references - shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf ·...

22
References 108 REFERENCES 1. Elaine N Marieb. The integumentary system in Human Anatomy and physiology. Chapter 5. 6 th Ed., 152-166; Pearson Education Publishers, 2006. 2. Gerard J Tortora & Bryan Derrickson. The integumentary system in Principles of Anatomy and physiology. Chapter 5. 11 th Ed., 144-162; John Wiley & sons Publishers, 2007. 3. Chein YW. Transdermal Drug delivery and delivery systems in Novel drug delivery systems. Informa healthcare, New York, 2 nd Ed., 301- 380; 2009. 4. Collier SW, Sheikh NM, Sakr A, Lichtin JL, Stewart RF, Bronaugh RL. Maintenance of skin viability during in vitro percutaneous absorption/metabolism studies. Toxicol Appl Pharmacol., 99:522-533; 1989. 5. Nathan D, Sakr A, Lichtin JL, Bronaugh RL. In vitro skin absorption and metabolism of benzoic acid, p-aminobenzoic acid, and benzocaine in the hairless guinea pig. Pharm Res., 7:1147-1151; 1990. 6. Pannatier A, Jenner P, Testa B, Etter JC. The skin as a drug metabolizing organ. Drug Metab Rev., 8:319–343; 1978. 7. Dessiioti C, Antoniou C, Stratigos AJ. New targeted approaches for the treatment and pevention of nonmelanoma skin cancer. Expet Rev Dermatol., 6:625- 634; 2011. 8. Lim HW, James WD, Rigel DS, Maloney ME, Spencer JM, Bhushan R. Adverse effects of ultraviolet radiation from the use of indoor tanning equipment: time to ban the tan. J Am Acad Dermatol., 64:893-902; 2011. 9. Schulman JM, Fisher DE. Indoor ultraviolet tanning and skin cancer: Health risks and opportunities. Curr Opin Oncol., 21:144-149, 2009. 10. Veierød MB, Weiderpass E, Thörn M. A prospective study of pigmentation, sun exposure, and risk of cutaneous malignant Melanoma in women. J Nat Cancer Inst., 95:1530-1538; 2003. 11. Berwick M, Erdei E, Hay J. Melanoma Epidemiology and Public Health. Clin Dermatol., 27:205-214; 2009.

Upload: duongnga

Post on 10-Nov-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

108

REFERENCES 1. Elaine N Marieb. The integumentary system in Human Anatomy and physiology.

Chapter 5. 6th Ed., 152-166; Pearson Education Publishers, 2006.

2. Gerard J Tortora & Bryan Derrickson. The integumentary system in Principles of

Anatomy and physiology. Chapter 5. 11th Ed., 144-162; John Wiley & sons

Publishers, 2007.

3. Chein YW. Transdermal Drug delivery and delivery systems in Novel drug

delivery systems. Informa healthcare, New York, 2nd Ed., 301- 380; 2009.

4. Collier SW, Sheikh NM, Sakr A, Lichtin JL, Stewart RF, Bronaugh RL.

Maintenance of skin viability during in vitro percutaneous absorption/metabolism

studies. Toxicol Appl Pharmacol., 99:522-533; 1989.

5. Nathan D, Sakr A, Lichtin JL, Bronaugh RL. In vitro skin absorption and

metabolism of benzoic acid, p-aminobenzoic acid, and benzocaine in the hairless

guinea pig. Pharm Res., 7:1147-1151; 1990.

6. Pannatier A, Jenner P, Testa B, Etter JC. The skin as a drug metabolizing organ.

Drug Metab Rev., 8:319–343; 1978.

7. Dessiioti C, Antoniou C, Stratigos AJ. New targeted approaches for the

treatment and pevention of nonmelanoma skin cancer. Expet Rev Dermatol., 6:625-

634; 2011.

8. Lim HW, James WD, Rigel DS, Maloney ME, Spencer JM, Bhushan R. Adverse

effects of ultraviolet radiation from the use of indoor tanning equipment: time to ban

the tan. J Am Acad Dermatol., 64:893-902; 2011.

9. Schulman JM, Fisher DE. Indoor ultraviolet tanning and skin cancer: Health

risks and opportunities. Curr Opin Oncol., 21:144-149, 2009.

10. Veierød MB, Weiderpass E, Thörn M. A prospective study of pigmentation, sun

exposure, and risk of cutaneous malignant Melanoma in women. J Nat Cancer Inst.,

95:1530-1538; 2003.

11. Berwick M, Erdei E, Hay J. Melanoma Epidemiology and Public Health. Clin

Dermatol., 27:205-214; 2009.

Page 2: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

109

12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011: The impact of

eliminating socioeconomic and racial disparities on premature cancer deaths. CA: A

Cancer J. Clin., 61:212-236; 2011.

13. Zheng D, Li X, Xu H, Lu X, Hu Y, Fan W. Study on docetaxel-loaded

nanoparticles with high antitumor efficacy against malignant melanoma. Acta

Biochem Biophys Sin., 41: 578-587; 2009.

14. Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol

Oncol: Seminars and Original Investigations . 26: 57–64; 2008.

15. Guy RH, Hadgraft J, editors. New York: Marcel Dekker; Transdermal Drug

Delivery.2003.

16. Williams A. London: Pharmaceutical Press; Transdermal and Topical Drug

Delivery. 2003.

17. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of

transdermal drug delivery. Nat Rev Drug Discov., 3:115–124; 2004.

18. Bronaugh RL, Maibach HI, editors. Vol. Edn. 4th. New York: Marcel Dekker.

Percutaneous Absorption. 2005.

19. Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL.

Challenges and oppertunities in dermal/transdermal delivery. Therapeutic Delivery.

1:109-131; 2010.

20. Benson HAE. Transdermal drug delivery: Penetration enhancement techniques.

Curr. Drug Delivery., 2:23-33; 2005.

21. Prausnitz M R, Langer R. Transdermal drug delivery. Nat Biotechnol., 26(11):

1261-1268; 2008.

22. Williams AC, Barry BW. Penetration enhancers, Adv Drug Deliv Rev., 56:603-

618; 2004.

23. Tachibana K. Transdermal delivery of insulin to alloxan-diabetic rabbits by

ultrasound exposure, Pharm Res., 9: 952-954; 1992.

24. Lee WR, Shen SC, Wang KH, Hu CH, Fang JY, The effect of laser treatment on

skin to enhance and control transdermal delivery of 5-fluorouracil, J Pharm

Sci.,91:1613-1626; 2002.

Page 3: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

110

25. Barry BW. Breaching the skin's barrier to drugs, Nat Biotechnol., 22:165-167;

2004.

26. Karande P, Jain A, Mitragotri S. Discovery of transdermal penetration enhancers

by high-throughput screening, Nat Biotechnol., 22:192-197; 2004.

27. Sullivan SP, Murthy N, Prausnitz MR, Minimally invasive protein delivery with

rapidly dissolving polymer microneedles, Adv Mater., 20: 933-938; 2008.

28. Lopes LB, Brophy CM, Furnish E, Flynn CR, Sparks O, Komalavilas P, Joshi L,

Panitch A, Bentley MV. Comparative study of the skin penetration of protein

transduction domains and a conjugated peptide. Pharm Res., 22:750-757; 2005.

29. Shin J, Shin K, Lee H, Nam JB, Jung JE, Ryu JH, Han JH, Suh KD, Kim YJ,

Shim J, Kim J, Han SH, Char K, Kim YK, Chung JH, Lee MJ, Kang BC, Kim JW.

Non-invasive transdermal delivery route using electrostatically interactive

biocompatible nanocapsules. Adv Mater., 22:739-743; 2010.

30. Zaro J, Shen WC. Quantitative comparison of membrane transduction and

endocytosis of oligopeptides. Biochem Biophys Res Commun., 307: 241–247; 2003.

31. Sapra B, Jain S, Tiwary AK. Effect of Asparagus racemosus extract on

transdermal delivery of carvedilol: amechanistic study. AAPS Pharm Sci Tech.

10:199–210; 2009.

32. Smith J, Wood E, Dornish M. Effect of chitosan on epithelial cell tight

junctions. Pharm Res., 21: 43–49; 2004.

33. He W, Guo X, Zhang M. Transdermal permeation enhancement of N-trimethyl

chitosan for testosterone, Int J Pharm., 356: 82–87: 2008.

34. Biruss B, Valenta C. Skin permeation of different steroid hormones from

polymeric coated liposomal formulations. Eur J Pharm Biopharm., 62:210–219; 2006.

35. Bolzinger MA, Briancon S, Chevalier Y. Nanoparticles through skin:

managing conflicting results of inorganic and organic particles in cosmetics and

pharmaceutics. WIREs Nanomed Nanobiotechnol., 3,463–478 DOI:

10.1002/wnan.146; 2011.

36. Flynn GL. In Percutaneous absorption, Bronaugh, R.L.; Maibach, H.I., Eds.

Marcel Dekker Inc. New York. 17-52; 1985.

Page 4: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

111

37. Kasting GB, Smith RL, Anderson BD. In Prodrugs: topical and ocular drug

delivery, Sloan K. Ed. Marcel Dekker Inc. New York. 117-161; 1992.

38. Potts RO, Guy RH. Predictining skin permeability. Pharm Res., 9:663-669;

1992.

39. Higuchi T. Physical chemical analysis of percutaneous absorption process from

creams and ointments. Soc Cosmet Chem., 11:85-97; 1960.

40. Higuchi WI. Analysis of data on the medicament release from ointments. J

Pharm Sci., 51: 802-804; 1962.

41. Mathur V, Sathrawala Y, Rajput MS. Physical and chemical penetration

enhancers in transdermal drug delivery system. Asian J Pharm., 4:173-183; 2010.

42. Wertz PW, Downing DT. In Transdermal drug delivery: developmental issues

and research iniatives. Hadgraft J, Guy RH, Eds. Marcel Dekker Inc.: New York. 1-

22; 1989.

43. Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev., 51:702-747.

1971.

44. Katz M, Poulsen BJ, In Handbook of Experimental Pharmacology, Brodie BB,

Gilette J, Eds. Springer Verlag: Berlin.103-174; 1971.

45. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical

compounds and drugs. Exp Dermatol., 9:165-169; 2000.

46. Vyas SP, Khar RK. Transdermal drug delivery, In controlled drug delivery

concepts and advances, Vallabh Prakashan, 1st Ed, 411-447; 2002.

47. Walters KA, Walker M, Olejnik O. J. Nonionic surfactant effect on hairless

mouse skin permeability characteristics. Pharm Pharmacol., 40:525-529; 1988.

48. Wotton PK, Mollgaard B, Hadgraft J, Hoelgaard A. Vehicle effect on topical

drug delivery. Int J Pharm., 24, 19-26; 1985.

49. Yamane MA, Williams AC, Barry BW. Terpene penetration enhancers in

propylene glycol/water cosolvent systems: effectiveness and mechanism of action J

Pharm Pharmacol., 47: 978-989; 1995.

Page 5: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

112

50. Dingler A, Blum RP, Niehus H, Muller RH, Gohla S. Solid lipid nanoparticles

(SLN/Lipopearls)-α pharmaceutical and cosmetic carrier for the application of

vitamin E in dermal products. J Microencapsul., 16:751-767; 1999.

51. Jenning V, Gysler A, Schafer-Korting M, Gohla SH. Vitamin A loaded solid

lipid nanoparticles for topical use: occlusive properties and drug targeting to the

upper skin. Eur J Pharm. Biopharm., 49:211-8; 2000.

52. Maia CS, Mehnert W, Schafer-Korting M. Solid lipid nanoparticles as drug

carriers for topical glucocorticoids. Int J Pharm., 196:165; 2000.

53. Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and

microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm., 56:189-196;

2003.

54. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and

nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv

Drug Deliv Rev., 54:131-55; 2002.

55. Santos Maia C, Mehnert W, Schaller M, Korting HC, Gysler A, Haberland A,

Schafer-Korting MJ. Drug targeting by solid lipid nanoparticles for dermal use. Drug

Target., 10:489-495; 2002.

56. Wissing SA, Muller RH. Solid lipid nanoparticles as carrier for sunscreens: in

vitro release and in vivo skin penetration. J Control Rel., 81:225-33; 2002.

57. Wissing SA, Muller RH. Cosmetic applications for solid lipid nanoparticles. Int.

J Pharm., 254:65-68; 2003.

58. Agarwal R, Katare OP, Vyas SP. Preparation and in vitro evaluation of

liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm.,

228: 43-52; 2001.

59. Manconi M, Sinico C, Valenti D, Loy G, Fadda AM. Niosomes as carriers for

tretinoin I. Preparation and properties. Int J Pharm., 234:237-248; 2002.

60. Namdeo A, Jain NK. Niosomal delivery of 5-fluorouracil. J Microencapsul.,

16:731-740; 1999.

Page 6: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

113

61. Sentjurc M, Vrhovnik K, Kristl J. Liposomes as a topical delivery system: the

role of size on transport studied by the EPR imaging method. J Control Rel., 59:87-

97; 1999.

62. Shahiwala A, Misra A. Studies in topical application of niosomally entrapped

nimesulide. J Pharm Sci., 5:220-225; 2002.

63. Vora B, Khopade AJ, Jain NK. Proniosome based transdermal delivery of

levonorgestrol for effective contraception. J Control Rel., 54:149-165; 1998.

64. Biana G, Touitou E. Ethosomes: new prospects in transdermal delivery. Crit Rev

Ther Drug Carrier Syst., 20:63-102; 2003.

65. Dayan N, Touitou E. Carriers for skin delivery of trihexyphenidyl HCL:

ethosomes vs liposomes. Biomaterials., 21:1879-1885; 2000.

66. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz MJ. Ethosomes: Novel

vesicular carriers for delivery. J Control Rel., 65:403-418; 2000.

67. Touitou E, Godin B, Dayan N, Weiss C, Piliponsky A, Levi-Schaffer F.

Intracellular delivery mediated by an ethosomal carrier. Biomaterials., 22:3053-3059;

2001.

68. Blume G, Cevc G, Crommelin MD, Bakker-Woudenberg IA, Kluft C, Storm G.

Specific targeting with poly (ethylene glycol)-modifeied liposomes: coupling of

homing devices to the ends of the polymeric chains combines effective target binding

with long circulation times. Biochim Biophys Acta., 1149:180-184; 1993.

69. Cevc G, Gebauer D, Stieber J, Schatzlein A, Blume G. Ultraflexible vesicles,

transfersomes, have an extremely low pore penetration resistance and transport

therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys

Acta., 1368:201-215; 1998.

70. Cevc G, Blume G. New highly efficient formulation of diclofenac for the topical,

transdermal administration in ultradeformable drug carriers, transfersomes. Biochim.

Biophys. Acta., 1514:191-205; 2001.

71. Cevc G, Blume G. Biological activity and characteristics of triamcinolone-

acetonide formulated with the self-regulating drug carriers, Transfersomes. Biochim.

Biophys. Acta., 1614:156-164; 2003.

Page 7: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

114

72. Kreuter J, Speiser PP. In vitro studies of poly (methyl methacrylate) adjuvants. J

Pharm Sci., 65:1624–1627; 1976.

73. Couvreur P, Kante B, Roland M, Guiot P, Bauduin P, Speiser P.

Polycyanoacrylate nanocapsules as potential lysosomotropic carriers:

preparation,morphological and sorptive properties. J Pharm Pharmacol., 31: 331–332;

1979.

74. Marty JJ, Oppenheim RC, Speiser P. Nanoparticles-A new colloidal drug

delivery system. Pharm Acta Helv., 53:17–23; 1978.

75. Marcos Garcia-Fuentes, Maria J. Alonso. Chitosan-based drug nanocarriers:

Where do we stand?, http://dx.doi.org/10.1016/j.jconrel.2012.03.017.

76. Mosgoeller W, Prassl R, Zimmer A. Nanoparticle-Mediated Treatment of

ulmonary Arterial Hypertension, Chapter 7, Methods in Enzymology. Volume 508 ,

Elsevier Inc. 325-350; 2012.

77. Kumaresh S. Soppimatha, Tejraj M. Aminabhavia, Anandrao R. Kulkarnia,

Walter E. Rudzinski. Biodegradable polymeric nanoparticles as drug delivery

devices.J Control Rel., 70:1–20; 2001.

78. Langer R. Biomaterials in drug delivery and tissue engineering: One laboratory’s

experience. Acc Chem Res., 33:94-101; 2000.

79. Lanza RP, Langer R, Chick WL. Principles of Tissue Engineering, in: Academic

Press, Austin, TX, 405-427; 1997.

80. Gupta RB, Kompella UB. Nanoparticle Technology for drug delivery. Drugs and

the Pharmaceutical Sciences, Taylor & Francis. 159; 2006.

81. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in

cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the

antitumor agent Smancs. Cancer Res., 46:6387–6392; 1986.

82. Iwai K, Maeda H, Konno T. Use of oily contrast medium for selective drug

targeting to tumor: enhanced therapeutic effect and X-ray image. Cancer Res., 44:

2115– 2121; 1984.

Page 8: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

115

83. Maeda H, Matsumoto T, Konno T, Iwai K, Ueda M. Tailor-making of protein

drugs by polymer conjugation for tumor targeting: a brief review on Smancs. J Prot

Chem., 3: 181–193; 1984.

84. Maeda H. The enhanced permeability and retention (EPR) effect in tumor

vasculature: The key role of tumor selective macromolecular drug targeting. Advan

Enzyme Regul., 41:189–207; 2001.

85. Savita B, Amarnath M. Dextran–doxorubicin/chitosan nanoparticles for solid

tumor therapy. Nanomed Nanobiotechnol., 1: 415-425; 2009.

86. Reinhard HH Neubert. Potentials of new nanocarriers for dermal and

transdermal drug delivery. Eur J Pharmaceut Biopharmaceut., 77:1-2; 2011.

87. Schroeter A, Engelbrecht T, Reinhard HH Neubert, Goebel ASB. New nanosized

technologies for dermal and transdermal drug delivery. a review. J Biomed

Nanotech., 6:511-528; 2010.

88. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Enhancement of

topical delivery from biodegradable nanoparticles. Pharm Res., 21 (10):1818–1825;

2004.

89. Luengo J. Human skin drug delivery using biodegradable PLGA-nanoparticles.

Saarland University, 2007.

90. Luengo J, Weiss B, Schneider M, Ehlers A, Stracke F, Konig K, Kostka KH,

Lehr CM, Schaefer UF. Influence of nanoencapsulation on human skin transport of

flufenamic acid. Skin Pharmacol Physiol., 19 (4):190–197; 2006.

91. Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi

U.Penetration profile of microspheres in follicular targeting of terminal hair follicles.

J Invest Dermatol., 123 (1):168–176; 2004.

92. Alvarez-Roman R, Naik A, Kalia Y, Guy RH, Fessi H. Skin penetration and

distribution of polymeric nanoparticles. J Control Rel., 99 (1):53-62; 2004.

93. Byrne ME, Park K, Peppas NA. Molecular imprinting within hydrogels. Adv

Drug Deliv Rev., 54:149–161; 2002.

94. Kopecek J. Polymer chemistry: swell gels. Nature. 417:388–91; 2002.

Page 9: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

116

95. Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue

engineering: impact of physical factors on cell behavior. Biomaterials., 28:134–146;

2007.

96. Hoffman AS. Applications of thermally reversible polymers and hydrogels in

therapeutics and diagnostics. J Control Rel., 6:297–305; 1987.

97. Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of

neurodegenerative disorders. Progr Polym Sci., 32:1054–1082; 2007.

98. Langer R, Vacanti JP. Tissue engineering. Science. 260:920–926, 1993.

99. Langer R. Drug delivery. Drugs on target. Science. 293:58–59; 2001.

100. Lutz JF, Boerner HG. Modern trends in polymer bioconjugates design. Progr

Polym Sci., 33:1–39; 2008.

101. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and

medicine: from molecular principles to bionanotechnology. Adv Mater., 18:1345–

1360; 2006.

102. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug

delivery. Progr Polym Sci., 32:962–990; 2007.

103. Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 185:117–118;

1960.

104. Mehrdad H, Amir A, Pedram R. Hydrogel nanoparticles in drug delivery. Adv

Drug Deliv Rev., 60:1638–1649; 2008.

105. Peppas NA, Khare AR. Preparation, structure and diffusional behavior of

hydrogels in controlled release. Adv Drug Del Rev., 11:1–35; 1993.

106. Blanco MD, Garcia O, Trigo RM, Teijon JM, Katime I. 5-Fluorouracil release

from copolymeric hydrogels of itaconic acid monoester I. Acrylamide-co-

monomethyl itaconate, Biomaterials. 17:1061-1067; 1996.

107. Ratner BD, Hoffman AS. Synthetic hydrogels for biomedical applications, in

J.D. Andrade (Ed.), Hydrogels for Medical and Related Applications, ACS

Symposium Series, American Chemical Society. 31:1–36; 1976.

108. Amsden B. Solute diffusion within hydrogels. Mechanisms and models.

Macromolecules. 31:8382–8395; 1998.

Page 10: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

117

109. Canal T, Peppas NA. Correlation between mesh size and equilibrium degree of

swelling of polymeric networks. J Biomed Mater Res., 23:1183–1193; 1989.

110. Silan C, Akcalib A, Otkunb MT, Ozbeyb N, Butunc S, Ozayc O, Sahinerc N.

Novel hydrogel particles and their IPN films as drug delivery systems with

antibacterial properties. Colloids Surf B., 89: 248-253; 2012.

111. Morimoto K, Nagayasu A, Fukanoki S, Morisaka K, Ikada Y. Evaluation of

polyvinyl alcohol hydrogel as a sustained-release vehicle for rectal administration of

indomethacin. Pharm Res., 6:338–341; 1989.

112. Jeyanthi R, Nagarajan B, Panduranga KR. Solid tumor chemotherapy using

implantable collagen-poly (HEMA) hydrogel containing 5-fluorouracil. J Pharm

Pharmacol., 43:60–62; 1991.

113. Patel VR, Amiji MM. Preparation and characterization of freeze dried chitosan

poly (ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach.

Pharm Res. 13:588–593; 1996.

114. Vervoort L, Vinckier I, Moldenaers P, Van den Mooter G, Augustijns P, Kinget

R. Inulin hydrogels as carriers for colonic drug targeting. Rheological

characterization of the hydrogel formation and the hydrogel network. J Pharm Sci.,

88:209–214; 1999.

115. Wu J, Wei W, Wang LY, Su ZG, Ma GH. A thermosensitive hydrogel based on

quaternized chitosan and poly (ethylene glycol) for nasal drug delivery system.

Biomaterials. 28:2220–2232; 2007.

116. Chaterji S, Kwon I, Park K. Smart polymeric gels: Redefining the limits of

biomedical devices. Prog Polym Sci., 32:1083–1122; 2007.

117. Qiao ZY, Zhang R, Du FS, Liang DH, Li ZC. Multi-responsive nanogels

containing motifs of ortho ester, oligo (ethylene glycol) and disulfide linkage as

carriers of hydrophobic anti-cancer drugs. J Control Rel., 152 57–66; 2011.

118. Kabanov AV, Vinogradov S. Nanogels as pharmaceutical carriers: finite

networks of infinite capabilities. Angew Chem Int Ed., 48:5418-5429; 2009.

119. Koen R, Joseph D, Stefaan De S. Advanced Nanogel Engineering for drug

delivery. Soft Matter. 5:707-715; 2009.

Page 11: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

118

120. Sungwon K, Kyong Mi P, Jin Young K, Ick C K, Hyeon GC, Dongmin K, In

TY, Kwangmeyung K, Kun N. Minimalism in fabrication of self-organized nanogels

holding both anti-cancer drug and targeting moiety. Colloids Surf B., 63:55–63; 2008.

121. An Z, Qiu Q, Liu G. Synthesis of architecturally well defined nanogel via RAFT

polymerization for potential bioapplications. Chem Commun., 47:12424-12440;

2011.

122. Motornov M, Roiter Y, Tokarev I, Minko S. Stimuli-responsive nanoparticles,

nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym

Sci., 35:174–211; 2010.

123. Hendrickson GR, Smith MH, South AB, Lyon LA. Design of multiresponsive

hydrogel particles and assemblies. Adv Funct Mater., 20:1697–1712; 2010.

124. Seo S, Lee CS, Jung YS, Na K. Thermo-sensitivity and triggered drug release of

polysaccharide nanogels derived from pullulan-g-poly(l-lactide) copolymers.

Carbohydr Polym., 87:1105-1111; 2012.

125. Maria D. Moya-Ortegaa, Carmen Alvarez-Lorenzob, Hákon H. Sigurdssona,

Angel Concheirob, Thorsteinn Loftssona. Cross-linked hydroxypropyl-β-cyclodextrin

and γ-cyclodextrin nanogels for drug delivery: Physicochemical and loading/release

properties. Carbohydr Polym., 87:2344-2351; 2012.

126. Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S. In-situ

immobilization of quantum dots in polysaccharide-based nanogels for integration of

optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials. 31:3023–

3031; 2010.

127. Wu W, Shen J, Banerjee P, Zhou S. Water-dispersible multifunctional hybrid

nanogels for combined curcumin and photothermal therapy. Biomaterials. 32:598-

609; 2011.

128. Li N, Jinli Wang, Xingguo Yang, Lingbing Li. Novel nanogels as drug delivery

systems for poorly soluble anticancer drugs. Colloids Surf B., 83:237-244; 2011.

129. Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the

cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 33:1607-1617;

2012.

Page 12: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

119

130. Xie C, Gou ML, Yi T, Deng H, Li ZY, Liu P, Qi XR, Zhao X. Efficient

inhibition of ovarian cancer by truncation mutant of FILIP 1L gene delivered by

novel biodegradable cationic heparin- polyethyleneimine nanogels. Hum Gene Ther.,

22:1413-1422; 2011.

131. Zhao M, Biswas A, Hud B, Joo K II, Wang P, Gu Z, Tang Y. Redox-responsive

nanocapsules for intracellular protein delivery. Biomaterials. 32:5223-5230; 2011.

132. Kang H, Trondoli AC, Zhu G, Chen Y, Chang YJ, Liu H, Huang YF, Tan W.

Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS

Nano., 5:5094-5099; 2011.

133. Murphy EA, Majeti BK, Mukthavaram R, Acevedo LM, Barnes LA, Cheresh

DA. Targeted nanogels: A versatile platform for drug delivery to tumors. Mol Cancer

Ther., 10:972-982; 2011.

134. Zha L, Banik B, Alexis F.Stimulus responsive nanogels for drug delivery. Soft

Matter. 7: 5908-5916; 2011.

135. Du FS, Wang Y, Zhang R, Li ZC. Intelligent nucleic acid delivery systems

based on stimuli-responsive polymers. Soft Matter. 6:835–848; 2010.

136. Hu YH, Atukorale PU, Lu JJ, Moon JJ, Um SH, Cho EC, Wang Y, Chen JZ,

Irvine DJ. Cytosolic delivery mediated via electrostatic surface binding of protein,

virus, or siRNA cargos to pH-responsive core-shell gel particles, Biomacromolecules.

10:756–765; 2009.

137. Kim JO, Kabanov AV, Bronich TK. Polymer micelles with cross-linked

polyanion core for delivery of a cationic drug doxorubicin. J Control Rel., 138:197–

204; 2009.

138. Lee ES, Gao ZG, Bae YH. Recent progress in tumor pH targeting

nanotechnology. J Control Rel., 132:164–170; 2008.

139. Oishi M, Hayashi H, Michihiro ID, Nagasaki Y. Endosomal release and

intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels. J

Mater Chem., 17: 3720-3725; 2007.

140. Berndt I, Pedersen JS, Richtering W. Structure of multiresponsive “intelligent”

core-shell microgels. J Am Chem Soc., 127:9372–9373; 2005.

Page 13: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

120

141. Lee Y, Park SY, Kim C, Park TG. Thermally triggered intracellular explosion of

volume transition nanogels for necrotic cell death. J Control Rel., 135: 89–95; 2009.

142. Nagahama K, Hashizume M, Yamamoto H, Ouchi T, Y. Ohya Y.

Hydrophobically modified biodegradable poly (ethylene glycol) copolymers that form

temperature- responsive nanogels. Langmuir. 25:9734–9740; 2009.

143. Lee H, Mok H, Lee S, Oh YK, Park TG. Target-specific intracellular delivery of

siRNA using degradable hyaluronic acid nanogels. J Control Rel., 119:245–252;

2007.

144. Li YL, Zhu L, Liu ZZ, Cheng R, Meng FH, Cui JH, Ji SJ, Zhong ZY.

Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver

doxorubicin into the nuclei of cancer cells. Angew. Chem. Int. Ed., 48: 9914–9918;

2009.

145. Ryu JH, Jiwpanich S, Chacko R, Bickerton S, Thayumanavan S.

Surfacefunctionalizable polymer nanogels with facile hydrophobic guest

encapsulation Capabilities. J Am Chem Soc., 132:8246–8247; 2010.

146. Morinloto N, Qiu XP, Winnik FM, Akiyoshi K. Dual stimuli-responsive

nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated

poly(Nisopropylacrylamide) chains. Macromolecules., 41:5985–598; 2008.

147. Zhang JY, Jiang X, Zhang YF, Li YT, Liu SY. Facile fabrication of reversible

core cross-linked micelles possessing thermosensitive swellability. Macromolecules.,

40: 9125-9132; 2007.

148. Bauhuber S, Hozsa C, Breunig M, Gopferich A. Delivery of nucleic acids via

disulfide-based carrier systems. Adv Mater., 21:3286–3306; 2009.

149. Du JZ, Sun TM, Song WJ, Wu J, Wang J. A tumor- tumor-acidity-activated

chargeconversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake

and drug delivery. Angew Chem Int Ed., 49:3621–3626; 2010.

150. Meng FH, Hennink WE, Zhong Z. Reduction-sensitive polymers and

bioconjugates for biomedical applications. Biomaterials. 30:2180–2198; 2009.

Page 14: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

121

151. Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via

reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug

Deliv Rev., 55:199–215; 2003.

152. Chang C, Wei H, Feng J, Wang ZC, Wu XJ, Wu DQ, Cheng SX, Zhang XZ,

Zhuo RX. Temperature and pH double responsive hybrid cross-linkedmicelles based

on p (NIPAAm-co-MPMA)-b-p(DEA): RAFT synthesis and “schizophrenic”

micellization. Macromolecules. 42: 4838–4844; 2009.

153. Chung JE, Yokoyama M, Okano T. Inner core segment design for drug delivery

control of thermo-responsive polymeric micelles. J Control Rel., 65:93–103; 2000.

154. Huang XN, Du FS, Cheng J, Dong YQ, Liang DH, Ji SP, Lin SS, Li ZC.

Acidsensitive polymeric micelles based on thermoresponsive block copolymers with

pendent cyclic orthoester groups. Macromolecules. 42:783–790; 2009.

155. Rijcken CJF, Soga O, Hennink WE, van Nostrum CF. Triggered destabilisation

of polymeric micelles and vesicles by changing polymers polarity: an attractive tool

for drug delivery. J Control Rel., 120:131–148; 2007.

156. Soga O, van Nostrum CF, Fens M, Rijcken CJF, Schiffeler RM, Storm SG,

Hennink WE. Thermosensitive and biodegradable polymeric micelles for paclitaxel

Delivery. J Control Rel., 103:341–353; 2005.

157. R. Jayakumar, Amrita Nair, N. Sanoj Rejinold, S. Maya, S. V. Nair.

Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells.

Carbohydr polym. 87:2352-2356; 2012

158. Inmaculada A, Marian M, Ruth H, Inés P, Beatriz M, Niuris A, Gemma G,

Ángeles H. Functional characterization of chitin and chitosan. Curr Chem Biol.,

3:203-230; 2009.

159. Tamura H, Furuikea T, Nair SV, Jayakumar R. Biomedical applications of chitin

hydrogel membranes and scaffolds. Carbohydr Polym., 84:820–824; 2011.

160. Raabe D, Romanoa P, Sachs C, Fabritius H, Al-Sawalmih, Yi SB, Servos G,

Hartwig HG. Microstructure and crystallographic texture of the chitin–protein

network in the biological composite material of the exoskeleton of the lobster

Homarus americanus. Mater Sci Eng., A 421:143-153; 2006.

Page 15: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

122

161. Yimin F, Tsuguyuki S, Akira I. Chitin nanocrystals prepared by TEMPO-

mediated oxidation of α-chitin. Biomacromolecules. 9: 192-198; 2008a.

162. Yimin Fan, Tsuguyuki Saito and Akira Isogai. Preparation of Chitin Nanofibers

from Squid pen β-chitin by simple mechanical treatment under acid conditions.

Biomacromolecules. 9:1919-1923; 2008b.

163. Feisal Khoushab, Montarop Yamabhai. Chitin Research Revisited. Mar Drugs.,

8: 1988-2012; 2010.

164. Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin-

phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study

in rats. Int J Pharm., 330:155-163; 2007.

165. Tiyaboonchai W, Tungpradit W, Plianbangchang P. Formulation and

characterization of curcuminoids loaded solid lipid nanoparticles. Int. J

Pharmaceutics., 337:299-306; 2007.

166. Preetha A, Chithra S, Sonia J, Ajaikumar BK, Aggarwal BB. Curcumin and

cancer: An ‘‘old-age” disease with an ‘‘age-old” solution. Cancer Lett., 267:133-164;

2008.

167. Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: How many

ways can curry kill tumor cells selectively? AAPS J., 11:495-510; 2009.

168. Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of

anticancer properties and therapeutic activity in head and neck squamous cell

carcinoma. Mol. Cancer., 10:12; 2011.

169. Bachar Z, Zephirin M, Virginie N. Stabilization of curcumin by complexation

with divalent cations in glycerol/ water system. Bioinorg Chem Appl.,

doi:10.1155/2010/292760; 2010.

170. Paul A. Mccarron, David Woolfson A, Siobhaan M. Keating. Sustained release

of 5-Fluorouracil from polymeric nanoparticles. J Pharm Pharmacol., 52: 1451-1459;

2000.

171. Saif MW, Syrigos KN, Katirtzoglou NA. A promising new oral fluoropyrimidine

derivative. Expert Opin Invest Drugs., 18:335-348; 2009.

Page 16: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

123

172. Raje Chouhan, Bajpai AK. An in vitro release study of 5-fluoro-uracil (5-FU)

from swellable poly-(2-hydroxyethyl methacrylate) (PHEMA) nanoparticles. J Mater

Sci., 20:1103-1114; 2009.

173. Singh BN, Singh RB, Singh J. Effect of ionization and penetration enhancers on

the transdermal delivery of 5-Fluorouracil through excised human stratum corneum.

Int J Pharm., 298:98-107; 2005.

174. Singh BN, Jayaswal SB. Iontophoretic delivery of 5-fluorouracil through excised

human stratum corneum. Drug Discov Ther., 2:128-135; 2008.

175. Kong M, Chen XG, Kweon DK and Park HJ. Investigations on skin permeation

of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr Polym., 86:

837-843; 2010.

176. Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H and Couvreur P.

Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev., 55; 519-548;

2003.

177. Tamura H, Nagahama H, Tokura S. Preparation of hydrogels under mild

conditions. Cellulose.13:357; 2006.

178. Rejinold NS, Chennazhi KP, Tamura H, S. Nair SV, Jayakumar R.

Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging and

biosensing. ACS Appl Mater Interfaces., 3:3654–3665; 2011.

179. Ji L, Yunyun J, Jun W, Guorong F, Yutian W, Chuan Z. A rapid and simple

HPLC method for the determination of curcumin in rat plasma: assay development,

validation and application to a pharmacokinetic study of curcumin liposome. Biomed

Chromatogr., 23:1201-1207; 2009.

180. Rejinold NS, Sreerekha PR, Chennazhi KP, Nair SV, Jayakumar R.

Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-

isopropylacrylamide) nanocarrier for curcumin drug delivery. Int J Biiol Macromol.,

49:161-172; 2011.

181. Alsarra IA, Alarifi MN. Validated liquid chromatographic determination of 5-

fluorouracil in human plasma. J Chromatogr B., 804:435-439; 2004.

Page 17: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

124

182. Zweers ML, Engbers GH, Grijpma DW, Feijen J. In vitro degradation of

nanoparticles prepared from polymers based on DL-lactide, glycolide and poly

(ethylene oxide). J Control Rel., 100:347-356; 2004.

183. Pangburn SH, Trescony PV, Heller J. Lysozyme degradation of partially

deacetylated chitin, its films and hydrogels. Biomaterials. 3:105-108; 1982

184. Helena S, Azevedo and Rui L. Reis. Understanding the enzymatic degradation

of biodegradable polymers and strategies to control their degradation rate. Chapter

12. Biodegradable Systems in Tissue Engineering and Regenerative Medicine. 178-

197.

185. Shigemasa Y, Saito K, Sashiwa H, Saimoto H. Enzymatic degradation of

chitins and partially deacetylated chitins. Int. J. Biol. Macromol., 16:43-49; 1994.

186. Changcheng He , Kexin Jiao , Xu Zhang , Mei Xiang , Zhiyong Li and

Huiliang Wang. Nanoparticles, microgels and bulk hydrogels with very high

mechanical strength starting from micelles.

Soft Matter.7: 2943-2952; 2011.

187. Li N, Wang J, Yang X, Li L. Novel nanogels as drug delivery systems for poorly

soluble anticancer drugs. Colloids Surf., B., 83:237–244; 2011.

188. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH

is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci.,

5:359-370; 2006.

189. Anitha A, Chennazhi KP, Nair SV, Jayakumar R. 5-Flourouracil loaded N,O-

carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast

cancer. J Biomed Nanotechnol. 8:1-14; 2012.

190. Rejinold NS, Muthunarayanan M, Chennazhi KP, Jayakumar R. Curcumin

loaded fibrinogen nanoparticles for cancer drug delivery. J Biomed Nanotechnol.,

2011,7:521-534.

191. Schaefer UF, Hansen S, Schneider M, Luengo J, Claus C, Lehr M. Models for

skin absorption and skin toxicity testing, in Drug Absorption Studies In Situ, In Vitro

and In Silico Models, ed. C. Ehrhardt and K.-J. Kim. Springer International Edition.

3–24; 2010.

Page 18: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

125

192. Bronaugh RL, Stewart RF, Congdon IR, Methods for in vitro percutaneous

absorption studies II. Animal models for human skin, Toxicol. Appl. Pharmacol.,

1982, 62: 481–488.

193. Fritz PS, Josef GM, Andreas B. Comparison of human skin or epidermis models

with human and animal skin in in vitro percutaneous absorption. Int J Pharm.,

215:51–56; 2001.

194. Raabe H, Curren R, Ward S, Harbell J, Report from an in vitro dermal absorption

assay workshop in In Vitro Percutaneous Absorption Expert-Users Workshop,

Gaithersburg, USA, 2005.

195. Organisation for Economic Co-operation and Development (OECD), “Skin

Absorption: In Vitro Method”, OECD Environment Directorate, OECD Guideline for

the Testing of Chemicals, Guideline 428, Paris, adopted May 2002, official

publication February 2004.

196. Karpanen TJ, Worthington T, Conway BR, Hilton AC, Elliott TSJ, Lambert PA.

Penetration of chlorhexidine into human skin. Antimicrob Agents Chemother.,

52:3633–3636; 2008.

197. Park K. Nanotechnology: What it can do for drug delivery. J Control Rel., 120:

1– 3; 2007.

198. Jayakumar R, Chennazhi KP, Nair SV, Sanoj Rejinold N, The art, method,

manner, process and system of preparation of alpha chitin nanogels for drug delivery

and imaging applications, Indian Patent No. 357/CHE/2011 A; 2011.

199. Salaun Fabien, Vroman Isabelle. Curcumin loaded nanocapsules: formulation

and influence of the nanoencapsulation processes variables on the physico-chemical

characteristics of the particles. Int J Chem React Eng., 7: A55; 2009.

200. Anitha A, Deepagan VG, Divya Rani VV, M. Deepthy M, Nair SV, Jayakumar

R. Preparation, characterization, in vitro drug release and biological studies of

curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr Polym.,

84:1158–1164; 2011.

201. Rejinold NS, Muthunarayanan M, Divyarani VV, Sreerekha PR, Chennazhi

KP, Nair SV, Tamura H, Jayakumar R. Curcumin-loaded biocompatible thermo

Page 19: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

126

responsive polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci.,

360: 39-51; 2011.

202. Yassin AEB, Anwer MK, Mowafy HA, El-Bagory IM, Bayomi MA, Alsarra IA.

Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat

colon cancer. J Med Sci., 7:398-408; 2010.

203. Sorina Alexandra Garea, Adi Ghebaur, Corina and Ronescu. Systems based on

dendrimers and antitumoral drug synthesized by non-covalent method: The influence

of dendrimers generation. Materiale Plastice. 48: 17-22; 2011.

204. Rejinold NS, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Biodegradable

and thermo-sensitive chitosan-g-poly (N-vinylcaprolactam nanoparticles as a 5-

fluorouracil carrier. Carbohydr Polym. 83: 776-786; 2011b.

205. Anitha A, Chennazhi KP, Nair SV, Jayakumar R. 5-Flourouracil loaded N, O-

carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast

cancer. J Biomed Nanotechnol., 8:1-14; 2012.

206. Kayal S, Ramanujan RV. Doxorubicin loaded PVA coated iron oxide

nanoparticles for targeted drug delivery. Mater Sci Eng C., 30: 484–490; 2010.

207. Jaykumar R, Tamura H. Synthesis, characterization and thermal properties of

chitin-g-poly (ε-caprolactone) copolymers by using chitin gel. International Journal of

Biological Macromol., 3: 32-36; 2008.

208. Koen R, Joseph D, Stefaan De S. Advanced nanogel engineering for drug

delivery. Soft Matter. 5:707-715; 2009.

209. Murray SB, Neville AC. The role of pH, temperature and nucleation in the

formation of cholesteric liquid crystal spherulites from chitin and chitosan. Int. J Biol.

Macromol., 22:137-144; 1998.

210. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY and Lin JK. Stability

of curcumin in buffer solutions and characterization of its degradation products, J.

Pharm. Biomed. Anal., 15; 1867–1876:1997.

211. Raemdonck K, Demeester J, De Smedt S. Advanced nanogel

engineering for drug delivery, Soft Matter., 5: 707–715; 2009.

Page 20: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

127

212. Syng-Ai, Kumari AL, Khar A, Effect of curcumin on normal and tumor cells:

role of glutathione and bcl-2. Mol. Cancer Ther., 3, 1101–1108; 2004.

213. Seda Tıglı Aydın R & Mehlika Pulat. 5-Fluorouracil encapsulated chitosan

nanoparticles for pH-stimulated drug delivery: evaluation of controlled release

kinetics. J. Nanomaterials 2012; Article ID 313961, 10 pages,

doi:10.1155/2012/313961, 2012.

214. Cenni E, Granchi D, Avnet S, Fotia C, Salerno M, Micicli D, Sarpietro M G,

Pignatello R, Castelli F, Baldini N. Biocompatibility of poly(D-L lactide co-

glycolide) nanoparticles conjugated with alendrnate. Biomaterials. 29:1400-1411;

2008.

215. Jiao Y, Ubrich N, Marchand Arvier M, Vigneron C, Hoffman M, Lecompte T,

Maincent P. In vitro and in vivo evaluation of oral heparin-loaded polymeric

nanoparticles in rabbits. Circulation.105: 230-235; 2002.

216. Yu Zhang, Mo Yang, Nathaniel G. Portney, Daxiang Cui, Gurer Budak, Ekmel

Ozbay, Mihrimah Ozkan & Cengiz S. Ozkan. Zeta potential: a surface electrical

characteristic to probe the interaction of nanoparticles with normal and cancer human

breast epithelial cells. Biomed Microdevices. 10:321-328; 2008.

217. Cengelli F, Voinesco F, Juillerat-Jeanneret L. Interaction of cationic ultrasmall

superparamagnetic iron oxide nanoparticles with human melanoma cells.

Nanomedicine, 5:1075-1087; 2010.

218. Tore-Geir Iversen, Tore Skotland, Kirsten Sandvig. Endocytosis and

intracellular transport of nanoparticles: Present knowledge and need for future

studies. Nano Today. 6:176-185; 2011.

219. Zauner W, Ogris M, Wagner E. Polylysine-based transfection systems utilizing

receptor-mediated delivery. Adv Drug Delivery Rev., 30:97-113; 1998.

220. Garnett MC. Gene-delivery systems using cationic polymers. Crit Rev Ther

Drug Carrier Syst., 16:147-207; 1999.

221. Shishodia S, Amin HM, Lai R, Aggarwal BB, Curcumin (diferuloylmethane)

inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses

Page 21: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

128

proliferation, and apoptosis in mantle cell lymphoma, Biochem Pharmacol., 70: 700-

713; 2005.

222. Watson JL, Hill R, Lee PW, Giacomantonio CA, Hoskin DW. Curcumin induces

apoptosis in HCT-116 human colon cancer cells. Chem Mater., 2008, 21, 2851–2861.

223. Scharstuhl A, Mutsaers HA, Pennings SW, Szarek WA, Russel FG, Wagener

FA. Curcumin induced fibroblast apoptosis and in vitro wound contraction are

regulated by antioxidants and heme oxygenase: implications for scar formation. J Cell

Mol Med., 13:712–725; 2009.

224. Ngo DN, Lee SH, Kim MM, Kim SK, Production of chitin oligosaccharides with

different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct

Foods., 1:188-198; 2009.

225. Moon -Moo Kim & Se- Kwon Kim. Anti inflammatory activity of chitin,

chitosan and their derivatives. In Chitin,chitosan, oligosaccharides and their

derivatives- Biological activities and applications, edited by Se-Kwon Kim. CRC

press, 215-221; 2010.

226. Jolanta Kumirska, Mirko X. Weinhold, Jorg Thöming and Piotr Stepnowski.

Biomedical activity of chitin/chitosan based materials- influence of physicochemical

properties apart from molecular weight and degree of N-acetylation.

Polymers.3:1875-1901; 2011.

227. De Angelis PM, Svendsrud DH, Kravik KL, Stokke T. Cellular response to 5-

fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and

recovery. Molecular Cancer 2006, 5:20 doi:10.1186/1476-4598-5-20

228. Choudhuri T, Pal S, Das T, Sa G. Curcumin selectively induces apoptosis in

deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependant

manner. J Biol Chem., 280:20059-20068; 2005.

229. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program

in cell-free extracts: requirement for dATP and cytochrome C, Cell. 86:147–157;

1996.

Page 22: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/4982/12/12_references.pdf · References 109 12. Siegel R, Elizabeth W, Otis B, Ahmedin J. Cancer statistics, 2011:

References

129

230. Liu E, Wu J, Cao W, Zhang J, Liu W, Jiang X , Zhang X. Curcumin induces

G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression

in human glioma. J Neuro-Oncol., 85:263–270; 2007.

231. Weir NM, Selvendiran K, Kutala VK, Tong L, Vishwanath S, Rajaram M,

Tridandapani S, Anant S, Kuppusamy P. Curcumin induces G2/M arrest and

apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and

p38 MAPK. Cancer Biol Ther., 6:178–184; 2007.

232. Gajate C, Mollinedo F. Cytoskeleton-mediated death receptor and ligand

concentration in lipid rafts forms apoptosis-promoting clusters in cancer

chemotherapy. J Biol Chem., 280:11641-11647; 2005.

233. Lu HF, Lai KC, Hsu SC, Lin HJ, Yang MD, Chen YL, Fan MJ, Yang JS, P.

Y. Cheng PY, Kuo CL, Chung JG. Curcumin induces apoptosis through FAS and

FADD, in caspase- 3-dependent and -independent pathways in the N18 mouse-rat

hybrid retina ganglion cells. Oncol Rep., 22:97–104; 2009.

234. Zoli W, Ulivil P, Tesei A, Fabbri F, Rosetti M, Maltoni R, Giunchi DC, Ricotti

L, Brigliadori G, Vannini I, Amadori D. Addition of 5-fluorouracil to doxorubicin-

paclitaxel sequence increases caspase dependent apoptosis in breast cancer cell lines.

Breast Cancer Res., 2005, 7, R681-R689.

235. Ballarin B, Galli S, Mogavero F, Morigi M. Effect of cationic charge and

hydrophobic index of cellulose based polymers on the semipermanent dyestuff

process for hair. Int J Cosmet Sci., 33: 228–233; 2011.

236. Barell AO, Paye M, Maibach HI. Handbook of cosmetic science and technology.

Marcel Dekker. 407; 2001.

237. Miettinen M, Franssila K. Immunohistochemical spectrum of malignant

melanoma, the common presence of keratins. Lab Invest., 61:623–628; 1989.