references - link.springer.com › content › pdf › bbm%3a978-3... · department of defense...

36
References Abwerzger G, Beyer J, Legat K, Maurer M, Meinhard D, Pfister J, Willigen D van (2001): GLORIA - integrating GNSS and Loran-C for high-requirement applications. Galileo's World, 2(3): 10-16. Altmann SL (1986): Rotations, quaternions, and double groups. Clarendon, Oxford. Amlacher C (2000): Use of GNSS in civil aviation - state of the art and future developments. Diploma thesis, Graz University of Technology, Graz, Austria. Anderson D, Fuller-Rowell T (1999): The ionosphere. Published by the Space En- vironment Center, Boulder. Available at www.sel.noaa.govfEducation (May 2003). Assad AA (1988): Modeling and implementation issues in vehicle routing. In: Golden BL, Assad AA (eds): Vehicle routing - methods and studies. North-Holland, Amsterdam: 7-45. Bartelme N (2000): Geoinformatik - Modelle, Strukturen, Funktionen, 3rd edition. Springer, Berlin. Benedicto J, Ludwig D (2001): Galileo defined - proposed architecture and services for the new European satellite positioning system. GPS World, 12(9): 46-49. Beyer J, Wigger B (2001): Grundlagen der Navigation und Anwendungen 1+I!. Lecture Notes, Technical University Darmstadt, Darmstadt, Germany. Bill R (1996): Grundlagen der Geo-Informationssysteme, Bd.2, Analysen, Anwen- dungen und neue Entwicklungen. Wichmann, Heidelberg. Blasius W (1991): Neue Aspekte beim kombinierten Verkehr. Verkehr und Technik, 44(8): 306-309. Britting KR (1971): Inertial navigation system analysis. Wiley, New York. Brogdon B (1995): Boat navigation for the rest of us - finding your way by eye and electronics. International Maritime, Camden (Maine). Brown RG (1996): Receiver autonomous integrity monitoring. In: Parkinson BW, Spilker JJ (eds): Global Positioning System - theory and applications, vol 2. American Institute of Aeronautics and Astronautics, Washington DC: 143- 165. Brown RG, Hwang PYC (1997): Introduction to random signals and applied Kal- man filtering, 3rd edition. Wiley, New York. Burger W (1991): Inexact visual navigation. In: Linkwitz K, Hangleiter U (eds): High precision navigation 91. Proceedings of the 2nd International Workshop on High Precision Navigation. Diimmler, Bonn: 229-240. Caffery JJ (2000): Wireless location in CDMA cellular radio systems. Kluwer Aca- demic, Boston. Car A (1996): Hierarchical spatial reasoning - theoretical consideration and its ap- plication to modeling wayfinding. Dissertation, Technical University Vienna, Vienna, Austria. Car A, Frank AU (1993): Hierarchical street networks as a conceptual model for efficient way finding. In: Proceedings of the EGIS'93 Conference, Genova, March 29 to April 1, 1993: 134-139.

Upload: others

Post on 09-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

References

Abwerzger G, Beyer J, Legat K, Maurer M, Meinhard D, Pfister J, Willigen D van (2001): GLORIA - integrating GNSS and Loran-C for high-requirement applications. Galileo's World, 2(3): 10-16.

Altmann SL (1986): Rotations, quaternions, and double groups. Clarendon, Oxford. Amlacher C (2000): Use of GNSS in civil aviation - state of the art and future

developments. Diploma thesis, Graz University of Technology, Graz, Austria. Anderson D, Fuller-Rowell T (1999): The ionosphere. Published by the Space En­

vironment Center, Boulder. Available at www.sel.noaa.govfEducation (May 2003).

Assad AA (1988): Modeling and implementation issues in vehicle routing. In: Golden BL, Assad AA (eds): Vehicle routing - methods and studies. North-Holland, Amsterdam: 7-45.

Bartelme N (2000): Geoinformatik - Modelle, Strukturen, Funktionen, 3rd edition. Springer, Berlin.

Benedicto J, Ludwig D (2001): Galileo defined - proposed architecture and services for the new European satellite positioning system. GPS World, 12(9): 46-49.

Beyer J, Wigger B (2001): Grundlagen der Navigation und Anwendungen 1+I!. Lecture Notes, Technical University Darmstadt, Darmstadt, Germany.

Bill R (1996): Grundlagen der Geo-Informationssysteme, Bd.2, Analysen, Anwen­dungen und neue Entwicklungen. Wichmann, Heidelberg.

Blasius W (1991): Neue Aspekte beim kombinierten Verkehr. Verkehr und Technik, 44(8): 306-309.

Britting KR (1971): Inertial navigation system analysis. Wiley, New York. Brogdon B (1995): Boat navigation for the rest of us - finding your way by eye and

electronics. International Maritime, Camden (Maine). Brown RG (1996): Receiver autonomous integrity monitoring. In: Parkinson BW,

Spilker JJ (eds): Global Positioning System - theory and applications, vol 2. American Institute of Aeronautics and Astronautics, Washington DC: 143-165.

Brown RG, Hwang PYC (1997): Introduction to random signals and applied Kal­man filtering, 3rd edition. Wiley, New York.

Burger W (1991): Inexact visual navigation. In: Linkwitz K, Hangleiter U (eds): High precision navigation 91. Proceedings of the 2nd International Workshop on High Precision Navigation. Diimmler, Bonn: 229-240.

Caffery JJ (2000): Wireless location in CDMA cellular radio systems. Kluwer Aca­demic, Boston.

Car A (1996): Hierarchical spatial reasoning - theoretical consideration and its ap­plication to modeling wayfinding. Dissertation, Technical University Vienna, Vienna, Austria.

Car A, Frank AU (1993): Hierarchical street networks as a conceptual model for efficient way finding. In: Proceedings of the EGIS'93 Conference, Genova, March 29 to April 1, 1993: 134-139.

Page 2: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

398 References

Catling I (1994): Introduction to ATT, IVHS, and RT!. In: Catling I (ed): Advanced technology for road transport - IVHS and ATT. Artech House, Boston: 1-16.

Civil GPS Service Interface Committee (2002): Summary report of the 40th meeting of the Civil GPS Service Interface Committee (CGSIC), Oregon, March 22-24. Available at www.navcen.uscg.gov/cgsic (May 2003).

Chriss M, Hayes GR (1994): An introduction to charts and their use. Brown, Son & Ferguson, Glasgow.

Christofides N (1985): Vehicle routing. In: Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds): The traveling salesman problem - a guided tour of combinatorial optimization. Wiley, Chichester: 431-448.

Clark J, Holton DA (1991): A first look at graph theory. World Scientific, Singapore. Clausing DJ (1993): Moderne Flug-Navigation, 2nd edition. Motorbuch, Stuttgart. Claussen H (1995): Qualitatsanforderungen an die digitale Karte aus Anwendersicht.

In: Bartelme N (ed): Grazer Geoinformatik-Tage '95 - GIS in Transport und Verkehr. Mitteilungen der geodatischen Institute der Technischen Universitat Graz, Folge 80: 33-40.

Coordination Scientific Information Center (1998): Global navigation satellite sys­tem GLONASS - interface control document, version 4.0, Moscow. Available at www.glonass-center.ru (May 2003).

Coordination Scientific Information Center (2002): Global navigation satellite sys­tem GLONASS - interface control document, version 5.0, Moscow. Available at www.glonass-center.ru (May 2003).

Czommer R (2001): Leistungsfahigkeit fahrzeugautonomer Ortungsverfahren auf der Basis von Map-Matching-Techniken. Schriftenreihe der Deutschen Geo­datischen Kommission, Reihe C, vol 535.

Czommer R, Mahlenbrink W (1999): Multi-sensor map matching concepts for po­sitioning of road and rail vehicles. In: Li RX, Murai S (eds): Proceedings of the International Workshop on Mobile Mapping Technology, Bangkok, April 21-23,1999: 4-1-1-4-4-6.

DeLoach SR, Remondi B (1991): Decimeter positioning for dredging and hydro­graphic surveying. In: Proceedings of the First International Symposium on Real Time Differential Applications of the Global Positioning System, vol l. TUV Rheinland, Kaln: 258-263.

Demant C, Streicher-Abel B, Waszkewitz P (1998): Industrielle Bildverarbeitung. Springer, Berlin.

Department of Defense (1995): Global Positioning System standard positioning ser­vice signal specification, 2nd edition.

Department of Defense (2001): Global Positioning System standard positioning ser­vice performance standard. Available from the U.S. Assistant for GPS, Posi­tioning and Navigation, Defense Pentagon, Washington (DC).

Department of Defense, Department of Transportation (2002a): 2001 Federal Radio­navigation Plan. U.S. National Technical Information Service, Springfield, Virginia, DOT-VNTSC-RSPA-01-3/DOD-4650.5.

Department of Defense, Department of Transportation (2002b): 2001 Federal Radio­navigation Systems. U.S. National Technical Information Service, Springfield, Virginia, DOT-VNTSC-RSPA-01-3.1/DOD-4650.5.

Page 3: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

References 399

Dierendonck AJ van (1997): Satellite radio navigation. In: Kay ton M, Fried WR (eds): Avionics navigation systems, 2nd edition. Wiley, New York: 178-282.

Diggelen F van (1998): GPS accuracy: lies, damn lies, and statistics. GPS World, 9(1): 41-45.

Diggelen F van, Abraham C (2001): Indoor GPS technology. Available at the web address www.globallocate.com (May 2003).

Domschke W (1972): Kurzeste Wege in Graphen - Algorithmen, Verfahrensver­gleiche. Hain, Meisenheim am Glan.

Domschke W (1981): Logistik: Transport - Grundlagen, line are Transport- und Umladeprobleme. Oldenbourg, Munchen Wien.

Domschke W (1985): Logistik: Rundreisen und Touren. Oldenbourg, Munchen. Drane C, Macnaughtan M, Scott C (1998): Positioning GSM telephones. IEEE

Communications Magazine, 36(4): 46-54 and 59. Dudek G, Jenkin M (2000): Computational principles of mobile robotics. Cambridge

University Press, Cambridge. Dueck G (1993): New optimization heuristics - the great deluge algorithm and the

record-to-record travel. Journal of Computational Physics, 104: 86-92. Dueck G, Scheuer T (1990): Threshold accepting - a general purpose optimization

algorithm appearing superior to simulated annealing. Journal of Computa­tional Physics, 90: 161-175.

Elrod BD, Dierendonck AJ van (1996): Pseudolites. In: Parkinson BW, Spilker JJ (eds): Global Positioning System - theory and applications, vol 2. American Institute of Aeronautics and Astronautics, Washington DC: 51-79.

Ely SR, Jeffery DJ (1990): Traffic information broadcasting and RDS. In: Walker J (ed): Mobile information systems. Artech House, Boston: 141-175.

Enge P, Graas F van (1996): Integration of GPS and Loran-C. In: Parkinson BW, Spilker JJ (eds): Global Positioning System - theory and applications, vol 2. American Institute of Aeronautics and Astronautics, Washington DC: 169-186.

Enge P, Swanson E, Mullin R, Ganther K, Bommarito A, Kelly R (1995): Terrestrial radionavigation technologies. Navigation, 42(1): 61-108.

Farrell JA, Barth M (1999): The Global Positioning System and inertial navigation. McGraw-Hill, New York.

Faul M, Gilles ED (1995): DGPS using the radio data system. In: Linkwitz K, Hangleiter U (eds): High precision navigation 95. Proceedings of the 3rd In­ternational Workshop on High Precision Navigation. Dummler, Bonn: 443-452.

Federal Aviation Administration (2002a): Aeronautical information manual. A vail­able at www.faa.gov/atpubs/AIM (May 2003).

Federal Aviation Administration (2002b): Notices to airmen (NOTAM'S). Available at www.faa.gov (May 2003).

Federal Communications Commission (2001): Fact sheet - FCC wireless 911 re­quirements. Available at www.fcc.gov/911/enhanced (May 2003).

Federal Radionavigation Plan (2001): see under Department of Defense, Department of Transportation (2002a).

Federal Radionavigation Systems (2001): see under Department of Defense, Depart­ment of Transportation (2002b).

Page 4: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

400 References

Fontana RD, Cheung W, Stansell T (2001): The modernized L2 civil signal. GPS World, 12(9): 28-34.

Forssell B (1991): Radionavigation systems. Prentice Hall, New York. French RL (1994): The continuing evolution of vehicular navigation. In: Deutsche

Gesellschaft fur Ortung und Navigation (ed): Proceedings of EURNAV 94, 3rd International Conference on Land Vehicle Navigation, Dresden, June 14-16, 1994: 1-4.

French RL (1995): From Chinese chariots to smart cars - 2000 years of vehicular navigation. Navigation 42(1): 235-258.

Fried WR, Buell H, Hager JR (1997): Doppler and altimeter radars. In: Kay ton M, Fried WR (eds): Avionics navigation systems. Wiley, New York: 449-502.

Frisk G (2000): Gate-to-gate seamless aviation. Galileo's World, 2(1): 24-30. Froschl A (1997): TMC - traffic message channel. In: Osterreichischer Ingenieur­

und Architekten-Verein (ed): Proceedings ofVerkehrsleitsysteme fur Schiene, StraBe und Luft. Wien, November 6-7,1997: 17-22.

Gao Y, Krakiwsky EJ, Abousalem MA, McLellan JF (1993): Comparison and anal­ysis of centralized, decentralized, and federated filters. Navigation, 40(1): 69-86.

Garfinkel RS (1985): Motivation and modeling. In: Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds): The traveling salesman problem - a guided tour of combinatorial optimization. Wiley, Chichester: 17-36.

Garner HD (1993): The mechanism of China's south-pointing carriage. Navigation, 40(1): 9-17.

Gery SW (1997): The direct fix of latitude and longitude from two observed alti­tudes. Navigation, 44(1): 15-23.

Gill E, Montenbruck 0, Kayal H (2001): The BIRD satellite mission as a milestone toward GPS-based autonomous navigation. Navigation, 48(2): 69-75.

Golden BL (1984): Introduction to and recent advances in vehicle routing methods. In: Florian M (ed): Transportation planning models. North-Holland, Amster­dam: 383-418.

Gonin 1M, Dowd MK (1994): At-sea evaluation of ECDIS. Navigation, 41(4): 435-449.

Gonin 1M, Smith MW, Dowd MK, Akerstrom-Hoffman RA, Siegel SI, Pizzariello CM, Schreiber TE (1993): Human factors analysis of electronic chart display and information systems (ECDIS). Navigation, 40(4): 359-373.

Greco S, Marinelli M, Sassorossi T, Dellago R (2001): Galileosat - system architec­ture and performance results. Galileo's World, 3(3): 24-28.

Greenspan RL (1995): Inertial navigation technology from 1970-1995. Navigation 42(1): 165-185.

Greenspan RL (1996): GPS and inertial integration. In: Parkinson BW, Spilker JJ (eds): Global Positioning System - theory and applications, vol 2. American Institute of Aeronautics and Astronautics, Washington DC: 187-220.

Grewal MS, Weill LR, Andrews AP (2001): Global positioning systems, inertial navigation, and integration. Wiley, New York.

GroBmann W (1976): Geodatische Rechnungen und Abbildungen in der Landesver­messung, 3rd revised edition. Wittwer, Stuttgart.

Page 5: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

References 401

Grotschel M, Padberg M (1999): Die optimierte Odyssee. Spektrum der Wissen­schaft, April 1999: 76-85.

Haggren H (1991): Target recognition and target tracking with CCD cameras. In: Linkwitz K, Hangleiter U (eds): High precision navigation 91. Proceedings of the 2nd International Workshop on High Precision Navigation. Dummler, Bonn: 253-260.

Hahn M (1995): Bildsequenzanalyse fur die passive Navigation. Deutsche Geoda­tische Kommission, Reihe C, vol 433.

Hangartner K (1991): Die Moglichkeiten des kombinierten Verkehrs in Europa. Schweizer Ingenieur und Architekt, 109(7): 143-145.

Harris CB (1989): Prototype for a land based automatic vehicle location and naviga­tion system. Master thesis, University of Calgary, Calgary, Alberta, Canada.

Hartinger H, Willson MJ, Cousins N (2001): Augmentation of satellite positioning with an LF system. Paper presented at the International Conference on N av­igation NAV01, The Royal Institute of Navigation, London, November 6-8, 2001.

HauBecker H, Spies H (2000): Motion. In: Jahne B, HauBecker H (eds): Computer vision and applications. Academic Press, San Diego: 347-395.

Hecht H, Berking B, Buttgenbach G, Jonas M (1999): Die Elektronische Seekarte­Grundlagen, Moglichkeiten und Grenzen eines neuen Navigationssystems. Wichmann, Heidelberg.

Hecht H, Berking B, Buttgenbach G, Jonas M, Alexander L (2002): The electronic chart - functions, potential and limitations of a new marine navigation sys­tem. GITC bv, Lemmer, The Netherlands.

Hein GW, Eissfeller B, Winkel JO, Oehler V (2001a): Determining location using wireless networks. GPS World, 12(3): 26-37.

Hein GW, Godet J, Issier J-L, Martin J-C, Lucas-Rodriguez R, Pratt T (2001b): The Galileo frequency structure and signal design. Available at www.galileo­pgm.org (May 2003).

Hein GW, Godet J, Issler J-L, Martin J-C, Erhard P, Lucas-Rodriguez R, Pratt T (2002): Status of Galileo frequency and signal design. Available at the Web site www.galileo-pgm.org (May 2003).

Heiskanen W, Moritz H (1967): Physical geodesy. Freeman, San Francisco. Helfrick A (2000): Principles of avionics. Avionics Communications Incorporation,

Leesburg (Virginia). Hoffman AJ, Wolfe P (1985): History. In: Lawler EL, Lenstra JK, Rinnooy Kan

AHG, Shmoys DB (eds): The traveling salesman problem - a guided tour of combinatorial optimization. Wiley, Chichester: 1-15.

Hofmann-WellenhofB, Lichtenegger H, Collins J (2001): GPS - theory and practice, 5th edition. Springer, Wien.

Holpp W (2002): The century of radar - from Christian Hiilsmeyer to shuttle radar topography mission. Ortung und Navigation 2002(2): 7-31.

Hubner W (1985): Zur Ausnutzung der Dispersion fur die elektromagnetische Stre­ckenmessung. Deutsche Geodatische Kommission, Reihe C, vol 310.

Huddle JR, Brown RG (1997): Multisensor navigation systems. In: Kay ton M, Fried WR (eds): Avionics navigation systems. Wiley, New York: 55-98.

Page 6: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

402 References

Ifland P (2002): The history of the sextant. Available at http://pwifiand.tripod.com/ historysextant (May 2003).

Janocha H, Hiniiber EL von, Diewald B, Godding R (1995): Photogrammetrically aided inertial measurement system for static and dynamic measurement and calibration of industrial robots. In: Linkwitz K, Hangleiter U (eds): High precision navigation 95. Proceedings of the 3rd International Workshop on High Precision Navigation. Diimmler, Bonn: 586-595.

Jekeli C (2001): Inertial navigation systems with geodetic applications. Walter de Gruyter, Berlin.

Jong K de (2002): Future GPS and Galileo signals. Geoinformatics, 5(6): 6-7. Jungnickel D (1987): Graphen, Netzwerke und Algorithmen. B.I.-Wissenschafts­

verlag, Mannheim. Jurgen RK (1991): Smart cars and highways go global. IEEE Spectrum, 28(5):

26-36. Kachmar PM, Wood LJ (1995): Space navigation applications. Navigation, 42(1):

187-234. Kalman RE (1960): A new approach to linear filtering and prediction problems.

Journal of Basic Engineering, 82(1): 35-45. Kaplan GH (1995): Determining the position and motion of a vessel from celestial

observations. Navigation, 42(4): 631-648. Kaplan GH (1996): A navigation solution involving changes to course and speed.

Navigation, 43(4): 469-482. Kee C (1996): Wide area differential GPS. In: Parkinson BW, Spilker JJ (eds):

Global Positioning System - theory and applications, vol 2. American Insti­tute of Aeronautics and Astronautics, Washington DC: 81-115.

Knobbe EJ, Haas GN (1997): Celestial navigation. In: Kay ton M, Fried WR (eds): A vionics navigation systems, 2nd edition. Wiley, New York: 551-596.

Krakiwsky EJ (1993): Tracking the worldwide development of IVHS navigation systems. GPS World, 4(10): 40-47.

Krakiwsky EJ (1994): Comparison ofIVHS navigation systems. In: Deutsche Gesell­schaft fiir Ortung und Navigation (ed): Proceedings of EURNAV 94, 3rd International Conference on Land Vehicle Navigation, Dresden, June 14-16, 1994: 5-12.

Krakiwsky EJ, Bullock JB (1994): Digital road data - putting GPS on the map. GPS World, 5(5): 43-46.

Kraus K (1993): Photogrammetry, vol 1 - fundamentals and standard processes, 4th edition. Diimmler, Bonn.

Kreft P (1994): Multipath map matching (M3 ). In: Deutsche Gesellschaft fUr Ortung und Navigation (ed): Proceedings of EURNAV 94, 3rd International Confer­ence on Land Vehicle Navigation, Dresden, June 14-16, 1994: 199-206.

Kriegl J (2000): Location in cellular networks - automated vehicle monitoring based on GSM positioning. Diploma Thesis, Graz University of Technology, Graz, Austria. Available at www.iaik.at (May 2003).

Kuipers BJ, Levitt TS (1988): Navigation and mapping in large-scale space. AI Magazine, 9(2): 25-43.

Lachapelle G (1998): Hydrography. Lecture Notes of the Department of Geomatics Engineering of the University of Calgary, no 10016.

Page 7: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

References 403

Lachapelle G, Cannon ME, Erickson C, Falkenberg W (1992): High precision CIA code technology for rapid static DGPS surveys. In: Proceedings of the Sixth International Geodetic Symposium on Satellite Positioning, Columbus, Ohio, March 17-20, 1992, vol 1: 165-173.

Ladetto Q, Merminod B, Terrier P, Schutz Y (2000): On foot navigation: when GPS alone is not enough. The Journal of Navigation, 53(2): 279-285.

Lamm L, Costantino J (1994): IVHS America - a public-private partnership. In: Catling I (ed): Advanced technology for road transport - IVHS and ATT. Artech House, Boston: 223-246.

Langley R (2000): Basic navigation with a GPS receiver. GPS World, 11(10): 50-54. Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (1985): The traveling sales­

man problem - a guided tour of combinatorial optimization. Wiley, Chich­ester.

Lawrence A (1998): Modern inertial technology - navigation, guidance, and control, 2nd edition. Springer, New York.

Legat K (2002): Pedestrian navigation. Dissertation, Graz University of Technology, Graz, Austria.

Legat K, Abwerzger G, Weiss R, Wasle E (2001): GLORIA deliverable D4 - interme­diate testing report. Information Society Technologies, Fifth EU Framework Programme, Contract no 1ST 20600.

Levi RW, Judd T (1996): Dead reckoning navigational system using accelerome­ters to measure foot impacts. U.S. patent no 5.583.776, December 10, 1996. Available at www.uspto.gov (May 2003).

Lichtenegger H (1995): Eine direkte Losung des raumlichen Bogenschnitts. Oster­reichische Zeitschrift fur Vermessung und Geoinformation, 83(4): 224-226.

Lichtenegger H (1998): DGPS fundamentals. Reports on Geodesy, Warsaw Univer­sity of Technology, Institute of Geodesy and Geodetic Astronomy, 11 (41): 7-19.

Maling DH (1992): Coordinate systems and map projections, 2nd edition. Perga-mon, Oxford.

Marquis W (2001): M is for modernization. GPS World, 12(9): 36-42. May MB (1993): Inertial navigation and GPS. GPS World, 4(9): 56-66. Mikhail EM (1976): Observations and least squares. IEP, New York. Mikhail EM, Bethel JS, McGlone JC (2001): Introduction to modern photogram­

metry. Wiley, New York. Misra P, Enge P (2001): Global Positioning System - signals, measurements, and

performance. Ganga-Jamuna, Lincoln (Mass.). Mohlenbrink W (1998): Traffic-guidance and information systems - new technolo­

gies for the geoinformation market. In: Kahmen H, Bruckl E, Wunderlich T (eds): Proceedings of Symposium on Geodesy for Geotechnical and Structural Engineering, Eisenstadt (Austria), April 20-22, 1998: 395-400.

Mohlenbrink W (2000): Informationsdienste im Verkehr und Verkehrsumfeld. In: Proceedings of XIII. International Course on Engineering Surveying, Munich, March 13-17, 2000. Wittwer, Stuttgart: 198-208.

Montenbruck 0 (1984): Grundlagen der Ephemeridenrechnung. Sterne und Welt­raum Vehrenberg, Miinchen.

Page 8: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

404 References

Montenbruck 0, Gill E (2001): Satellite orbits - models, methods, and applications, corrected 2nd printing. Springer, Berlin.

Moreau MC, Axelrad P, Garrison JL, Long A (2000): GPS receiver architecture and expected performance for autonomous navigation in high earth orbits. Navigation, 47(3}: 157-166.

Moritz H, Hofmann-Wellenhof B (1993): Geometry, relativity, geodesy. Wichmann, Karlsruhe.

Mueller II (1969): Spherical and practical astronomy as applied to geodesy. Ungar, New York.

Narins MJ (2002): Status of Loran-C evaluations by the Federal Aviation Admin­istration. Available at www.navcen.uscg.gov (May 2003).

National Imagery and Mapping Agency (1995): The American practical navigator. Publication no 9, Bethesda (Maryland).

National Marine Electronics Association (2002): NMEA 0183 interface standard version 3.01. Available at www.nmea.org (May 2003).

National Research Council (1982): Outlook for science and technology - the next five years. Freeman, San Francisco.

Offermans GWA, Helwig AWS, Willigen D van (1999): Eurofix system and its de­velopments. The Journal of Navigation, 52(2}: 163-175.

Padberg MW, Grotschel M (1985): Polyhedral computations. In: Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds): The traveling salesman problem­a guided tour of combinatorial optimization. Wiley, Chichester: 251-305.

Parkinson BW, Enge PK (1996): Differential GPS. In: Parkinson BW, Spilker JJ (eds): Global Positioning System - theory and applications, vol 2. American Institute of Aeronautics and Astronautics, Washington DC: 3-50.

Parkinson BW et al. (1995): A history of satellite navigation. Navigation, 42(1): 109-164.

Peterson BB, Kmiecik CG, Nguyen H, Kaspar B (2000): Indoor geolocation system operational test results. Navigation, 47(3}: 157-166.

Pillich B (2000): AIS data in ECDIS as a safety enhancement. Ortung und Naviga­tion, 2000(2): 71-78.

Pinz A (1994): Bildverstehen. Springer, Wien. Poppe C (2000): Optimieren mit Bomben. Spektrum der Wissenschaft, May 2000:

8-10. Potucek W (1997): Verkehrsleitsysteme Schiene. In: Osterreichischer Ingenieur- und

Architekten-Verein (ed): Proceedings of Verkehrsleitsysteme fur Schiene, StraJ3e und Luft. Wien, November 6-7, 1997: 49-52.

Pressley A (2001): Elementary differential geometry. Springer, London. Rabinowitz M, Spilker JJ (2001): Positioning using the ATSC digital television

signal. Rosum Corporation whitepaper. Available at www.rosum.com (May 2003).

Radio Technical Commission for Aeronautical Services (1999): Minimum opera­tional performance standards for Global Positioning System / Wide Area Augmentation System airborne equipment. DO-229B, Special Committee no 159, Washington (DC).

Radio Technical Commission for Maritime Services (2001): RTCM recommended standards for differential GNSS service version 2.3. Special Committee no 104, Alexandria (Virginia).

Page 9: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

References 405

Reichardt D, Stein F, Ulmer B (1995): VITA II - active collision avoidance in real traffic. In: Linkwitz K, Hangleiter U (eds): High precision navigation 95. Proceedings of the 3rd International W.orkshop on High Precision Navigation. Diimmler, Bonn: 487-493.

Rinner K, Benz F (1966): Die Entfernungsmessung mit elektro-magnetischen Wellen und ihre geodatische Anwendung. In: Jordan, Eggert, Kneissl (eds): Hand­buch der Vermessungskunde, vol 6, 10th edition. J .B. Metzlersche Verlags­buchhandlung, Stuttgart.

Rohm 0 (1997): Steigerung der Produktivitat und Sicherheit durch Verkehrsleit­systeme. In: Osterreichischer Ingenieur- und Architekten-Verein (ed): Pro­ceedings of Verkehrsleitsysteme fiir Schiene, Strafie und Luft. Wien, Novem­ber 6-7, 1997: 53-56.

Roland WF (2000): Loran-C chain and UTC synchronization. The Journal of Nav­igation, 53(2): 215-223.

Ross SM (2000): Introduction to probability and statistics for engineers and scien­tists, 2nd edition. Academic Press, San Diego.

Rush J (2000): GPS space use evolving. Newsletter of the Institute of Navigation, 10(1): 10-11.

Ryan MJ, Frater MR (2002): Communications and information systems. Argos, Canberra.

Salgado G, Abbondanza S, Blondel R, Lannelongue S (2001): Constellation avail­ability - a new model. Galileo's World, 3(1): 30-35.

Sandler M, Gilles ED (1995): Processing of laser scanner images for high precision navigation on canals. In: Linkwitz K, Hangleiter U (eds): High precision nav­igation 95. Proceedings of the 3rd International Workshop on High Precision Navigation. Diimmler, Bonn: 375-383.

Sandler M, Plocher T, Gilles ED (1991): Processing of radar images in an integrated navigation system. In: Linkwitz K, Hangleiter U (eds): High precision navi­gation 91. Proceedings of the 2nd International Workshop on High Precision Navigation. Diimmler, Bonn: 349-357.

Schmitt M (2001): Konstruktion und Einsatz virtueller Umgebungen zur Naviga­tionsunterstiitzung mobiler Roboter. Mensch & Buch, Berlin.

Schwarte R, Hausler G, Malz RW (2000): Three-dimensional imaging techniques. In: Jahne B, HauBecker H (eds): Computer vision and applications. Academic Press, San Diego: 177-208.

Schwarz KP (1983): Inertial surveying and geodesy. Reviews of Geophysics and Space Physics, 21(4): 878-890.

Schwarz KP (1986): The error model of inertial geodesy - a study in dynamic system analysis. In: Siinkel H (ed): Mathematical and numerical techniques in physical geodesy. Springer, Berlin.

Schwarz KP (1998): Mobile multi-sensor systems - modelling and estimation. In: Kahmen H, Briickl E, Wunderlich T (eds): Proceedings of the Symposium on Geodesy for Geotechnical and Structural Engineering, Eisenstadt (Austria), April 20-22, 1998: 347-360.

Schwarz KP, EI-Sheimy N (1996): Multi-sensor arrays for mapping from moving vehicles. In: Beutler G, Hein GW, Melbourne WG, Seeber G (eds): GPS trends in precise terrestrial, airborne, and spaceborne applications. Springer, Berlin: 185-190.

Page 10: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

406 References

Scorer T, Last D {1995}: The current status of the Securicor Datatrak system. The Journal of Navigation, 48{2}: 204-214.

Seidelmann PK {ed} {1992}: Explanatory supplement to the astronomical almanac. University Science Books, Mill Valley {California}.

Seitz P (2000): Solid-state image sensing. In: Jahne B, Hauf3ecker H (eds): Computer vision and applications. Academic Press, San Diego: 111-151.

Sester M (1995): Learning relations for image interpretation. In: Linkwitz K, Hang­leiter U (eds): High precision navigation 95. Proceedings of the 3rd Interna­tional Workshop on High Precision Navigation. Diimmler, Bonn: 392-402.

Solomon MM, Desrosiers J {1988}: Time window constrained routing and scheduling problems. Transportation Science, 22(1): 1-13.

Spiegel MR {1968}: Mathematical handbook of formulas and tables. McGraw-Hill, New York.

Spilker JJ (1996): GPS signal structure and theoretical performance. In: Parkinson BW, Spilker JJ (eds): Global Positioning System - theory and applications, vol 1. American Institute of Aeronautics and Astronautics, Washington DC: 57-119.

Spitzer F {1964}: Principles of random walk. Van Nostrand, Princeton {New Jersey}. Stein W, Kumm W (1997): Astronomische Navigation, 10th edition. Klasing, Biele­

feld. Stewart M, Tsakiri M {1998}: GLONASS broadcast orbit computation. GPS Solu-

tions, 2(2): 16-27. Stewart S (1992): Flying the big jets, 3rd edition. Airlife, London. Stoker JJ (1969): Differential geometry. Wiley, New York. StraBer G (1963): Der Kreisel. Sonderdruck, Soldat und Technik, Frankfurt. Stiicklberger A, Wieser M {1993}: GIS und "Multilevel"-Routensuche. In: Bartel-

me N (ed): Grazer Geoinformatik-Tage '93. Mitteilungen der geodatischen Institute der Technischen Universitat Graz, Folge 76: 49-56.

Siinkel H (1995): Intelligent vehicle highway systems - Internationale Entwicklun­gen. In: Bartelme N (ed): Grazer Geoinformatik-Tage '95 - GIS in Transport und Verkehr. Mitteilungen der geodatischen Institute der Technischen Uni­versitat Graz, Folge 80: 9-16.

Talkenberg H (1999): Ein Beitrag zur Koppelnavigation fiir Fuf3ganger. Shaker, Aachen.

Tazartes DA, Kay ton M, Mark JM (1997): Inertial navigation. In: Kay ton M, Fried WR {eds}: Avionics navigation systems, 2nd edition. Wiley, New York: 313-392.

Tetley L, Calcutt D {1991}: Electronic aids to navigation - position fixing. Arnold, London.

Trapp W {1998}: Kleines Handbuch der MaBe, Zahlen, Gewichte und der Zeitrech­nung, 2nd edition. Redam, Stuttgart and Komet, Frechen.

United States Coast Guard (1994): Specification of the transmitted Loran-C signal. COMDTINST MI6562.4A. Available at www.navcen.uscg.gov (May 2003).

Uttam BJ, Amos DH, Covino JM, Morris P (1997): Terrestrial radio-navigation systems. In: Kay ton M, Fried WR (eds): Avionics navigation systems, 2nd edition. Wiley, New York: 99-177.

Page 11: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

References 407

Vollath U, Birnbach S, Landau H, Fraile-Ordofiez JM, Martin-Neira M (1999): Analysis of three-carrier ambiguity resolution technique for precise relative positioning in GNSS-2. Navigation, 46(1): 13-23.

Volpe National Transportation Systems Center (2001): Vulnerability assessment of the transportation infrastructure relying on the Global Positioning System. Final Report, August 29. Available at www.nav-cen.uscg.gov (May 2003).

Vorhies J (2000): WRC 2000 results - GPS. Available at www.igeb.gov (May 2003). Walker J, Gardner BR (1990): Cellular radio. In: Walker J (ed): Mobile information

systems. Artech House, Boston: 59-103. Werf SY van der (1997): The lunar distance method in the nineteenth century -

a simulation of Joshua Slocum's observation on June 16, 1896. Navigation, 44(1): 1-13.

Whelan R (1995): Smart highways, smart cars. Artech House, Boston. Wieser M (1988): Theoretische Untersuchungen spektraler Methoden zur Analyse

regelmaBiger Strukturen am Beispiel der Fouriertransformation geodatischer Netze. Mitteilungen der geodatischen Institute der Technischen Universitat Graz, Folge 60.

Wieser M (1996): Digital road maps and path optimization applied to vehicle nav­igation systems. In: Mussio L, Forlani G, Crosilla F (eds): Data acquisition and analysis for multimedia GIS. Springer, Wien (International Centre for Mechanical Sciences courses and lectures, vol 365).

Wieser M, Bartelme N (1998): Theory and practice of road databases from the geodetic point of view with respect to Austria. In: Kahmen H, Bruckl E, Wunderlich T (eds): Proceedings of the Symposium on Geodesy for Geotech­nical and Structural Engineering, Eisenstadt (Austria), April 20-22, 1998: 418-423.

Williams JED (1992): From sails to satellites. Oxford University, Oxford. Williams P, Last D (2000): Mapping the ASFs of the Northwest European Loran-C

System. The Journal of Navigation, 53(2): 225-235. Willigen D van, Offermans G, Helwig A, Pelgrum W (2001): The real challenge -

radionavigation on land. Available from www.reelektronika.nl (May 2003). Winter J (2000): Zugortungskonzepte. In: Proceedings of XIII. International Course

on Engineering Surveying, Munich, March 13-17, 2000. Wittwer, Stuttgart: 221-227.

Wunderlich T (1998): A strategic alliance of geometry and geodesy. In: Kahmen H, Bruckl E, Wunderlich T (eds): Proceedings ofthe Symposium on Geodesy for Geotechnical and Structural Engineering, Eisenstadt (Austria), April 20-22, 1998: 457-464.

Young W (1994): What are vessel traffic services, and what can they really do? Navigation, 41(1): 31-56.

Young W (1995): Marine traffic regulation in the United States. Navigation, 42(1): 259-286.

Zhao Y (1997): Vehicle location and navigation systems. Artech House, Boston.

Page 12: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

Absolute accuracy 4, 46, 153, 155, 156, 288, 292

absolute orientation 250, 257, 258, 268, 274

absolute positioning 2, 99 absolute positioning accuracy 158, 292 absorption 65, 66, 69 acceleration vector 216, 231, 290 accelerometer 111, 215-220, 227-230,

237-239, 241, 243, 244, 389 accelerometer bias 220, 243, 244, 290 accuracy measures 4, 46-49, 331, 332 accuracy requirements 6, 116, 178, 377,

386 acoustic wave 106, 110 active sensor 251, 253 adaptive filter 283 additional secondary phase factor

153-156, 292-294 ADF, see automatic direction finder adjustment by parameters 49,332 ADS, see automatic dependent

surveillance aeronautic application 80, 99, 299, 367 aeronautic chart 77, 80, 83, 93, 356, 373 aeronautic navigation 3, 5, 6, 8, 99,

100,104,108,109,142,366-373,394 age of data 196 A-GPS, see assisted GPS airborne Doppler speed meter 110 airborne radar 64, 106, 372 airborne surveillance 356 aircraft control 357 aircraft identification 372 aircraft interrogator 143 aircraft landing system 163 aircraft position 357, 368, 370, 373 aircraft separation 356, 366 airport map 77 airport tower 358 air-speed indicator 109 air traffic control 347, 356, 357, 366,

367, 369, 372

air traffic management 341,355,356, 395

AIS, see automatic identification system

alarm 5, 6, 206-208, 283, 292, 346, 353 almanac 123, 126, 131, 137, 206 along-track distance 331 altimeter 108, 164, 366, 372 altimetry 17, 108, 115, 243, 369, 377 altitude 11, 69, 70, 108, 129, 130, 141,

173, 185, 186,286,366,367,374 ambiguity 157, 181, 194, 198, 199 ambiguity determination 17 ambiguity resolution 182, 194, 199,

200, 291 amplitude modulation 62, 143 analog road map 361 angle measurement 105-107, 130, 161 angle of arrival 161 angular momentum 221-223 angular motion 32, 215, 223, 227, 228 angular rate 216, 221, 225, 227,

229-231, 234, 243 angular-rate matrix 230-234, 290 angular velocity 59, 61, 223, 290 antenna pattern 142 antenna rotation 106 AOA, see angle of arrival area-based radio navigation 145-163,

370 area control 357, 358 area navigation 362,367-370 ARPA, see automatic radar plotting

aid artificial horizon 13, 131 artificial intelligence 263, 320, 333, 384 artificial radiation 251 artificial satellite 18, 169 artificial sensor 295 artificial signal 295 ASF, see additional secondary phase

factor assisted GPS 376

Page 13: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

410

astrogeodetic geoid 388 astrogeodetic method 387 astrolabe 11, 111, 121 astronavigation 121, 122, 126, 129, 130,

137, 368 astronomical almanac 126, 131 astronomical coordinates 19, 22, 122 astronomical latitude 22, 124 astronomical longitude 22, 124 astronomical navigation 13, 121 astronomy 12, 13, 122, 127, 137 ATe, see air traffic control ATM, see air traffic management atmosphere 65-69, 108, 109, 131, 260,

366 atmospheric noise 5, 155 atmospheric pressure 108 atmospheric propagation 68 atmospheric refraction 195 atmospheric refractivity 153 atomic clock 113, 114, 173, 174, 186 attenuation 65, 148, 152 attitude angles 43, 230 attitude determination 43, 136, 236,

248, 374, 375 attitude matrix 235, 236 attitude parameters 27, 44, 45, 49, 136 audio broadcasting 203, 347 audio tone 165, 166 augmentation service 203, 208 augmentation system 191, 192, 203,

204, 208-210, 212, 213, 371, 395 automatic dependent surveillance 356,

370, 395 automatic direction finder 140 automatic feature extraction 261, 380 automatic identification system 202,

353-355 automatic location identification 159 automatic radar plotting aid 353, 354,

364 automatic star fixing 135 auto-nav capability 181 autonomous driving 385 autonomous navigation 3, 121, 181,

248, 362, 368, 375, 378, 395 autonomous positioning 3, 4 autonomous vehicle 247, 248

Index

autopilot 14, 353, 356, 357, 362, 368, 369,371

aviation 100, 108, 136, 141, 182, 207, 358,359,366-370,394

azimuth 22, 43, 103, 112, 123, 126, 127, 131, 132, 134, 136, 144, 236

azimuthal projection 83

Barometric altimetry 108, 115, 243, 369, 377

baseline 43, 147, 180, 181, 195, 197, 198 baseline length 198, 200 baseline vector 31-33, 180, 198, 199,

257, 258, 284 base station 160, 195, 197-201, 212 bearing 16, 17, 103, 104, 115, 141-145,

165, 167, 363-365 best linear unbiased estimate 50, 51, 53 bias 35, 36, 131, 134, 135, 152, 155,

175,177,195-197,201,217,220,227, 243,244,262,288,290,294,316,317

Block I satellites 174, 178 Block II satellites 146, 174, 178, 191 Block IIA satellites 174, 178 Block IIF satellites 174, 181 Block IIR satellites 174, 181 Block III satellites 174, 181 BLUE, see best linear unbiased

estimate body frame 23, 27, 43, 217, 221,

228-230, 380 broadcast ephemerides 175, 191, 193,

195, 201, 213 bundle adjustment 255, 273

CjA-code 174-176, 179, 182, 183, 211, 213

cadastral survey 386 calibration 93, 102, 135, 218, 255, 272,

289, 293, 294 capacity 4, 143, 218, 326-328, 346, 390 car navigation 78, 349, 376 carrier frequency 114, 157-159, 167,

170,174,176,182,183,187,188,211, 212

Page 14: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

carrier phase 157, 173, 176, 178-180, 182, 192, 194, 197-200,211, 291, 386, 389

carrier wave 17, 157, 158, 174, 178, 198 Cartesian coordinate frame 25, 28, 31,

249, 250 Cartesian coordinates 23, 24, 28, 82 Cartesian frame 23, 27 Cartesian system 19-21 categories of instrument landing

systems (CAT I, CAT II, CAT III) 163, 164, 166, 394, 395

CCD, see charge-coupled device CDI, see course deviation indicator CDMA, see code division multiple

access celestial body 9, 122, 124, 126, 131 celestial frame 26 celestial navigation 121-137,364,368 celestial object 103, 121, 123, 125, 130,

131 celestial sphere 122 celestial system 19, 20, 123 cell-oriented positioning 160 cellular communication 159, 162, 202,

378 cellular network 159, 160, 297, 390 cellular phone 64, 159, 297, 349, 355,

383 centrifugal acceleration 231, 232, 290 centrifugal potential 387 charge-coupled device 135, 272 chart 77-83, 93, 94, 97, 98, 100, 103,

149, 253, 352, 356, 363, 365, 373, 396 Chayka 17, 147, 151 chipping rate 176, 184 chi-square distribution 47 Cicada, see Tsikada clock bias 75, 76, 152, 155, 173, 175,

177, 179, 195, 197, 201, 294 clock correction 213 clock error, see clock bias closed-loop accelerometer 218 closed-loop architecture 218, 220 closed-loop mechanization 291 closed-loop sensor 218, 226 CMG, see course made good

411

CNS, see communication navigation surveillance

coastal navigation 5,17,147 code division multiple access 159, 183,

185, 198 code measurement 70, 173, 194, 196,

199 code pseudorange 176-179, 188,

194-198, 200, 204, 208, 212, 213, 284, 291, 293

cofactor matrix 37 COG, see course over ground cognitive map 320 collision avoidance 106, 111, 247, 248,

263, 273, 275, 345, 361, 364, 367, 379 collision warning 340 Columbus, Christopher 11 communication link 3, 159, 160, 176,

189, 201-203, 211, 212, 339, 341, 342, 348, 349, 376, 381, 383

communication navigation surveillance 355, 356, 395

communication network 159, 162, 200, 202, 378, 390

communication service 191, 212 communication system 156, 159, 340,

356, 378, 390 compass control 127 compass course 103, 112 compass locator 395 compass measurement 111, 284, 377 compass north 102 conductivity 153, 292 confidence level 4, 47, 48, 245 configuration 34, 36, 38, 43, 45, 50,

132, 147, 193, 213, 224, 278, 293, 379 conformal Lambert projection 83 conformal Mercator projection 81 conformal projection 12, 40, 77, 81 conical projection 82, 83 constellation geometry 211 continuity 4, 6, 188, 358 contour lines 79, 353 convergence of meridians 102, 103 coordinate axes 1, 32, 215, 249, 250 coordinate frame 19, 22, 25, 28, 31, 40,

249, 250, 380

Page 15: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

412

coordinate system 19-21, 122, 137 coordinate transformation 26, 332 coordinate update 238 Copernicus, Nicolaus 10, 12 Coriolis acceleration 231 Coriolis law 30, 231 correlation 51,109,156,270,317,331,

332 COSPAS-SARSAT 189 course angle 32, 39-43, 82, 103, 115,

118, 131, 230, 331, 333 course deviation indicator 142 course guidance 165 course line 39, 97 course-line computer 370 course made good 103, 104, 117, 118 course over ground 103, 104,205, 206 course prediction 353 course setting 104 course to destination 103, 104, 118, 119 course to steer 104, 118, 119, 206, 365 covariance matrix 50-54, 278-280, 283,

285-287 covariance model 282 coverage 4-6,18, 147, 152, 153,157,

158,160,163,167,169,170,173,200, 201, 207, 210-212, 292, 374

cross-staff 11, 111, 121 cross-track 116, 206, 284, 333, 353, 370 CTD, see course to destination CTS, see course to steer CUPT, see coordinate update curvature of the earth 72, 73 cylindrical projection 81, 83

Datatrak 156-158, 210 datum transformation 28 dead reckoning 31, 32, 38, 99, 101, 116,

117,284-286,288,296,340,344,351, 353, 363, 368, 377

dead reckoning plot 363, 368 dead reckoning position 32, 101, 116,

117, 284 dead reckoning track vector 117 dead reckoning trajectory 284 dead reckoning velocity 286 Decca 17, 147

decentralized filter 283, 285, 331 decision height 164

Index

decision support 83, 321, 344, 350 declination 123, 124, 126, 132, 135 decorrelation 194-197, 200, 213 deflections of the vertical 387, 388 delay lock loop 177 delta-process 179, 191, 196 density function 46, 47 depth information 100, 365 depth isolines 363 depth sounding 18, 106,364 design matrix 51, 54, 279 DGNSS 177, 179, 192-194, 197-204,

208, 210-213, 293, 386 DGPS 156, 179, 180, 191,192,200,203,

205, 209-212, 349, 364, 365, 386, 395 differential correction 192, 195, 196,

199, 205, 210 differential GNSS, see DGNSS differential GPS, see DGPS differential Loran-C 156 differential odometer 9, 112, 284 differential positioning 156, 191, 192,

195, 199, 386 diffraction 65, 66 digital aeronautic map 357 digital audio broadcasting 203, 347 digital camera 247,380 digital image 247, 250-252, 259, 260,

263, 274, 275, 320, 380 digital image processing 247, 259, 263,

320 digital infrared camera 275 digital map 16, 77, 78, 83, 84, 89,

91-94, 97, 274, 295, 296, 298, 329, 331, 332, 380, 385

digital optical sensor 251 digital photogrammetry 261, 268 digital road map 91, 93-97, 321, 338,

343-345, 349, 351, 352, 361 digital sea chart 97, 352 digital terrain model 258 Dijkstra's shortest-path algorithm 56,

299,303 dilution of precision 36, 37, 206 dip angle 131

Page 16: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

direction error 34 direction finding 16, 64, 76, 139-141,

161, 210, 364 direction measurement 33, 34, 113, 115,

116 dispatching center 339, 346, 348, 349,

361 dispersion 66 dispersive medium 66, 70 distance matrix 310-312, 322 distance measurement 34, 105, 144,379 distance measuring equipment 16, 64,

143, 144, 163, 166, 167, 357, 366, 368-371, 393, 394

DLoran-C, see differential Loran-C DME, see distance measuring

equipment DOP, see dilution of precision Doppler, Christian 18 Doppler effect 18 Doppler equation 76 Doppler (frequency) shift 18, 62, 76,

110,170,178,290,364 Doppler measurements 39, 76, 109,

170,374,375 Doppler sonar 110 Doppler VOR 143 DORIS 374, 375 DR, see dead reckoning drift angle 104 drift determination 117 drift effect 99, 112, 116, 275, 288, 377 drift error 284 drift rate 227 drift vector 11 7-119 DRM, see digital road map dual-frequency measurements 375 dual-frequency receiver 171, 180, 181,

201 dynamic model 53-55, 279, 282, 283,

285,287,296,298,330 dynamic pressure 109 dynamic routing 328 dynamic time 113

Earth-centered-earth-fixed, see ECEF earth-fixed equatorial system 21

EC, see European Commission ECDIS 97, 98, 352-355, 362

413

ECEF 21, 23, 26-28, 40, 152, 155, 184, 195, 230, 250, 254, 290, 380

ECEF frame 23, 26, 152, 195, 230, 250, 380

edge candidate 331 edge fixing 298 edge orientation 55 edge sequence 55, 56, 85, 86, 331-333,

344 edge-to-edge relation 55, 84, 85 EGNOS 213 electric field 59 electromagnetic force 111 electromagnetic radiation 62 electromagnetic spectrum 62, 63, 105,

253 electromagnetic speed log 109, 111 electromagnetic wave 59, 61, 65, 70, 74,

75 electron content 70, 201, 391 electronic chart display and

information system, see ECDIS electronic compass 112 electronic flight instrument system 357 electronic navigational chart 94, 97, 98,

353 elevation angle 11, 124, 127, 130-132,

136,173,204,207 elevation mask 173 ellipsoid 21-24, 26, 28, 29, 39, 40, 42,

43, 81, 387 ellipsoidal coordinates 23, 24, 28, 155,

206, 230, 388 ellipsoidal height 29, 388 ellipsoidal latitude 22, 26, 42 ellipsoidal longitude 42 ellipsoidal normal 22, 388 emission angle 73 ENC, see electronic navigational chart enhanced observed time difference 162 en route guidance 333, 334 en route navigation 5, 108, 333, 370 en route radar 358 EOTD, see enhanced observed time

difference

Page 17: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

414

ephemerides 175, 176, 179, 184, 191, 193, 195, 197, 201, 213, 376, 389

equatorial frame 21, 26 equatorial plane 122, 123 equatorial system 19-21, 122, 124, 125 equipotential surface 29, 387 Eratosthenes 10, 78 error ellipse 47, 331 error ellipsoid 48 error propagation 50, 53, 284, 286, 287 ESA 8, 373 Eurocontrol 8 Eurofix 203, 210 European Commission 94, 185,341 European Space Agency, see ESA European Telecommunication and

Tracking System, see EUTELTRACS European Telecommunication Satellite

(organization), see EUTELSAT EUTELSAT 190 EUTELTRACS 190 exterior orientation 255, 256, 267, 272,

273, 380

FAA 8, 163, 164, 356 fading 66, 70 FDMA, see frequency division multiple

access feature extraction 259, 261, 380 Federal Aviation Administration, see

FAA fiducial marks 249 filter architecture 282, 283, 285, 296 filter design 277, 282, 287, 291, 296 filtering process 53, 296, 298 filter theory 49 fleet management 190, 212, 326, 338,

339, 341, 342, 348-350, 361 flight height 108, 367, 372 flight information service 358 flight level 87, 357, 366 flight management system 356, 357, 369 flight preparation 359 flight rules 80, 356, 367 flight simulator 367 floating-car data 347 FMS, see flight management system

formation flight 373, 389 fractional phase 75, 157 free electrons 69, 70, 72 frequency band 63-65, 73, 139,

Index

157-159, 187, 191, 203, 211, 251, 292, 375

frequency channel 183 frequency difference 158, 182 frequency division multiple access 147,

159, 183, 185, 198 frequency domain 259 frequency modulation 62, 142, 143, 202 frequency mUltiplexing 157, 202 frequency range 114, 165, 187 frequency spectrum 142, 211, 212 frequency standard 114,174

Gain matrix 52, 54, 55, 279 Galileo 18, 64, 70, 114, 169, 170,

185-189, 191, 195, 198,281,294,295, 394, 395

Galileo Galilei 12 Gauss, Carl Friedrich 12 Gaussian distribution 47, 50, 53 Gaussian filter 260, 261, 271 Gauss-Kruger projection 82 GBAS, see ground-based augmentation

system Gee system 17 general aviation 366, 370 geocenter 20, 21 geocentric ellipsoid 21, 23, 28 geocentric system 20 geodesic 39, 40, 43 geodesy 1, 374, 386-388 geodetic astronomy 137 geodetic datum 28 geodetic observations 21 geodetic survey 17, 386 geographical information system, see

GIS geoid 29, 387, 388, 390 geoidal height 29, 206, 387, 388 geoid determination 388 geoinformatics 1, 337

. geoinformation services 376 geometric astronomy 122

Page 18: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

geometric configuration 34, 38 geometric horizon 74 geometric primitives 264 geometric range 177, 195 geometric resolution 253 georeferencing 93, 298, 342, 375, 379,

380 geostationary satellite 190, 203, 204,

212, 213, 349 gimbal 217, 221, 223, 224, 227-229,

233-237, 239 gimbal locking 228 GIS 56, 83, 84, 96, 337, 350, 351, 380,

382 glide slope 163-166 global coverage 170, 173, 207 global geocentric ellipsoid 28 global geoid 390 global mapping frame 296 GLONASS 18, 64, 70, 169, 170,

183-186, 198, 204, 205, 207, 294, 295, 394, 395

GLONASS satellite 184, 204 GLONASS space segment 295 GLONASS time 184, 185 GNSS 169, 185, 191-193,203,205-213,

282, 284, 288-294, 395 GNSS augmentation 191, 203, 208, 210,

212,371 GNSS landing system 211 GNSS receiver 288, 289, 290, 291 goniometer 140 GPS 169-198,200,204-211,213,215,

236-238, 243, 273, 281, 284-286, 291-297,343,344,353,357,365, 368-371, 374, 376-378, 380, 386-391, 393-395

GPS augmentation 210, 393, 395 GPS data gap 153 GPS integrity 192 GPS modernization 181-183 GPS multiantenna array 43 GPS observables 177, 178 GPS outage 377 GPS receiver 176, 205, 281, 365, 374,

376, 377 GPS satellite 173, 174, 176,178,181,

191, 207, 208, 211

GPS signal 176, 182 GPS time 177, 185 gradiometer 390 graph elements 56, 84, 85, 88, 312 graph model 84, 312, 318, 344 graph properties 56, 86

415

graph theory 55, 56, 78, 84, 87, 299, 300, 310, 312, 322

gravimetric method 387 gravitation 13, 20, 241, 242 gravitational acceleration 216, 217,

232, 239, 241, 242, 290, 390 gravitational constant 241 gravitational field 20, 216, 217, 221,

229, 238, 239, 242 gravitational force 13, 216, 217 gravitational mass 20, 216 gravitational model 243 gravitational vector 20, 217, 232, 240,

241 gravity 12, 108 gravity anomalies 390 gravity data 388 gravity field 374, 389, 390 gravity potential 387 gravity vector 232, 237, 290, 387 Greenwich mean time 13 Greenwich meridian 21, 113 Greenwich Observatory 13, 123 Greenwich sidereal time 26, 124, 128 GRI, see group repetition interval ground-based augmentation system

203, 209, 210, 371 ground-based orbit determination 374 ground conductivity 153, 292 ground segment 189, 208, 375 ground speed 110, 119, 370 ground wave 72, 73, 148, 152, 291, 292 group repetition interval 151, 292 group velocity 70-72 GSM 159, 162, 202, 203, 297, 298, 349,

350 guidance 1-3, 5, 14-16,55,56,77,84,

90-93, 163, 165, 215, 247, 299, 305, 329, 333-335, 337, 338, 340, 342-353, 356, 358, 361, 369, 371, 372, 376, 381-385, 390

Page 19: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

416

guidance instruction 15, 93, 333-335, 349, 381, 382

guidance system 215, 338, 346, 369 gyro 14, 32, 43, 111, 112, 215, 216, 218,

221, 223-230, 234-240, 243, 244, 290 gyro bias 227, 243, 244, 290 gyrocompass 14, 111, 112, 237 gyroscope, see gyro

Harbor approach 5 harbor area 362, 365 harbor entrance 210 harmonic oscillator 219, 240-242 heading 10, 103, 104, 116, 121, 333,

344, 368 heading error 333 heading sensor 344 height accuracy 192 height datum 364 height determination 108, 115, 190, 344 height error, see vertical error height information 144, 165 height measurement 100 Helmert transformation 28, 250 high-pass filtering 261 horizon 73, 74,130-132,170,171,179,

224, 228, 239, 240 horizon system 123, 125-127 horizontal acceleration 238, 239 horizontal accelerometer 237 horizontal accuracy 171, 191, 200, 210,

213 horizontal angle 106 horizontal coordinates 115 horizontal direction 16, 101-103, 115,

141, 230, 238, 253, 296 horizontal distance 34, 106, 107, 370 horizontal error 179, 241, 243, 245 horizontal misalignment 240 horizontal motion 233 horizontal plane 34, 297 horizontal position 115, 170, 191, 192,

210, 213, 239, 241-243, 245, 290, 363 horizontal velocity 285 hydrographic survey 391 hyperbolic line of position 146, 148,

149, 365

Index

hyperbolic navigation 146, 148 hyperbolic positioning 36, 145, 157 hyperbolic radio navigation 17 hyperboloid 36, 297

lAIN, see International Association of the Institutes of Navigation

IALA 8,210 ICAO, see International Civil Aviation

Organization IERS, see International Earth Rotation

Service IFR, see instrument flight rules IGEB 182 IHO, see International Hydrographic

Organization ILS, see instrument landing system image-based navigation 19, 247-249,

253, 255, 259-264, 268, 272, 274, 275, 345, 369, 375, 379

image-based self-positioning 248, 272-275, 379

image coordinates 135, 249, 259, 267, 270

image filtering 259 image frame 249-251, 380 image improvement 260-261 image processing 247, 259, 263 IMO, see International Maritime

Organization inclination 173, 185, 186 index mirror 130 indoor GPS 281, 378 indoor navigation 203, 375, 377, 378 inertia 12, 221 inertial frame 19, 216, 230, 290 inertial mass 20, 216 inertial navigation 14, 30-32, 43, 111,

136,215,217,227,236,238,241,243, 281, 282, 288, 291, 363, 369, 395

inertial navigation system 14, 136, 172, 215-245, 275, 288-291, 357, 363, 368-370, 374, 377, 380

inertial navigation system performance 238, 244, 288

inertial sensor 218 inertial system 19, 20

Page 20: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

infrared beacon 347, 378 infrared camera 275 initial alignment 228, 236, 237 initial attitude 216, 230, 236, 237 initial height 242 initialization 54, 181, 236, 305, 306 initial position 31, 216, 236, 237 initial solution 325, 329 initial state 52, 54, 279 initial velocity 32, 215, 216 inland waterway 5, 202, 253, 362 inner orientation, see interior

orientation INS, see inertial navigation system instrument flight rules 80, 356, 357, 367 instrument landing system 16, 141,

163-167, 211, 358, 371, 393-395 integer programming 57,323 integrity 5, 6, 121, 174, 186, 188, 189,

192,200,206-211,213,281,292,295, 358, 365, 391

integrity monitoring 192, 207, 208, 281 intelligent transportation system 15,

16, 95, 96, 299, 337-342, 351 Interagency GPS Executive Board, see

IGEB interferometric principle 225 interior orientation 135, 249, 255, 272,

273 International Association of Marine

Aids to Navigation and Lighthouse Authorities, see IALA

International Association of the Institutes of Navigation 8

International Civil Aviation Organization 8, 16, 80, 143, 164, 166, 356, 358, 373, 394

International Earth Rotation Service 21, 389

International Hydrographic Organization 8, 97

International Maritime Organization 8, 97,98,353,354

international nautical mile 100 International Organization for

Standardization 8, 95, 96, 383

International Telecommunication Union 8, 64, 182, 191

International Terrestrial Reference Frame 21, 389

interoperability 186, 210

417

in-vehicle navigation 15, 340, 342-346 inverse graph 302, 314 inverse problem of photogrammetry

251, 256, 258, 268 inverse transformation 24, 25, 129, 251,

388 ionosphere 66-73, 148, 179, 182, 195,

201, 389 ionosphere-free combination 182 ionospheric correction 182, 201, 389 ionospheric grid point 201 ionospheric refraction 66, 171, 174, 195,

201, 213, 375 ISO, see International Organization for

Standardization isogrivs 103 isometric grid 81 ITRF, see International Terrestrial

Reference Frame ITS, see intelligent transportation

system ITU, see International

Telecommunication Union

Jamming 181, 182, 217, 288 Julian date 128, 129

Kalman filter 52-55, 237, 238, 277-284, 290, 291, 296, 330

Kalman weight 53, 55, 279 Kepler, Johannes 12 Keplerian laws 12 Kepler-like elements 175, 185 kinematic system 278 knot (graph theory) 307, 308 knots (speed) 11, 101, 118, 119, 371 Kremer, Gerhard 12

L1 carrier wave 174-176, 179, 182-188, 191, 203, 211, 213

L2 carrier wave 174-176, 179, 182-185 L5 carrier wave 174, 182, 183

Page 21: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

418

LAAS, see local area augmentation system

LAD, see local area differential landing 5, 6, 16, 141, 163, 164, 166,

194,203,207,210,211,357-359,371, 373, 374, 395

landing phase 5, 6, 80, 194, 374 laser 105, 224-226,247, 253 laser beam 224, 225, 253 laser gyro 224-226 laser ranging 105, 174, 374 laser retroreflector 174, 389 laser scanner 247, 254, 265, 275, 364,

379, 380 latency 196, 199, 200 lateral guidance 165 latitude 10, 14, 22-24, 26, 40, 42, 69,

81, 82, 121, 124, 126, 129, 132-134, 136,155,171,176,204,206,217,234, 236, 240, 289, 390

L-band 64, 159, 174, 181, 187 LBS, see location-based service leap seconds 128 least squares adjustment 28, 37, 45, 49,

50, 134, 259, 277, 331, 332 LEO, see low earth orbit leveling 237 lidar 253 Lindbergh, Charles 14 linear approximation 278 linear differential equation 218, 229,

240, 242 linear observation equation 278, 280,

296 line of position 33-38, 115, 116, 127,

134, 135, 137, 139, 140, 142, 145-149, 151, 155, 274, 297, 363, 365, 368, 370

line of sight 72, 73, 122, 125, 132, 142, 143, 161, 162, 169, 201, 217, 292, 315-317

line-of-sight propagation 73, 142, 162 line-of-sight transmission 72, 143 line-of-sight vector 122, 125, 132, 201 line-of-sight wave 72-75, 292 local area augmentation system 210,

395 local area differential 201, 209

Index

local horizon 123, 125, 132, 224, 228, 239, 240

local-level alignment 228, 249 local-level frame 21-23, 26, 27, 32, 43,

224, 228, 233, 236, 238-240, 250, 285, 297

local-level platform 136, 228, 234, 237, 238, 240

local-level system 122, 123, 136 location-based service 375, 376,

381-383 location measurement unit 162 Locstar 190 longest-path problem 302 longitude 10, 13, 22, 23, 26, 40, 42, 81,

82, 113, 121, 124-129, 132-134, 136, 155, 176,206,234, 236, 239, 289

long-range navigation 17, 147 loop antenna 16, 76, 139, 140 loosely coupled integration 289, 293 LOP, see line of position Loran-C 17,64, 114, 147-156, 177, 203,

205, 210, 281, 282, 291-294, 365, 368, 370, 371, 378, 390, 393, 394

Loran-C chain 151-153, 292 Loran-C configuration 293 Loran-C network 281, 292 Loran-C pulse 150 Loran-C receiver 151, 293, 365 Loran-C signal 149-151, 153,210 Loran-C transmitter 203, 210, 293, 294 low earth orbit 170, 189, 349, 374 loxodrome 39-43, 82

MA, see map aiding Magellan, Ferdinand 11, 12 magnetic compass 11, 14, 15, 101, 103,

111, 112, 286 magnetic course 11, 112 magnetic field 13, 14, 59, 68, 76, 102,

111, 112, 140, 227, 389 magnetic flux 76 magnetic latitude 201 magnetic north 102, 103, 112, 141, 142 magnetic pole 68 magnetic sensitivity 227 magnetometer 112

Page 22: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

map 2, 9-11, 33, 77-100, 320, 376-377, 385

map aiding 91-93, 282, 295-298, 344, 350

map course 103, 296 map geometry 93, 295, 344 map grid 285 map matching 90-92, 298, 299,

329-335, 338, 344, 345 mapping 2, 9, 11, 16, 28, 29, 79, 83, 94,

97, 99, 101, 102, 130, 254, 296, 297, 329, 362, 363, 375, 379, 380, 386

map projection 29, 80, 82, 102, 176 marine navigation 5, 6, 8, 78, 99, 101,

121, 122, 362-365 maritime application 39, 79, 94, 99,

155, 375 maritime chart 77-79,82,363 maritime radar 17, 106 maritime radio beacon 203, 364 maritime traffic 341, 351-353, 355, 362 maritime traffic management 351, 355,

362 marker beacon 80, 141, 163, 165, 166,

365,371 Maxwell's equations 13 Maxwell's laws 59 M-code 182, 183 mean earth orbit 173, 186, 374 measurement error 34, 45, 116, 230,

245, 259, 284 measurement group 51, 52, 280 measurement noise 55, 298, 332 mechanical accelerometer 218 mechanical gyro 14, 221, 227 MEO, see mean earth orbit Mercator 12, 41, 77, 78, 81, 82 Mercator integral 82 Mercator map 82 Mercator projection 12, 77, 81, 82 meridian 10, 13, 21, 23, 39-42, 81-83,

102, 103, 113, 121, 123-128, 239 microwave beacon 347 microwave landing system 16, 166, 167,

371, 393, 394 microwave laser (maser) 114 microwaves 63, 68, 73, 251

419

missed approach 80, 164, 358, 371 MLS, see microwave landing system MM, see map matching mobile communication 376, 378, 390 mobile geoinformation service 376 mobile mapping 379-381 mobile robot 247, 248, 275, 385 mobile robotics 384, 385 modernized GPS 181-183, 195 modulation 61, 62, 143, 158, 166, 198,

202, 210, 347 Morse code 7, 141, 142, 165, 166 MSAS 213 multiantenna array 43, 380 multimodal traffic 320, 341 multioscillator 225 multipath 66, 75, 161, 162, 177, 179,

195, 197, 376, 378 multipath map matching 332, 333 multisensor (navigation) system 121,

247, 277, 281-298

NASA 8, 389 National Marine Electronics

Association 205, 206 nationwide differential GPS 210, 395 NATO 7 nautical almanacs 131 nautical chart 79, 353 nautical mile 11, 100, 101 navigable map 90, 91 navigational aid 14, 64, 142, 357 navigational chart 81, 94, 97, 353 navigational network 84-86, 89, 299 navigational triangle 126 Navstar 18 Navy Navigation Satellite System 169 NDB, see non directional beacon NDGPS, see nationwide differential

GPS neuronavigation 390 neurophysiology 384 neurosurgery 390 Newton, Isaac 12 Newtonian mechanics 19 NMEA, see National Marine

Electronics Association

Page 23: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

420

NNSS, see Navy Navigation Satellite System

NOAA 189 node-edge structure 56, 83, 84, 92, 296,

298, 329 nonaccelerated reference system 19 nonautonomous operation 200, 204 nonautonomous positioning 3 nondeterministic polynomial 57, 321 non directional beacon 16, 64, 80, 141,

163, 370, 371, 395 nondispersive medium 66 nongeocentric ellipsoid 28 nonprecision approach 358, 371 nontransport applications 5, 386 normal distribution 47, 50 normal equations 50 north direction 123, 142, 236, 243 north star 11, 121 NOTAM, see notice to airmen notice to airmen 373 numerical differentiation 196 numerical integration 43, 227, 230, 235,

236

Observation epoch 127, 131, 132, 135, 137, 197, 199

observation equation 49, 154, 277, 278, 280, 285, 286, 294, 296, 332

observation function 278, 279 observation group 280 observation noise 50, 278 obstacle 79, 80, 161, 263, 273, 292, 301,

339,345,367,371,379,384 obstruction 80, 151, 153, 173, 193, 288,

295, 296, 363 oceanic navigation 5 odometer 9, 10, 15, 105, 109, 112, 113,

284, 286, 344 off-road navigation 5 Omega 17, 146, 147 one-way communication 202 on-orbit phase 6, 344 on-orbit test 174 on the fly 181, 199, 272 open-loop accelerometer 218 optical gyro 224, 227

Index

orbit 18, 170, 173, 175, 177, 178, 183, 185, 186, 189, 349, 373-375, 389

orbital accuracies 375 orbital altitude 374 orbital correction 201, 213 orbital error 195, 197 orbital parameters 186, 201, 295, 374 orbital plane 172, 185, 186 orbit determination 373, 374 orbit information 201 orientation 1, 19, 20, 23, 26, 43, 77,

135,140,216,217,223-225,228-231, 233, 236, 239-241, 248-250, 254-258, 261, 263, 267, 268, 272-275, 290, 333, 380

origin 1, 19-28, 44, 122, 230, 231, 249, 250, 254, 257, 267, 277, 314

orthodrome 39,40,42,369 orthogonal matrix 25, 45 orthogonal transformation 30 orthometric height 29, 387, 388 oscillator 114, 219, 225, 240-242 outer orientation, see exterior

orientation overhead beacon 340

Parallax 131, 256, 267 passive sensor 247, 248, 251-253,265 path finding 88, 90, 93, 312, 315, 318,

320, 321, 329 pattern recognition 162, 331 P-code 175, 176, 183, 184 PDOP, see position dilution of

precision pedestrian navigation 5, 361, 375-377 pendulum 12, 218-220, 224, 241 performance parameter 292, 382 performance requirement 6, 380, 395 performance standard 97, 98, 179,352,

353 phase ambiguity, see ambiguity phase angle 60, 61 phase center 177 phase combination 158, 182 phase difference 142, 145-149, 158, 177,

178, 225, 226

Page 24: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

phase measurement 17, 75, 76, 157, 173, 178, 192, 194, 197-199,291,386, 391

phase modulation 62 phase pseudorange 76,177,178,188,

198, 200, 204 phase velocity 70 photo detector 225, 226 photogrammetry 247, 249-251, 253,

255-259, 261, 267, 268, 380 piloting 99, 100, 353, 356, 362 planar graph 87, 89, 310, 320 platform alignment 236 platform attitude 380 platform gimbal 224, 237 platform orientation 229 platform sensor 237 plumb line 11, 13, 123, 387, 388 point-to-point navigation 367 polarization 59, 227 pole 67, 68, 83, 122, 217, 236 position correction 193, 293 position determination 2, 31, 33, 115,

157, 158, 162, 197, 209, 230, 236, 284, 286, 299, 378

position dilution of precision 36 position error 34, 47, 195, 241 position fix 101,103,117,118,149,

170,171,206,282,364,369 position fixing 2, 31-38, 99, 100,

115-117, 126, 127, 136, 139, 152,363, 364, 368

positioning accuracy 3, 158, 159, 162, 171, 179, 180, 197, 199,200,210,211, 213,217,292,295,376

positioning application 275 positioning error 236, 243, 245, 369 positioning geometry 294 positioning method 3, 349,350,357,

361, 386 positioning mode 145, 179, 180 positioning sensor 92, 93, 343, 348, 361 positioning technique 2-4, 115, 159,

191, 376, 386 position vector 184, 215, 230, 290 PPS, see precise positioning service PRARE 374, 375

PRe, see pseudorange correction precession 221-223 precise positioning service 179 precision approach 5, 194, 203, 207,

210, 358, 371, 372, 395 predicted orbit 170 pressure 67, 68, 74, 108, 109, 358 primary radar 106, 371, 372 prime meridian 13 primitives 263, 264 principal distance 249, 255 principal point 135, 249, 255

421

PRN, see pseudorandom noise propagation characteristics 72, 106, 370 propagation conditions 147 propagation delay 291, 294 propagation effect 155 propagation path 68 propagation time 75, 161 propagation velocity 71, 110 proximity positioning 160, 378 pseudo-inertial system 20 pseudolite 202, 203, 211, 378 pseudoobservation 93, 285, 295, 296 pseudorandom noise 174, 213, 375 pseudorandom noise code 174, 175,

183, 185, 190, 375 pseudorange 33-38, 75, 76, 139, 157,

158, 173-179, 188, 194-200,204, 208, 213, 284, 291, 293, 296, 297

pseudorange correction 195, 196, 199, 201, 204, 212

pseudorange measurement 161, 177, 194, 195, 213, 285, 378

pseudorange positioning 161, 297 pseudosatellite 203, 378 Ptolemy 10, 12, 78 public-regulated-service data 188 pulse 7, 17, 105, 106, 143, 144, 148-151,

161, 167, 210, 211, 364, 372, 378 PZ-90 reference frame 184, 185

Quality control 264 quality indicator 205, 206 quality limitation 260 quality parameter 4, 281 quasi-inertial frame 216, 290

Page 25: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

422

quaternions 26

Radar 17, 64,100,105,106,108,111, 113,253,353,354,356,358,361,364, 365, 368, 371-374, 395

radar antenna 106, 113 radar beacon 106, 364, 365 radar control 358, 372 radar image 106, 253, 357, 373 radar propagation 105 radar pulse 364, 372 radar range 111, 113 radar signal 365, 372 radar station 106, 372 radar surveillance 17, 352, 355 radar system 106, 352, 371, 372, 380 radial velocity 37, 76, 110, 111 radiation 17, 59, 62, 67, 69, 105, 114,

165, 251, 253 radio altimetry 17, 108 radio beacon 64, 79, 141-145, 163, 203,

209, 210, 363-365, 370, 393 radio beacon network 210, 364 radio data system 202, 203, 347, 381 radio frequency 17,39,64,66,70,80,

105, 374 radio frequency channel 144 radio frequency ranging 105 radio link 176, 179, 202, 387 radio navigation 3, 4, 16, 17, 35, 64, 80,

99, 113, 114, 116, 139, 144, 146, 156, 160,202,203,207,210,217,281,294, 363-366,368-371,378,390,393-395

radio signal 61, 66, 74, 110, 139-141 radiosonde 64 radio transceiver 173 radio wave 13, 16-18,61,64,66, 74,

139, 142 RAIM, see receiver autonomous

integrity monitoring random process 49,52 random variable 46-49 random walk 88 range bias 35, 36, 196 range determination 106, 375 range difference 33, 36, 38, 62, 171

Index

range measurement 34, 35, 38, 105, 111, 161, 186, 190, 375

range rate 33, 37-39, 76, 178 range rate correction 196, 198, 201, 204 raster image 353 raster map 83 raw measurement 291, 296, 386 Rayleigh equation 70 RDS, see radio data system real-life application 299 real-time kinematic 180, 199, 386, 387 receiver autonomous integrity

monitoring 207-209, 281, 295 receiver bias 195, 197 receiver clock 35,151-155,177,179,

195, 197, 294 receiver location 72; 148 receiver position 145, 146, 149, 152,

170,297 receiver station 198 receiver technology 291 recursive least squares adjustment

50-52 reference direction 102, 103, 141, 142 reference epoch 128, 131, 137, 195, 199 reference frame 1, 19, 21, 32, 81, 99,

122, 184, 185, 215, 216, 224, 227-229, 231, 248, 254, 292, 295

reference height 364 reference meridian 23, 121 reference network 212, 386 reference signal 142, 143 reference site 171, 193, 197 reference station 156, 171, 180,

193-195, 197, 199-202, 205, 211, 386 reference surface 39, 40, 387 reference system 19, 20, 122, 123 reference time 121, 124, 184, 197, 205 reflection 66, 72, 73, 109, 130, 162, 259,

260, 266, 267, 270, 371, 372 refraction 22, 66, 72, 73, 131, 132, 171,

174,177,195,201,213,375,389,391 refractive index 68-72 refractivity 67-69, 76, 153 regional-area augmentation 210 relative accuracy 4, 200 relative bearing 103, 104, 141

Page 26: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

relative displacement 219 relative geoidal height 387 relative height 108 relative motion 37, 218 relative navigation 248, 273 relative orientation 23, 43, 228,

256-258, 261, 268, 273 relative positioning 2, 31, 99, 171, 180,

199, 386 relative rotation 31, 257 relative velocity 37, 62, 76 reliability 5, 6, 192, 200, 207, 217, 281,

295, 302, 349, 376 remote positioning 2, 3, 106, 160, 161,

248, 256, 265, 274, 275, 379 remote sensing 253, 373 repeatable accuracy 4, 46, 155, 288,

292, 362 resection 33, 34, 38, 126, 129, 133, 136,

256 resolution 17, 157, 181, 182, 194, 199,

200, 251-253, 261, 271, 291, 321, 390 resonator principle 224, 225 restricted airspace 80 restricted area 79, 147,353 retrorefiector 174, 374, 389 rho-rho fixing 34, 35, 370 rho-rho-rho 34 rho-theta fixing 38, 144, 370 rho-theta technique 31, 32, 38, 116,

284, 363, 377 right ascension 123, 126-128, 132, 135 river map 10, 78 RNAV, see area navigation road infrastructure 94, 299, 340 road map 14, 16, 78, 79, 91, 93, 94, 96,

320, 321, 338, 343, 361 road network 78, 84, 86, 87, 94, 296,

310, 312, 318-322, 326, 331, 333, 334 road pricing 340, 341, 346 robot application 263 robotics 5, 320, 375, 377, 384, 385 rotating antenna 106 rotating beam 142, 224 rotating earth 237 rotating frame 216 rotational gyro 221, 223, 224

423

rotation angle 26, 27, 30, 43, 130, 225, 250, 257

rotation axis 20, 21, 23, 102, 112, 122, 224, 234, 237, 297

rotation matrix 25-30, 44-46, 230, 250, 256

rotation rate 109 route computation 93, 334 route description 15, 333 route guidance 2, 15, 90, 92, 93, 299,

305, 329, 333, 334, 338, 343-345 route optimization 93, 350 route planning 2, 55, 56, 77, 90-93,

113, 299, 301, 309, 310, 312, 315, 329, 342-347, 350, 351, 361, 376

routing 1, 2, 15, 55, 56, 77, 84, 86, 87, 93, 299, 326, 328, 329, 331, 333, 334, 342, 346-348, 350-352, 356, 361, 377, 382, 390

RRC, see range rate correction RTCM 204-206, 212 RTK, see real-time kinematic running fix 115, 116, 363, 368, 370 runway 5,80,141,163-167,211,357,

358,371

SA, see selective availability safety of life 97, 187, 353 safety-of-life application 6, 207, 377 Sagnac effect 224, 226 sailing directions 10, 11, 365 SAR, see search and rescue or

synthetic aperture radar satellite antenna 374 satellite-based augmentation system

204, 212, 213, 371 satellite-based navigation 18, 36, 64,

122, 169, 189, 204, 281 satellite-based positioning 49 satellite clock 175, 177, 179, 195 satellite communication 64 satellite configuration 193 satellite constellation 186 satellite control 175 satellite health 177 satellite navigation 169, 186 satellite orbit 170, 175, 389

Page 27: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

424

satellite payload 375, 389 satellite position 170, 171, 193, 195,

197, 213, 375 satellite signal 70, 170, 173, 174, 176,

183, 185, 187, 211, 290, 295, 376 satellite-specific bias 195, 196 satellite-specific correction 201 satellite-to-satellite tracking 374 satellite velocity 178 satellite visibility 377 S-band 64, 176 SBAS, see satellite-based augmentation

system scattering 66, 161 Schuler frequency 242, 243 Schuler oscillation 240, 241, 243 Schuler period 241 scintillation 66, 70 search and rescue 186, 188, 189, 351,

359, 362, 376, 377, 383 secondary radar 106, 365, 372 selective availability 179, 180, 191, 192,

195-197,204,295,365 self-alignment 237 self-controlling facility 207 self-positioning 2, 106, 160-163,248,

256, 265, 269, 272-275, 378, 379 semiaxes 24, 47, 48 semidiameter 131, 132 sensor bias 217, 220, 227, 243, 244 sensor calibration 93, 135, 272 sensor error 236, 238, 241-243,288,

290, 291 sensor frame 249, 257 sensor fusion 277, 281, 284, 288, 291,

295, 297, 330, 395 sensor integration 379 sensor orientation 254, 273, 274 seven-parameter transformation 28,

250, 258 sextant 11, 13, 107, 111, 121, 122,

130-132, 135, 364, 368 shadowing 161, 197, 284, 380 shift vector 26, 28 shortest-path algorithm 56, 87,

299-309, 313, 314 short-range beacon 15, 338

Index

sidereal time 26, 113, 124, 127, 128 signal delay 153, 293 signal-in-space accuracy 188 signal interference 151, 207, 289 signal loss 380 signal obstruction 288, 295 signal path 110, 152, 153 signal propagation 66, 72, 75, 151, 152,

177,292,376 signal reception 3, 210 signal reflection 162 signal strength 66, 106, 141, 150, 161,

350, 378 signal structure 149, 157, 159, 163, 175,

181-185, 198, 213, 282, 291, 292, 378 signal-to-noise ratio 206, 252 signal transmission 294, 374 similarity transformation 233, 235 simultaneous measurements

(observations) 136,171,197,199,370 simultaneous reception 157, 378 single-frequency receiver 171 single-point positioning 179, 386 SISA, see signal-in-space accuracy sky wave 72, 148, 157 slant range 143-145, 370 smart sensor 252 SMG, see speed made good smoothed code pseudorange 194, 200 SNR, see signal-to-noise ratio SOG, speed over ground solar activity 69 solar day 127, 128 solar panel 173 solar radiation 69 solar system 20, 113, 131 solar time 113, 127, 128 solar zenith angle 69 sonar 18, 100, 105-110, 379, 385 SOP, see surface of position sound navigation 106, 379 space-fixed orientation 20 space-fixed system 123 space navigation 5, 6, 8, 229, 373, 374 spatial correlation 197 spatial decorrelation 196, 200, 213 spatial distance 22, 152, 155, 294 spatial position 173, 385

Page 28: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

spatial resection 256 specific force 216, 218, 220, 229, 234,

239, 241, 243 specific-force equation 216, 229, 231,

232, 240, 241 specific-force vector 20, 232, 290 spectral band 106 spectral resolution 252 specular reflection 66 speed made good 101, 104, 116-118 speed over ground 101, 104, 116, 205,

206 spherical arc 152 spherical distance 42 spherical earth 240 spherical triangle 10, 12, 122 spherical trigonometry 12, 42, 122, 126,

133 spin axis 14, 221, 223 spin rate 221, 222 spoofing 175, 217, 288 spread spectrum 159, 162 SPS, see standard positioning service stabilized platform 217, 229, 238, 239 stand-alone inertial navigation 243 standard atmosphere 108, 366 standard deviation 46, 155, 156 standard ellipse 47, 48 standard ellipsoid 48 standardized format 202, 204, 213 standardized protocol 202 standard positioning service 179, 191,

192 state estimate 54 state update 53 state vector 2, 49-54, 215, 217, 259,

273, 277-279, 282, 284-287, 296, 369 static initialization 236 static mode 275 static relative positioning 180, 386 static surveying 386 stellar constellation 121 stellar coordinates 135 stereo graphic projection 83 stereoimage 256 stereophotogrammetry 250,256,267 strapdown inertial navigation 275, 288

strap down system 217, 221, 224, 227-229, 234, 236, 237, 290, 291

sunspot 201 surface curvature 81 surface of position 34-38, 297 surface parameter 40 surface point 28, 29, 83 surface reflection 266 surface wave 72

425

surveillance 3, 17, 64, 72, 106, 171, 194, 349, 352-356, 368, 370, 372, 395

surveying 3, 5, 12, 28, 105, 171, 215, 238, 243, 253, 386

synchronization 35, 151, 158, 175, 184-186, 277, 291, 390

synthetic aperture radar 17, 253, 364, 374

systematic error 152, 220, 227, 236, 237, 271, 286, 332

TACAN 144, 145,393,394 tangent meridian 82 tangent plane 41, 83, 239 Taylor equation 133 TCAR, see three-carrier ambiguity

resolution TD, see time difference TDMA, see time division multiple

access TDOA, see time difference of arrival telecommunication 1, 114,337,341,

342, 373, 383 telemetric link 194, 202 telemetry 179, 186 temperature 67-69, 74, 109, 227, 358,

389, 391 terrestrial communication 203 terrestrial equatorial system 21, 125 terrestrial position fixing 100, 363 terrestrial radio navigation 64, 139,

156, 202, 203, 207, 210, 281, 294 terrestrial reference frame 21, 389 terrestrial reference network 212 terrestrial system 21, 123-127, 132,

136, 390 terrestrial transmitter 202, 211, 293,

294

Page 29: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

426

thermal sensitivity 227 theta-theta fixing 33, 39, 115, 370 three-carrier ambiguity resolution 182 tightly coupled integration 289, 291,

293 time difference 148, 149, 152, 154, 155,

161, 162, 293, 294 time difference of arrival 161-163 time division multiple access 150, 159 time of arrival 148, 149, 152, 154, 155,

161, 162, 293, 294, 354, 370 time synchronization 175, 185, 291, 390 time to alarm 5, 206-208, 292 TMC, see traffic message channel TOA, see time of arrival topocenter 22 topography 74, 79, 80, 152, 179, 204,

353, 387 topological relation 2, 100, 296 torque 221-224, 229, 234, 237, 239 total electron content 70, 201, 391 touch-down point 165 traffic center 352, 355, 361 traffic control 15, 64, 338, 340-342,

346, 348, 351, 352, 355-357, 366 traffic guidance 14, 299, 338, 356 traffic management 80, 91, 326,

337-342, 345-347, 351, 352, 355, 361, 362, 395

traffic message channel 203, 347, 381 traffic services 17, 79, 141, 351, 354,

358, 393 trajectory determination 2, 332, 390 Transit 18, 169-172, 178, 393 transition matrix 53, 279 translation 19, 20, 28, 250, 256, 265,

267, 268 transmitter station 151, 154, 157, 158,

203, 211, 281, 293, 294, 390 transponder 106, 143, 202, 353, 356,

372 transportation 15, 80, 95, 299, 300,

302, 320, 321, 337-342, 348, 351, 390 transportation system 15, 95, 207, 299,

337, 339 traveling salesman problem 86, 93, 299,

301, 309, 321-329

triangulation 259 trigonometric method 258 troposphere 67-69, 74, 179 tropospheric delay 391 tropospheric refraction 66, 177 true north 14, 102, 103, 112, 141 Tsikada 18, 169, 172

Index

TSP, see traveling salesman problem

Ultrasound system 379 UMTS, see universal mobile

telecommunication system unbiased estimate 50 unbiased sensor 225 uncoupled integration 289, 293 underwater ranging 18, 105, 106 undulation 29, 387 universal mobile telecommunication

system 159, 162, 163, 202, 203, 383 universal time 124, 127, 128, 132 universal time coordinated 113, 127,

128, 184, 185 universal transverse Mercator 82, 176 universal transverse Mercator

projection 82 UT, see universal time UTe, see universal time coordinated UTM, see universal transverse

Mercator

Vector-based digital map 296, 298 vehicle acceleration 215, 217, 231, 241 vehicle control 339, 345 vehicle guidance 340, 342, 347 vehicle identification 342 vehicle navigation 15, 16, 96, 203, 284,

308, 322, 327, 338, 340, 342-346, 351, 361, 381, 383

vehicle navigation system 16, 96, 284, 338, 340, 342, 343, 346, 347, 352, 361, 381

vehicle position 216, 298, 329, 331, 335, 344, 348

vehicle routing 93, 299, 326, 345 vehicle trajectory 296, 299, 329, 332 velocity determination 39, 109, 113

Page 30: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Index

velocity vector 30-32, 37, 39, 101, 117, 215, 216, 229-232, 234, 285, 286, 290, 291

vernal equinox 20, 123, 128 vertex 85, 86, 300 vertical angle 106, 107, 363 vertical direction 238, 241, 369 vertical distance 366, 367 vertical error 179, 243, 289 vertical guidance 165, 358, 371 vertical positioning 241-243 vessel movement 351,352,355 vessel position 97, 115, 353, 363, 364 vessel traffic services 17, 351-355, 393 VFR, see visual flight rules vibrating accelerometer 220 vibrating gyro 224 virtual-reality model 275 virtual travel 351 visible landmarks 99, 100 visible light 68 vision-based driver assistance 275 vision-based system 395 vision technique 263 visual approach 371 visual bearing 363 visual condition 367, 371 visual flight rules 80, 122, 367, 372 visual horizon 130-132 visual landing 358 visual navigation 9, 99, 100, 115, 248,

263, 273, 274, 361, 368, 372, 396 visual orientation 377 VNS, see vehicle navigation system voice signal 142 VOR 16, 64, 80, 142-145,366,370,

371,393 VOR beacon 145, 370, 371 VOR bearing 144 VOR/DME 143-144, 357, 368-370,

393, 394 VOR station 142, 143, 370 VORTAC 144, 145 VTS, see vessel traffic services vulnerability 151, 167, 207, 288, 289,

292, 295

427

W AAS, see wide area augmentation system

WAD, see wide area differential Wander-azimuth 236 wave cycle 157, 198 wave energy 65 wave group 71 wavelength 60-63, 73, 76, 145, 148,

157,158,161,175,176,178,182,198, 225, 253

wave propagation 65-73, 139 wave velocity 72 waypoint 3,103,104,117,118,122,

206, 357, 365, 390 waypoint navigation 104, 206, 365 W-code 175 WGS-84 ellipsoid 21, 24 WGS-84 reference frame 21, 184, 185,

292, 388 wheel sensor 284, 286 wide area augmentation system 212,

213, 393-395 wide area differential 201, 213 world radio conference 182, 191 WRC, see world radio conference

V-code 175,176,182

Zenith 22, 34, 123, 134, 249 zenith angle 22, 32, 34, 38, 39, 69, 135 zenith direction 124, 125 zenith distance 22, 124, 126, 131-135 zero velocity update 238 ZUPT, see zero velocity update

Page 31: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Spri ngerGeosciences

Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, James Collins

Global Positioning System

Theory and Practice

Fifth, revised edition.

2001. XXIII, 382 pages. 45 figures.

Softcover EUR 51,­

(Recommended retail price)

Net-price subject to local VAT.

ISBN 3-211-83534-2

This new edition accommodates the most recent advances in GPS

technology. Updated or new information has been included although

the overall structure essentially conforms to the former editions. The

textbook explains in comprehensive manner the concepts of GPS as

well as the latest applications in surveying and navigation.

Description of project planning, observation, and data processing is

provided for novice GPS users. Special emphasis is put on the

modernization of GPS covering the new signal structure and im­

provements in the space and the control segment. Furthermore, the

augmentation of GPS by satellite-based and ground-based systems

leading to future Global Navigation Satellite Systems (GNSS) is

discussed.

': .. The volume cogently presents the critical aspects and issues for

users, along with the theory and details needed by students and

developers alike. For those seriously entering the rapidly changing

GPS field, this book is a good place to start:' GPS WORLD

Springer-Verlag Wien GmbH A-1201 Wien, Sachsenplatz 4-6, P.O. Box 89, Fax +43.1.330 24 26, e-mail: [email protected], Internet: www.springar.at

D-69126 Heidelberg, HaberstraBe 7, Fax +49.6221.345-4229, a-mail; [email protected]

USA, Secaucus, NJ 07096-2485, P.O. Box 2485, Fax +1.201.348-4505, a-mail: [email protected]

Eastern Book Service, Japan. Tokyo 113, 3-13, Hongo 3-<:home, Bunkyo-ku. Fax +81.3.38 18 08 64, e-mail: [email protected]

Page 32: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

SpringerGeosciences

Vong-Qi Chen, Vuk-Cheung Lee (eds.)

Geographical Data Acquisition

2001. XIV, 265 pages. 167 figures.

Softcover EUR 62,­

(Recommended retail price)

Net-price subject to local VAT.

ISBN 3-211-83472-9

This book is dedicated to the theory and methodology of geograph­

ical data acquisition, providing comprehensive coverage ranging

from the definition of geo-referencing systems, transformation be­

tween these systems to the acquisition of geographical data using

different methods. Emphasis is placed on conceptual aspects, and

the book is written in a semi-technical style to enhance its read­

ability. After reading this book, readers should have a rather good

understanding of the nature of spatial data, the accuracy of spatial

data, and the theory behind various data acquisition methodolo­

gies. This volume is a text book for GIS students in disciplines such

as geography, environmental science, urban and town planning,

natural resource management, computing and geomatics (survey­

ing and mapping). Furthermore it is an essential reading for both

GIS scientists and practitioners who need some background infor­

mation on the technical aspects of geographical data acquisition.

Springer-Verlag Wien GmbH A-1201 Wien. Sachsenplatz 4-6, p.o. Box 89, Fax +43.1.330 24 26, a-mail: [email protected], Internet: www.springer.at

0-69126 Heidelberg, HaberstraBe 7, Fax +49.6221.345-4229, a-mail: [email protected]

USA, Secaucus, NJ 07096-2485. P.O. Box 2485, Fax +1.201.348-4505, a-mail; [email protected]

Eastern Book Service, Japan, Tokyo 113, 3-13, Hongo 3-chome, BUnkycrku, Fax +81.3.38 18 08 64, a-mail: [email protected]

Page 33: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

SpringerEngineering

Martin Tajmar

Advanced Space Propulsion Systems

2003. VIII, 130 pages. 121 figures, partly in colour.

Softcover EUR 29.-

(Recommended retail price)

Net-price subject to local VAT.

ISBN 3-211-83862-7

Space propulsion systems have a great influence on our ability to

travel to other planets or how cheap a satellite can provide TV pro­

grams. This book provides an up-to-date overview of all kinds of

propulsion systems ranging from classical rocket technology, nuclear

propulsion to electric propulsion systems, and further to micro-,

propellantless and even breakthrough propulsion, which is a new

program under development at NASA. The author shows the limita­

tions of the present concepts and how they could look like in the

future. Starting from historical developments, the reader is taken to

a journey showing the amazing technology that has been put on

hold for decades to be rediscovered in the near future to questions

like how we can even reach other stars within a human lifetime. The

author is actively involved in advanced propulsion research and

contributes with his own experience to many of the presented

topics. The book is written for anyone who is interested in how

space travel can be revolutionized.

Springer-Verlag Wien GmbH A-1201 Wien, Sachsenplatz 4-6, P.O. Box 89, Fax +43.1.330 24 26, e-mail: [email protected], Internet: www.springer.8t D-69126 Heidelberg, HaberstraBe 7. Fax +49.6221,345-4229, e-mail: [email protected]

USA, Secaucus, NJ 07096-2485, P.O. Box 2485, Fax +1.201.348-4505, a-mail: [email protected]

Eastern Book Service, Japan,Tokyo 113, 3-13, Hongo 3-chome, Bunkyo-ku, Fax +81.3.3818 08 64, e-mail: [email protected]

Page 34: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

SpringerEngineering

Anatoli I. Kiselev, Alexander A. Medvedev, Valery A. Menshikov

Astronautics

Summary and Prospects

2003. XI, 592 pages. 245 figures, partly in colour.

Hardcover EUR 80,-

(Recommended retail price)

Net-price subject to local VAT.

ISBN 3-211-83890-2

The authors, leading representatives of Russian space research and

industry, show the results and future prospects of astronautics at

the start of the third millennium. The focus is on the development

of astronautics in Russia under the new historical and economic

conditions, but the book also covers the development in the USA,

Europe, China, Japan, and India. It spotlights the basic trends in

space related issues: necessary restructuring of space industry and

spaceports, improvement of carrier rockets, booster units, spacecraft,

and component elements. The book describes the possibilities of the

wide use of space technologies and its numerous applications such

as navigation and communication, space manufacturing, space bio­

technology, pollution research, etc.

Furthermore it contains a huge amount of facts described in an

understandable way without requiring specialist knowledge,

accompanied by many photographs, charts and diagrams, mostly in

color. Therefore the book will be of interest to both experts and lay

readers.

Springer-Verlag Wien GmbH A-1201 Wien. Sachsenplatz 4-6, P.O. Box 89, Fax +43.1.330 24 26, a-mail: [email protected], Internet: www.springer,at

0-69126 Heidelberg, HaberstraBe 7. Fax +49.6221.345-4229, a-mail: [email protected]

USA, Secaucus, NJ 07096-2485, P.O. Box 2485, Fax +1.201.348-4505, e-mail: [email protected]

Eastern Book Service, Japan. Tokyo 113,3-13, Hongo 3-chome, Bunkyo-ku, Fax +81.3.38 18 08 64, e-mail: [email protected]

Page 35: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

SpringerPhysics

Craig Crossen, Gerald Rhemann

Sky Vistas

Astronomy for Binoculars and Richest-Field Telescopes

2003. Approx. 300 pages. Approx. 150 figures, partly in colour.

Hardcover EUR 50,-

(Recommended retail price)

Net-price subject to local VAT.

ISBN 3-211-00851-9

Due November 2003

This book is primarily a practical guide for observers with normal or

giant binoculars, or "richest-field" telescopes, who wish to get the

most out of their instruments. Apart from that, it is also a readable,

well-illustrated book for "arm-chair observers':

The central point of interest is wide-field astronomy - areas of the

night sky that are particularly rich in objects. The Milky Way itself is

the ultimate "wide-field" object and therefore its general features

and the regions rich in clusters and nebulae are described. A chapter

on clusters emphasizes open clusters best viewed in binoculars

followed by a chapter on large but faint nebulae invisible to standard

telescopes but visible to binoculars. The last chapter deals with

fields in which groups of bright galaxies can be seen.

The full-page color and black-and-white photos are one of the best

features of this book and make it appealing to the general reader.

The practical observer is shown exactly where objects are with

respect to one another.

Springer-Verlag Wien GmbH A-1201 Wien, Sachsenplatz 4-6, P.O. Box 89, Fax +43.1.330 24 26, e-mail: [email protected], Internet: www.springer.at

D-69126 Heidelberg, HaberstraBe 7. Fax +49.6221.345-4229, a-mail: [email protected]

USA, Secaucus, NJ 07096-2485, P.O. Box 2485, Fax +1.201.348-4505, e-mail: [email protected]

Eastern Book Service, Japan.Tokyo 113, 3-13, Hongo 3-chome, Bunkyo-ku, Fax +81.3.38 1808 64, a-mail: [email protected]

Page 36: References - link.springer.com › content › pdf › bbm%3A978-3... · Department of Defense (1995): Global Positioning System standard positioning ser vice signal specification,

Springer-Verlag und Umwelt

ALS 1NTERNATIONALER W1SSENSCHAFTLICHER VERLAG

sind wir uns unserer besonderen Verpflichtung der Umwelt gegenuber bewuBt und beziehen umwelt­orientierte Grundsiitze in Unternehmensentschei­dungen mit eino

VON UNSEREN GESCHAFTSPARTNERN (DRUCKERE1EN,

Papierfabriken, Verpackungsherstellern USWo) ver­langen wir, daB sie sowohl beim HerstellungsprozeB selbst als auch beim Einsatz der zur Verwendung kommenden Materialien okologische Gesichtspunk­te berucksichtigeno

DAS FUR DIESES BUCH VERWENDETE PAPIER 1ST AUS

chlorfrei hergestelltem Zellstoff gefertigt und im pH-Wert neutral.