conical surfaces (in Russian). Mat. Sb. 42.

Slezkin, N.A (1955). Dynamics of Viscous Incompressible Fluids (in Russian), Gostehizdat, Moscow.

Slezkin, N.A., and Targ, S.M. (1946). On the solution of Reynolds equation (in Russian). Dokl. Akad. Nauk SSSR 54, 25-208.

Sommerfeld, A. (1904). Zur hydrodynamische theorie der Schmiermittelreibung. ?AMP

50,97-155.

Sommerfeld, A (1921). Zur theorie der Schmiermittelreibung. Z. Tech. Phys. 2, 58-62; 89-93.

Sommerfeld, A. (1947). Mechanics of Deformable Media (in German), Wiesbaden.

Sommerfeld, A (1956). Thermodynamics and Statistical Mechanics, Academic Press, New York.

Southwell, R.V., and Squire, H.B. (1934). Philos. Trans. R. Soc. London A232, 27--46.

Sowerly, L. (1953). Proc. Cambridge Philos. Soc. 49, 327-332.

Sparrow, C. (1982). The Lorenz Equations, Springer, Berlin.

Sparrow, E.M., Chen, T.S., and Jonsson, V.K. (1959). AlChE 1.5,325-330.

Steinmetz, W. J. (1970). Existence, uniqueness and asymptotic representation for large bearing numbers of the solution of the nonlinear Reynolds equation of gas bearings theory. Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, New York.

Stewartson, K. (1953). On the flow between two rotating co-axial disks. Proc. Cambro Philos. Soc. 4.,333-341.

Stewartson, K. (1964). The Theory of Laminar Boundary Layers in Compressible

Fluids, Clarendon Press, Oxford.

Stieber, W. (1933). Das Schwimmlager. V. D. I. Berlin.

Stock, J. (1911). Bull. Int. Acad. Cracovia, 18-27.

Stoker, 1.1. (1966). Water Waves; the Mathematical Theory with Applications,

Interscience Publishers, New York.

Stokes, G.G. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Cambridge Philos. Trans. 9.

References 475

Stokes, G.G. (1905). Mathematical and Physical Papers, 5 vol., Cambridge University

Press.

Streeter, V.L. (1961). Handbook of Fluid Dynamics, McGraw-Hill, New York.

Streeter, VL, and Wylie, E.B. (1975). Fluid Mechanics, McGraw-Hill, New York.

Stuart, J.T. (1954). On the effects of uniform suction on the steady flow due to a

rotating disk. Q. l. Mech. Appl. Math. 7,446-457.

Stupodenko, Y.V., Losev, S.A., and Osipov, A.I. (1967). Relaxation in Shock Waves, Springer, Berlin.

Swift, H.W. (1931). The stability of lubricating films in journal bearings. Proc. l. Civil E. Pt. 1, 267-322.

Swinney, H.L., and Gollub, J.P., Editors (1981). Hydrodynamic Instabilities and the Transition to Turbulence, Topics in Applied Physics, vol. 45, Springer, Berlin.

Szabo, I. (1977). History of Fluid Mechanics (in German), Birkhauser, Stuttgart.

Szeri, A.Z., Editor (1980). Tribology: Friction, Lubrication and Wear, Hemisphere Publishing Corporation, Washington.

Szimanski, F. (1930). Exact solutions of the equations of the viscous fluids for a

cylindrical tube (in French). Proc. Int. Congr. Appl. Mech., Stockholm; also: l. Math. Pures Appl. 11,67, 1932.

Takaisi, Y. (1955-1957). l. Phys. Soc. lpn. 10,407-415; 11,558-569; 12, 324-430.

Tamada, K., and Fujikawa, H. (1957/1959). Q. l. Mech. Appl. Math. 10, 425-432 (1957); l. Phys. Soc. lpn. 14,202-216 (1959).

Tamada, S. (1956). Studies on wake vortices (III). Experimental investigation of the wake behind a sphere at low Reynolds numbers. Rep. Res. Inst. Appl. Mech., Kyushu Univ., 4, 99-105.

Tanner, R.I. (1960). Full film lubrication theory of a Maxwell liquid. l. Mech. Sci. 1, 206.

Targ, S.M. (1951). Basic Problems of the Theory of Laminar Flow (in Russian), Gostehizdat, Moscow.

Tatsumi, T., Editor (1984). Turbulence and Chaotic Phenomena, North Holland, Amsterdam.

Taylor, GJ. (1923). Stability of a viscous fluid contained between two rotating cylinders. Philos. Trans. R. Soc. London A223, 289-343.

Taylor, GJ. (1932). Philos. Mag. 46,671-674.

Taylor, GJ. (1951/1952). Proc. R. Soc. London A209, 447-461,1951; A211, 225-239, 1952;A214, 158-183, 1952.

476 References

Taylor, GJ. (1971). Scientific Papers, 4 vol., Cambridge University Press.

Ternan, R. (1979). Navier-Stokes Equations, North Holland, Amsterdam.

Temple, G., and Seeger, R.I. (1965). Research Frontiers in Fluid Dynamics, John Wiley, New York.

Tennekes, H., and Lumley, J.L. (1972). A First Course in Turbulence, MIT Press, Cambridge, Massachusetts.

Thorn, A. (1933). Proc. R. Soc. London A141, 651-669.

Thorn, A., and ApeJt, C.I. (1961). Field Computations in Engineering and Physics, Van Nostrand, New York.

Thomas, I. (1944). Note on the Becker's theory of shock front. 1. Chem. Phys. 12,449-453.

Thomson, J. (1882), On changing tisselated structure in certain liquids. Proc. Phi/os. Soc. Glasgow 13, 464-468.

Thomson, J.M., and Sewart, H.B. (1986). Non-Linear Dynamics and Chaos, John Wiley, New York.

Thomson, P.A. (1972). Compressible Fluid Dynamics, McGraw-Hill, New York.

Thwaites, B., Editor (1960). Incompressible Aerodynamics, Oxford University Press.

Tichy, J.A. (1986). Entry flow in a narrow channel of varying gap with one sliding surface. 1. Tribology 108, 288-292.

Tietjens, o. (1970). Fluid Dynamics (in German), 2 vol., Springer, Berlin.

Tifford, A.N., and Chu, S.T. (1952).1. Aero. Sci. 19,284-285.

Tipei, N. (1963). Theory of Lubrication, Stanford University Press. (Romanian version: Publishing House of the Academy, Bucharest, 1957).

Tipei, N. (1978). Flow characteristics and pressure head build-up at the inlet of a narrow passage. ASME Trans. Ser. F, 1. Lubr. Technol. 100.

Tipei, N. (1982). Flow and pressure head at the inlet of a narrow passage without upstream free surface. ASME Trans. Ser. F, 1. Lubr. Technol. 104, 196-202.

Titeica, S. (1982). Thermodynamics (in Romanian), Publishing House of the Academy, Bucharest.

Tomotika, S., and Yoshinabu, H. (1949). Proc. R. Soc. London A219, 233-244.

Tower, B. (1883). First report of friction experiments. Proc. I. Mech. E. 34, 632-659; 35, 29-35 (1884); Second report on friction experiments. Proc. I. Mech. E. 36,58-70

(1885).

Townsend, A.A. (1956). The Structure of Turbulent Shear Flow, Cambridge University

Press.

References 477

Trachman, E.G. (1975). The short-time viscosity behavior of a lubricant in a Hertzian

pressure pulse. ASME Trans. Ser. F. , J. Lubr. Technol. 97,486-493.

Trkal, V. (1919). Cas. Pst. Mat. 18,301-311.

Truckenbrodth, E. (1980). Fluid Mechanics (in German), 2 vol., Springer, Berlin.

Truesdell, C. (1954). The Kinematics of Vorticity. Indiana University Press, Bloomington, Indiana.

Truesdell, C. (1963). Precise theory of the absorption and dispersion of forced plane infinitesimal waves according to Naver-Stokes equations. 1. Rat. Mech. 2, 643.

Truesdell, C. (1966). The Elements of Continuum Mechanics , Springer, Berlin.

Truesdell, C. (1972). A First Course in Rational Continuum Mechanics, Johns Hopkins University Press, Baltimore, Maryland.

Truesdell, C., and Noll, W. (1960). The Non-Linear Field Theories. In: Encyclopedia of

Physics (S. Flugge, Editor), vol. IIIIl, Springer, Berlin.

Truesdell, c., and Toupin, R.A. (1960). The Classical Field Theories. In: Encyclopedia of Physics (S. Flligge, Editor), vol. IIIIl, Springer, Berlin.

Turner, J.S. (1973) . Buoyancy Effects in Fluids, Cambridge University Press.

Uchida, S. (1956). Z. Angew. Math. Phys. 7,403-422.

Villat, H. (1920) . Theoretical Aspects of Drag of Fluids (in French), Gauthiers-Villars, Paris.

Villat, H. (1929). Lectures on Hydrodynamics (in French), Gauthiers-Villars, Paris.

Villat, H. (1930). Lectures on the Theory of Vortices (in French), Gauthiers-Villars,

Paris.

Villat, H. (1943). Lectures on Viscous Fluids (in French), Gauthiers-Villars, Paris.

Vogelpohl, G. (1967) . Slider Bearings (in German), Springer, Berlin.

Voinea, R., Voiculescu, D., and Florian, P.S. (1989). Introduction to the Mechanics of Solids with Engineering Applications (in Romanian), Publishing House of the Academy, Bucharest.

Walowit, J.A., and Anno, H.N. (1975). Modern Developments in Lubrication

Mechanics, Applied Science Publishers, London.

Walters, K. (1960). The motion of an elastoviscous liquid contained between co-axial cylinders. Q. J. Appl. Math., 23, 444.

Walz, A. (1969). Boundary Layers of Flow and Temperature, MIT Press, Cambridge, Massachusetts.

Watson, G.N. (1935). Theory of Bessel Functions, Dover, New York.

478 References

Welty, J.R., Wilson, R.E., and Wicks, C.E. (1969). Fundamentals of Momentum, Heat,

and Mass Transfer, John Wiley, New York.

Whipple, R.T. (1949). Herringbone pattern thrust bearings. AERE, TIM 29.

Whipple, R.T. (1951). Theory of the spiral thrust bearings with liquid or gas lubricant. AERET/R.

White, F.M. (1974). Viscous Fluid Flow, McGraw-Hill, New York (latest edition, 1991).

White, F.M. (1979). Fluid Mechanics, McGraw-Hill, New York (latest edition, 1993).

Whitehead, A.N. (1899). Second approximation to a viscous fluid motion. Q. J. Math. 23, 143-152.

Wiemer, A. (1969). Gas Bearings (in German), D.V.I., Berlin.

Wilcock, D.F., and Booser, R.E. (1957). Bearings Design and Application, McGraw­Hill, New York.

Wilkinson, 1. (1955). Q. J. Mech. Appl. Math. 8,415-421.

Wilkinson, W.L. (1960). Non-Newtonian Fluids, Pergamon Press, London.

Wimmer, M. (1976). Experiments on a viscous fluid between concentric rotating spheres. J. Fluid Mech. 78, Part 2, 317-335.

Yin, C.S. (1965). Dynamics of Nonhomogeneous Fluids, Macmillan, New York.

Yin, C.S. (1970). Fluid Mechanics: a Concise Introduction to the Theory, McGraw­Hill, New York.

Zeilon, N.C.R. (1926).60 Math. Congr. Scand. Copenhagen 463-471.

Zeldovich, I., and Raizev, I. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, 2 vol., Academic Press, New York.

Zienkievicz, O.c. (1967). The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, New York.

Zierep, J. (1976). Theoretical Gasdynamics (in German), 2 vol., Braun, Karlsruhe.

Zierep, J. (1979). Fundamentals of Fluid Dynamics (in German), Braun, Karlsruhe.

Index

Acoustic approximation 58, 269 attenuation 262, 269 energy 269 flux 269 pressure 270

Acceleration 19, 38, 39, 50, 61,109, 120,252,261,357,403

convective 39 Coriolis 84, 173 of gravity 63, 81, 84, 330 time dependent 39

Adiabatic 66,83,242 evolution 11,237,405,409,411 compression 67, 86 wall 203, 207, 208, 241, 242, 264, 265

Air, properties of 1, 6,8,18,20,23,24, 59,68, 192,228,233,239,243, 257-259,266,270

Airfoil 95, 96, 152 d'Alembert

operator 269 paradox 90

Angle of attack 419 Approximate method 6, 12, 29, 87, 89,

94,124,126,147,162,203,244, 248,250,263,275,329,368,419

Attenuation coefficient 262 of sound 269

Axisymmetric flow 100, 101, 120, 131, 151,155,157,162,166,168,169, 189,227,305,333,339,346,366, 422,423,441,442

Basic equations 37, 75, 98, 103, 144, 278,310,317,331

Bearing 12, 16, 136,246,275,278,280, 290,291,294,304,306,309,311-

313,315,367,368,372,377,412, 416

conical 276, 277, 281 foil 317, 320 hydrostatic 288, 305 journal 142, 275,277,278,290,292,

293,296-300,306,312,316,317,343 rheostatic 310 roller 30, 275, 276, 288, 320, 328 spherical 276, 277 spiral groove 301,302,317 step 295,314,384,386,401,414,417 thrust 276, 277, 281

Benard-Karman vortices 92 Bernoulli equation 68,378,386,387 Bifurcation 21, 77, 90, 367, 419 Biharmonic functions 330, 331, 333, 346 Bingham fluid 29, 127,307 Bipolar coordinates 343 Bluff body 93, 95 Body of revolution 95, 152,346 Boundary conditions 75-77, 81, 115,

121,137,145,151,153,156,159, 163,170,189,291,332,345,346, 360,361,390,399,422

for velocity 77,110,111,116,118, 128,131,134-136,139,141,147, 158,162,169,174,178,181,187, 193,200,208,238,248,265,282-284,309,355,358,368,370,371, 373,374,376,394,404,423,424, 433,434,436,440,442

for pressure 80, 84, 268, 286-288, 292-294,298,304,319,369,372,378, 383-387,395,396,406,413,415

thermal 79, 87, 203, 204, 206, 207, 209,210,218,222,225,228,230, 265,432

Boundary layer 19, 21, 44, 93, 97,135, 146,154-156,159,163,164,182,

480 Index

Boundary layer (Cont.) 183,201,203,224,226,238,252, 255,264,273,276,280,372-374, 387,388,390

concept 94, 96 equations 280

Brinckman number 86 Bulk viscosity 19, 55 Buoyancy 21,83,85,204,222,306

Capillary tube 192, 304 Cartesian coordinates 41,49,60,64,69,

121, 150, 172,281,360,368 Cauchy-Riemann conditions 115, 166,

332 Cavitation 3,84,288,291-293,310,

338,381,396 number 84

Cell model 2 Channel flow IlI-I13, Il9, 121, 131,

136,137,143,145-150,189,216-219,224,228,230,234,244,245, 360,388,389

Chaos 367,419 Choked flow 407-410, 413, 416 Circle

flow past 45, 89,91, 1I6, 139, 140, 166, 195, 197,296,334,339,360, 362-366,433,436,438,439

theorem 362 Circular pipe 88, 120, 122-124, 132,

171,190,192,227,228 Circulation 46, 47, 90, 95, 100, 142,

198,275 Coaxial cylinders 141,225,344,345 Coefficient of viscosity 13, 14, 17, 18,

54,55,57,58,61,65,251,252, 257,264,272,273

Combustion 9, 107, 116, 300 Complex

function 1I5, 173,366 potential 115, 116, 1I9, 193,304,

362,363 pressure resultant 332 velocity 115, 336, 364

Concentrated contact 9, 16,27,30,31, 291,321-326,328

Concentration 2, 8, 24-26

Concentric annulus 124 circles 45, 1I6, 139, 140, 166, 195,

197,339 spheres 341

Conductivity 2,3, 13,21,24,63,66,67, 79,86,204,212,227,238,239, 242,243,268

coefficient 22, 208 of gases 23 of liquids 22

Conical bearing 276, 277, 281, 302, 304 nozzle 144, 151, 152, 169, 171, 172,

329 Contact melting lubrication 328 Convergent

channel 143, 145, 146, 148-150, 169, 172,224

film 286,291,293,395 Convergent-divergent film 291,293,395 Conservative form 98 Constant wall temperature 204,218-

220,224,230,234,235,238 Constitutive relation 2, 13, 14, 26, 27,

32-34,47,52,54,57,59,75,76,127 Continuity equation 47, 48, 60, 62, 67,

69,72,75,98,100, 101, 104,110, 135, 139, 143, 144, 150, 153, 156, 158, 162, 177,251,260,261,264, 279,280,283,289,329,333,339, 355,371,373,375,376,378,396, 398,399,403-405,409,413,420, 421,440

Continuum 1, 2, 5, 37,40,43, 52, 75, 258,267

Control surface 37, 47,102,103,106 volume 37,47,98, 102-107, 387, 391,

400 Control volume formulation 102 Convective

acceleration 39,75,77,82,90,96, 109,151,245,329,334,335,367

derivative 39 heat transfer 21

Cooling 25, 79, 203 Core 29, 97,127,129,131,192,307-

309

Coriolis acceleration 84, 173 Couette flow 78, 110-115, 127, 129,

142,178,187,188,204,205, 207,208,210,213,214,220,221, 238,242-245,248-250,275,281, 282

Couette-Poiseuille flow 114, 127,220, 221,245,248,249,281,282

Creeping flow 329 Curl 41, 45, 47, 52, 66, 69, 99, 330, 331,

420,421 Cylinder

drag 90, 91, 93, 343, 435, 437 flow past 46, 89, 92-94, 109, 116-

118,121,141,142,193,196,197, 225,275,321,322,324,343-345, 358,360,361,433,438-440

theorem 366 torque 141, 343, 345

Cylinder-plane configuration 117, 321, 322

Cylindrical coordinates 69, 70, 101, 120, 139, 143, 155, 158, 189,225, 227,270,276,281,333,339,346, 422

Darcy law 134, 136 Damping 310, 397 Dead water 92, 93 Decibel scale 270 Deformation rate 28, 40, 42, 43, 52 Density 2-5, 11, 13, 24, 25, 60, 61, 67,

83,86,237,250,256,264,269, 288,353,367,403-405,413,414

Diffusion 13, 24, 26, 196 Diffusivity coefficient 26 Dilatant fluid 28, 29 Dimensionless parameters 80 Directional viscosity 29 Discontinuity 90, 182, 185, 186, 188,

250,411,442 Dissipation 21,67,86,99,100,225,

226,228,237,242,246,250,432 of heat 11,13,21,66,216,224,228,

250,271 function 64,65,71,74,204,267 of a discontinuity surface 185 of a vortex 198

Divergence 50,69, 103,420 Divergent

channel 143, 145-150 film 287, 291-293, 395 nozzle 169, 172,410

Index 481

Drag coefficient 90-93, 351, 429, 430, 437,438,440,446,447

Duct flow I, 76, 87, 89, 112, 120, 121, 123-

126,131,132,134,136,137,139, 189,190,193,195,199,227,228, 234,235

in parallel 127 in series 127

Duhamel's relation 179 Dynamic pressure 6, 82, 112, 126,

378

Eccentric cylinders 116,117,122-124, 343

Eccentricity 291, 297, 342 Eccentricity ratio 291, 297, 316 Eckert number 85,86,205,206,241 Ekman

effect 172, 174, 184 number 84 spiral 175

Elasticity 3, 42, 121, 324, 325, 359 Elasto-hydrodynamic lubrication 320,

328 Elliptic

equation 76, 285 functions 145 integrals 145

Ellipsoid 342, 343, 353, 354, 357,430, 431

Energy balance 9, 37, 62, 63, 79, 106, 206,

271 equation 62,65-67,69,71,74,76,

80,85,86,106,107,126,203,204, 208,209,215,216,218,220,222, 223,225-227,229,230,233,237, 238,246,251,253,257,261,264, 267,281,285,291,391,395,400, 432,438

flux (acoustical) 269, 270 internal 3, 9, 11,62,63,65,271

482 Index

Energy (Cont.) kinetic 5, 6, 9,13,63,66,67,106,

241,385 Enthalpy 10-12,24,67,251,253 Entrance (see also inlet)

boundary conditions 246,338, 391 effect 88,113,120,121,217,230,

232,233 length 230, 233, 387-391

Entry flow 392 Entropy 10-12,66,68,107,251,253,

256,260,271 Equation of continuity (see continuity

equation) Equation of state 3, 4, 9, 15,51,69, 76,

237,251-253,258,259,261,285 Equation of vorticity (see vorticity) Equations of motion 47, 49-51, 61, 64,

69,173,226,237,276,280,281,391 cartesian coordinates 48, 50-52, 55 cylindrical coordinates 70, 71 noninertial frame 62 spherical coordinates 72, 73 under integral form 102,104-106

Euler number 82, 90 Eulerian 38-40, 47, 60, 77, 98, 99, 336,

346,360 Exit effect 88,217,387,395,401,406-

410,413,416 External flow 21,76,80,89,96,97 External solution 96 Externally pressurized bearings 285,

288,304,319,377,404

Falling sphere 351 Far field 424, 428, 429 Film attached to a moving surface 391,

393 Film thickness 2, 212, 280-285, 287,

290,291,294,296,299,302,304, 305,312,313,316,318,321,323, 325-328,337,368,369,373,378, 380,382,384,396,398,403,404, 406,414

First principle of thermodynamics 9, 1I, 37, 62, 66

Fluid compressible 2,3,5,18,37,55,57,

60,61,67,69,76,83,86,101,107, 179,182,237,238,258,261,263, 264,284,285,287,290,309,311-313,317,320,403,409,410

incompressible 2, 3, 5, 25, 37, 48, 54, 56,57,60,61,65,73,75,76,81, 85,99,100,109,139,177,199, 203,204,237,238,244,245,263, 265,266,283,285,310,312-314, 318,321,329,367,403,404,408-410,419

inviscid 2, 13, 37, 46, 49, 51, 60, 67, 68,76,77,82,83,90,92-97,99, 1I0, 112, 115, 116, 121, 139, 143, 146,153-155,166,179,180,185, 237,252,254,258,260,271,273, 280,334,336,342,343,347-353, 358,362,363,366,378,391,405, 406, 41I, 419, 444

Flow impulsive 178,181,182,188,192,263 isothermal 243, 248, 250, 285, 288,

311,326,403,405,407,409,413 leffery-Hamel143, 144, 147,166,

223, 375 oscillating 183, 184, 193, 195,344,

345, 357 pattern 75,87,92,93,135,152,166,

167,237,334,348,351,361,362, 364,419,442

upon concentric circles 1I6, 139, 140, 166,195,197,339

upon concurrent lines 143, 144, 150, 166,428,436

Foil bearing 317,318,320,326 Free convection 83,84,203,206,222 Free energy 12 Free enthalpy 12 Free surface 3, 79, 80, 113, 121, 172,

174,184,185,223 Free volumes model 2 Forced convection 21, 204, 206 Forced heat transfer 21, 204, 214 Froude number 82 Fully developed flow 88, Ill, 120, 217,

228,230,232,388,390

Galilean frame of reference 61

Gas constant 7, 8, 24, 252, 320 Gas lubrication 243,287,304,309 Gas mixture 6, 12, 24 Gas properties 5,8, 19,20,23 General Couette flow 115 Grashof number 83, 222 Gravity 63,81-84,105,109,110,113,

140,158,178,193,330,339,351 Grease 27,29, 127, 304, 307,308 Gumbel's conditions 293

Hagen-Poiseuille flow (see also pipe flow) 88,120,151,171,190,191,230

Half Sommerfeld solution 293 Heat

conduction 21, 62, 67, 86, 217, 227, 432

flux 63, 68, 79, 204-208, 216-219, 226,228,229

specific at constant pressure 9 specific at constant volume 9 specific (liquids) 3, 4, 65 transfer 9,13,21,24,62,66,67,86,

97,180,199,203,214,218-220, 229,233-235,241,246,248,250, 356,433,438,439

Hele Shaw analogy 334, 335, 337-339, 397, 398 flow 334

Helicoidal groove bearings and seals 302

Hertzian contact 324, 327 High speed sliding motions 412 Homentropic 11 Hydraulic radius 122, 124-126 Hydrodynamic lubrication 114, 120,

139, 142, 275 elastohydrodynamic 320 equations 276 gas 309 liquid 294 mechanisms 285

Hydrostatic 222, 288, 304, 305, 309, 319,320,329

Hyperbolic equations 75

Ideal gas 7, 12, 28

Index 483

Impact point 348 Impulsive motion 178, 181, 263 Incipient motion 265-268 Incompressible flow 139, 177,203,263,

265,266,285,367 Incompressible fluid 48, 56, 57, 60, 62,

65,81,99,100,110,177,199,204, 237,238,244,263,266,283,285, 312,313,318,329,367,403,409, 419

Indicial notation 40,41,49,56 Inertia forces 19-21,26,49,82,87,88,

100,109,120,127,144,147,171, 244,245,280,281,284,329,334, 335,339,367,371,374,380,382, 384,395,397,398,402,403,407,417

Inertial frame of reference 61 Inertialess 148,281,329,367,369,371,

381,383,395,397-399,401,403, 409,410,416,420

Inherent restrictor 307 Initial conditions 77,80,81,178,181,

197,268,355 Inlet boundary conditions 80, 286, 292,

320,328,379,385,387,388,391, 406,412

Inner solution 443,445 Integral relations 102,103,237,331,

360,372-374,387,391,404,411 Internal energy 3, 9, lI, 61, 63, 65, 67,

106,271 Inviscid fluid 2, 13, 37, 46, 49, 51, 67,

68, 77, 82, 90, 94, 143, 179, 180, 185,334,347,362,363,419,444

Inviscid flow 76, 77, 82, 83, 90, 94, 99, 115, 166,336,342,343,347-353, 358,363,366,378,405,406

Irrotational flow 99, 101, 142,429, 437, 439

Isentropic evolution 11, 237 Isothermal evolution 243,285,288,

311,326,403,405,407,409,413 Isothermal flow 243 Isotropy 53, 54

Jeffery-Hamel flow 147, 166, 223 Jet 97, 166-168 Journal bearing (see bearing)

484 Index

Kinematics of fluid flow 37, 290 Kinematic viscosity 14, 15,60, 175, 185,

201,280,367 Kinetic Reynolds number 194 Kinetic theory of gases 5, 9, 17, 18,22,

26 Knudsen number 1, 5,13,77,78 Krakatoa 273 Kronecker's symbol 51

Lagrangian description 38 Laminar flow 20,93,96,110,111,113,

125,126,134,175,185,192,194 Laplace equation 166 Laplace operator 60, 101, 102,269,333,

347,399,421 Line contact 326 Liquid

cavitation 3,84,288,291-293,310, 338, 381, 396

equation of state 3, 4, 237, 251-253, 258,259,261,285

lubrication 83, 114, 120, 140, 142, 276,280,288,290-294,309,310, 312,317,391

properties 1-4, 34, 367 viscosity 3, 4

Liquid film lubrication 30 Lubrication 83, 114, 120, 140, 142, 150,

243,275,276,280,285,287,288, 291,292,294,299,301,304,307, 309,310,320,321,323,324,328, 329,334,367,368,372,375,391

Longitudinal flow 96, 305, 306, 308, 320,378-380,404,406,408-410

Mach number 67,68,83,243,256,261, 265,267,403,405-407,409,413, 414,416,417

Mass transfer 13,24,25,97 Mass flux 25, 47, 79, 244, 245, 248, 251,

317,320 Material

acceleration 38, 39, 61, 84 derivative 39, 42, 48, 61, 69, 104 volume 38,39,47,49-51,62,63,66,

103-107

Mechanisms of lubrication 285,291 Melting lubrication 328 Metal

cutting lubrication 320, 328 working lubrication 27, 320, 328

Mixture of fluids 6, 12,24, 26, 58, 256, 261

Molecular collisions 1, 5, 6, 13,25,267 Molecular mean free path 1,5,17,18,

78 Moment of momentum 106 Momentum

balance 13,17,22,24,27,38,47,49, 79,270

equation 26,59,60,67-69,75,77, 86,96,104,105,110,112,113, 120,131,135,140,144,150,151, 153,156,167,168,196,220,223, 237,238,240,246,251,253,258, 261,264,273,281,282,340,369-371,373-375,377,378,380,383, 387,389,390,392,396,397,400, 404,409,412

theorem 105, 106,351,391 Moving

reference frame 61, 354 surface 29, 37, 57, 80, 102, 104-106,

283,295,308,346,348,351,352, 357,358,361,383,391,393,428, 431

wall 78, 1I0, 129, 183,205-207,215, 239,241,242,244,334,337

Navier-Stokes equations 59, 61, 62, 70-73,76,77,80-83,85,90,96,99, 101,110,120,122,139,140,143, 144,152,153,158,162,164,177, 178,199,208,237,248,251,279, 280,329,334,339,359,367,372, 376,385,403,411,419,420,440, 441

Newtonian fluid 8, 13, 14, 18,26-30, 32,34,52,55,57-60,75,109,127, 129-132,308,420

No slip condition 13,56,76,77,79,93, 95,143,337,341,348

Noninertial coordinate system 61, 84, 172,173,200

Non-Newtonian fluids 26-30,34,291 Nonparallel walls 121, 144,223,375 Nonuniform translation 181,182,354 Normal stress 3,13,18,27,49,51-53,

55 Normal unit vector 22, 56, 103, 120, 332 Nozzle 144,151,152,169,171,172,

329,405,406,410 Nusselt number 87,218,219,228,230,

232-235,432,438

One-dimensional flow 2, 126, 134, 135, 251,270,271,273,285

Open channel flow 113 Oscillating cylinder 344, 345 Outer solution 443, 445

Parabolic equation 76, 179 Parabolic vessel 168 Paradox

d' Alembert 90 Stokes 358, 360, 361,433,442 Whitehead 441,442

Parallel flow 26, 44,89,109,110,112-114,

120, 127, 128, 134, 139, 166, 177, 179,189,199,208,215,220,238, 243,244,250,263,276,281,282, 329

plates 13, 14,78, 110, 119,238,245, 247,406

walls 119, 135, 144, 146, 150, 187, 188,222,223,243,276,278,288, 289,301,334,337,339,375,395, 407,408,412,414,415

Pathline 38,39,44, 109, 177, 199,200 Peclet number 86, 432 Perimeter 124 Permeability coefficient 134 Pi theorem 80 Pipe flow 120, 124, 125, 190, 192,228,

230, 231, 237 Plane flow 100,110,111,115,127,128,

140, 144, 146, 151-154, 156, 165, 172,179,184,199,200,204,205, 213,215,223,226,227,238,263, 264,331,334,336,343,358,362

Index 485

Plane slider 294, 296, 307, 308, 313, 315,414-416,422,423,433,440

Plastic 26-29 Point contact 323,328 Poiseuille flow 88,111-114,120,127,

129,130,135,146,147,150,151, 172, 190, 191,215,220,221,230, 244,245,248,249,275,281,282, 288,304,384,387,388,390

Porous surfaces 79, 134 walls 80, 135-137

Potential flow 76, 99, 139, 143, 334, 336,429,

440 force 62, 115,330 velocity 47, 99, 142, 269, 337

Prandtl number 24,79,85,86,205, 218,224,237,239,246,262,265

Pressure coefficient 82, 348 Pressure drop 112, 304, 306, 340, 378,

380,385-387,401 Pressure-dependent viscosity 15, 16, 18-

20,29-31,33,34,291,320,324 Pressure equation 126,238,282-285,

289,291-295,300,304,311,313, 314,316-321,323,327,369,378, 413,414

Pressure loss 88,89, 121, 124-126, 131-134

Properties of fluids 1-5,7,8,12,13, 21,24,26,27,29,30,32,34,37, 52,60,61,65,66,69,71,73,75, 76,81,85,86,99-101,126,203, 204,208,215,223,225,237,252, 261,263,266,272,273,285,291, 310,328,367,419

Protuberance 337, 360, 398-403 Pseudo-plane flow 172, 200, 334,

339 Pseudo-plastic 28, 29 Pure shear flow 52, 54, 58, 110, 363 Pure viscous flow 87

Quasi-parallel flow 134,281

Radiation 21, 24, 63, 270

486 Index

Radial flow 144, 158, 162, 302, 305, 306,308,320,378,380,388,409, 410,412

Rarefied gas 1, 5, 77, 79 Rate of flow 108, 1l0, 122, 127, 136,

192,242,306,309,326,384,388, 428

Rayleigh's problem 181 Real gas 6-8 Recovery factor 242 Relaxation process 57 Restrictor 304, 306, 307 Reynolds

analogy 240, 253 boundary conditions 51, 299, 300 number 19-21,82-84,86-89,91, 110,

113, 114, 126, 146, 194,218,223, 224,244,250,279,280,329,334, 339,342,348,358,367,368,372, 374,378,380,388,390,391,398, 401,419,424,430,434,437,438, 441-443,446,447

transfer theorem 103 Rheology 26 Rheopectic 30 Rheostatic

bearing 310 film 308, 309 regime 130, 134

Riaboushinski flow 166 Ricati equation 167 Richardson annular effect 195 Rossby number 84 Rotating

cone 27 cylinder 141,142,196,225,275,343-

345 disk 119, 157, 158, 161, 162,343 ellipsoid 342, 343 sphere 341, 432

Rotation of fluid 44, 61, 121, 162-165, 339,439

Rupture, boundary conditions 288, 291-293,299,310,326

Seal 246, 275-277, 280, 281, 285, 291, 292,294,300-302,304,309,312, 320,368,372,377,391,412

Second principle of thermodynamics 12,38,69

Self-acting effect 285,288,295,307, 310-312

Self-acting film 294 Self-acting lubrication 285 Self-diffusion 24 Self-similar solution 137,147,152,153,

157,179,181,187-189,192,198, 223,389

Semi plane theorem 366 Separation flow 149,292 Separation of boundary layer 93,95,

387 Shear flow 44,45, 52, 77, 110, 240, 358,

363-365 Shear stress 13, 14, 18, 22, 26, 28-30,

34,35,51,79,88,92, 1l0, 112-115, 124, 127, 129, 141, 146, 155, 172,182-184,192,212,213,219, 221,249,283,286,289,341,375, 394,441

Shear viscosity 55 Shock wave 9, 16,31,250,252-258,261-

263,271,273,320,406,410,411 structure 55, 58, 249, 252 thickness 249, 255, 257-260

Short bearing 294, 300 Similarity criteria 80 Slender body 95,420,431 Sliding bearing (motion) 285,290,312,

321,328,391,392,403,412-414 Slip velocity 5, 13,78, 79 Slow plane flow 331,358,433 Slow rotation 339, 341 Slow viscous flow 19, 82, 89, 134,214,

216,220,238,246,275,321,330-332,334,339,342,353,358,359, 362,365,419,420,423,441

Small perturbations 83,269,371,415, 419,439

Sommerfeld condition 293, 298, 300 number 83, 295, 299 solution 293,310

Sound attentuation of 269, 272 speed 8, 83,243,252,253,260,269,

270,403,405

Source 12, 22, 47,104,107,116,117, 143, 146, 167, 180,214,273,364, 365,428,436,444,445

Specific heat of gases 8-10 of liquids 3, 4

Specific volume 3, 5, 7,66 Speed of propagation 59, 83, 269 Sphere, flow past 91, 329, 346, 347,

349-352,423,432,436,441,447 Sphere in translation 89, 91, 93, 94,

348,350-352,354,357,358,429, 432

Sphere-plane configuration 321, 323 Spherical bearing 276, 277, 281 Spherical coordinates 69, 71, 72, 10 1,

144,166,281,333,340,346,355, 424,445

Spin tensor 41 Spiral groove bearings and seals 301,

302,317 Squeeze effect 285, 289, 290, 311, 312,

397 Stability of laminar flow 20, 21, 113,

222 Stagnation point 68,152,153,155,157,

226,227,348,419,420 Stanton number 87, 219, 227 Starting flow 190, 192 State variables 11, 12,76 Static pressure 6, 49, 51, 387 Static stiffness 306, 307 Steady flow 39, 45, 48, 65-67, 82, 87,

90,100,105,109,127,172,177, 188,191, 199,204,251,264,279, 285,331,340,341,343,357,359, 370,403,404,446

Steady rotation 341, 343 Step bearing 295,314,315,317,384,

386,401,414,416 Step slider 296,303,400 Stiffness coefficient 397 Stokes

flow 329, 341, 347-354,420,428,433 hypothesis 55, 58, 252 operator 101, 102 paradox 358, 360, 361, 442 postulates 52, 54 problem 181, 182

Index 487

theorem 46, 47, 197 Strain rate 40,42-45, 47, 52-54, 57, 69,

72 Stream function 100, 101, 136, 165,

166,169,170,199,264,331,333, 334,336,340-343,346,348,355, 359,360,362,363,368,375,386, 423,441,444,446

Stream line 26, 39,44,45, 67, 68, 88, 90,92,97,100,109,116,139,140, 143,144,160,166,167,172,177, 199,200,344

Stress tensor 47, 49-54, 56, 64 Strouhal number 82, 92, 279 Subsonic flow 76,250,405-409,411,

413 Substantial derivative 39, 61, 69 Superposition 114, 178, 354 Supersonic flow 76,250,403,405,406,

409-411, 413 Supersonic inlet conditions 320, 412 Supply system 126, 306, 320, 383 Surface deformation 285,291,324,325 Surface tension 80, 84, 85, 121,222,

292,293,353,394,395 System of ducts 126

Tangential viscosity 55 Taper-flat pad 314,315 Taylor

flow 199, 200 number 85

Temperature field 22,66,203,204,206, 210,215,223-226,234,237,240,432

Tension, on a solid surface 332,351, 353

Tensor41-45,47,49-54,56,64,103 Thermal

conductivity 2, 21-23, 79, 212, 239 effects 21, 25, 61, 203, 204, 212 entrance 230,232,233 expansion 83

Thermodynamic equilibrium 7, 8, 57, 58 notions 7 pressure 51, 54, 55 principles 7, 9, 11, 12, 37, 62, 66, 68,

69

488 Index

Thermohydrodynamics 203 Thin layer 243,246,275,276, 306, 329,

368,372,397 Thixotropic 30 Three-dimensional flow 157, 199,293,

397 Thrust bearing 276,277,281 Total derivative 39, 48, 104 Transfer properties 2, 12 Transition regime 21, 89 Translation of a semiplane 119 Transonic flow 76, 179 Transversal heat transfer 214, 220, 246 Tribology 275, 301, 307 Tunnel model 2 Turbulence 21, 77,89,90,93,223,419 Turbulent flow 240,367,373,388,419 Two circular cylinders 116 Two-dimensional flow 100, 136, 264,

285,288,293,294,307,312,317, 324,331,368,370,371,375,383, 387,391,395,396,400,406,412, 422,440,442

Uniform flow 44, 67, 86, 90, 97, 134, 164,251,346,348,353,354,364, 365,419,423,433,440

Unsteady effects 82, 395 Unsteady flow 39, 82, 105, 177-179,

181,190,195,199,263,284,290, 312,332,343,345,376,404,440

Variable viscosity 208, 213, 220, 221, 281

Vector 22,38-41,46-50,56,60-63,65, 69,71,78,98-100,103,104,120,

141,174,177,284,285,330,332, 351,420

Velocity field 38-40,115,117,118,143,172,

184,187,200,203,220,226,280, 330,336,364,421

potential 47, 99, 142,269,337 Viscoelastic fluids 29, 32-34 Visco-inertial flow 113, 199, 367 Viscoplastic media 27, 29, 127, 128,

130, 131 Viscosity

coefficient 14 laws 15-19 of gases 17, 19,20 of liquids 15

Viscous flow pattern 87 Viscous stresses 82, 420 Voids model 2 Voight model 33, 34 Vortex 21,45,92,93,100,116,142,

180,185,186,196,198,365 Vortex sheet 92, 185, 186 Vorticity 41, 44, 66, 99-101,141,186,

195,197-200,331,332,336,347, 361,398,399,420,422,429,436, 437

VVake80,9O,92-95,97,428,429,436, 437,439

Weak shock wave 257,258,261-263, 271

Weber law 270 number 85

Whitehead's paradox 441,442 Work 9,11,12,46,62-65,271