references - information and library network...

23
274 REFERENCES 1. Adibi – Sedeh, A.H., Vaziri, M., Pednekar, V., Madhavan, V. and Ivester, R. “Investigation of the effect of using different material models on the finite element simulations of machining”, 8 th CIRP international workshop on modelling of machining operations, Chemnitz, Germany, 2005. 2. Adibi – Sedeh, A.H., Madhavan, V. and Bahr, B. “Extension of Oxley’s Analysis of machining to use different material models”, Transactions of ASME, Vol. 125, pp. 656-666, 2003. 3. Al Bawaneh, M. “Determination of material constitutive models using orthogonal machining tests”, PhD thesis, Wichita State University, 2007. 4. Altan, T. “Comparison of results between FEM predictions and experiments”, ERC/NSM report, Ohio State University, 2002. 5. Altan, T. and Eugene, Y. “Modelling of metal cutting using FEM”, CIRP Workshop on FEM modelling and Machining operations, France, 2003. 6. Altintas, Y and Budak, E. “Analytical Prediction of Stability Lobes in Milling”, CIRP Annals-Manufacturing Technology, Vol. 44, pp. 357-362, 1995. 7. Anurag, S. and Guo, Y.B. “A modified micro mechanical approach to determine flow stress of work materials experiencing complex deformation histories in manufacturing processes”, International Journal of Mechanical Sciences, Vol. 49, pp. 909-918, 2007. 8. Armarego, E.J.A. and Brown, R.H “The Machining of metals”, Prentice Hall, Englehood cliffs, NJ, 1969. 9. Arrazola, P.J., Ugarte, D. and Dominguez, X. “A new approach for the friction identification during machining through the use of finite element modeling”, International Journal of Machine Tools and Manufacture, Vol. 48, pp.173-183, 2008.

Upload: doankhuong

Post on 01-Sep-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

274

REFERENCES

1. Adibi – Sedeh, A.H., Vaziri, M., Pednekar, V., Madhavan, V. and

Ivester, R. “Investigation of the effect of using different material

models on the finite element simulations of machining”, 8th

CIRP

international workshop on modelling of machining operations,

Chemnitz, Germany, 2005.

2. Adibi – Sedeh, A.H., Madhavan, V. and Bahr, B. “Extension of

Oxley’s Analysis of machining to use different material models”,

Transactions of ASME, Vol. 125, pp. 656-666, 2003.

3. Al Bawaneh, M. “Determination of material constitutive models using

orthogonal machining tests”, PhD thesis, Wichita State University,

2007.

4. Altan, T. “Comparison of results between FEM predictions and

experiments”, ERC/NSM report, Ohio State University, 2002.

5. Altan, T. and Eugene, Y. “Modelling of metal cutting using FEM”,

CIRP Workshop on FEM modelling and Machining operations,

France, 2003.

6. Altintas, Y and Budak, E. “Analytical Prediction of Stability Lobes

in Milling”, CIRP Annals-Manufacturing Technology, Vol. 44,

pp. 357-362, 1995.

7. Anurag, S. and Guo, Y.B. “A modified micro mechanical approach to

determine flow stress of work materials experiencing complex

deformation histories in manufacturing processes”, International

Journal of Mechanical Sciences, Vol. 49, pp. 909-918, 2007.

8. Armarego, E.J.A. and Brown, R.H “The Machining of metals”,

Prentice Hall, Englehood cliffs, NJ, 1969.

9. Arrazola, P.J., Ugarte, D. and Dominguez, X. “A new approach for the

friction identification during machining through the use of finite

element modeling”, International Journal of Machine Tools and

Manufacture, Vol. 48, pp.173-183, 2008.

275

10. Arrazola, P.J. and Ozel, T. “Investigations on the effects of friction

modeling in finite element simulation of machining”, International

Journal of Mechanical Sciences, Vol. 52, pp. 31- 42, 2010.

11. Astakhov, V.P. and Shvets, S. “The assessment of plastic deformation

in metal cutting”, Journal of Materials Processing Technology,

Vol. 146, pp.193-202, 2004.

12. Baker, M. “Finite element investigation of the flow stress dependence

of chip formation”, Journal of Materials Processing Technology,

Vol. 167, pp.1-13, 2005.

13. Baker, M. “Finite element simulation of high-speed cutting forces”,

Journal of Materials Processing Technology, Vol. 176, pp. 117-126,

2006.

14. Baker, M., Rosler, J. and Siemers, C. “Finite element simulation of

segmented chip formation of Ti6Al4V”, Journal of Manufacturing

Science and Engineering, Vol. 124, pp. 485-488, 2002.

15. Barge, M., Hamdi, H., Rech, J. and Bergheau, J.M. “Numerical

modelling of orthogonal cutting: influence of numerical parameters”,

Journal of Materials Processing Technology, Vol. 164-165,

pp.1148-1153, 2005.

16. Bariani, P.F., Dal Negro, T. and Bruschi, S. “Testing and modelling of

material response to deformation in bulk metal forming”, CIRP

Annals-Manufacturing Technology, Vol. 53, pp. 573-595, 2004.

17. Batra, R.C. “Steady State Penetration of Thermoviscoplastic Targets”,

Computational Mechanics, Vol. 3, pp. 1-12, 1988.

18. Benson, D.J. and Okazawa, S. “Contact in a multi-material Eulerian

finite element formulation”, Computational Methods in Applied

Mechanical Engineering, Vol.193, pp. 4277-4298, 2004.

19. Bodner, S. R. and Partom, Y. “Constitutive Equations for Elastic-

Viscoplastic Strain-Hardening Materials”, ASME Journal of Applied

Mechanics, Vol. 56, pp. 385-389, 1975.

20. Bonnet, C., Valiorgue, F., Rech, J. and Hamdi, H. “Improvement of the

numerical modeling in orthogonal dry cutting of an AISI 316 L

stainless steel by the introduction of a new friction model”, CIRP

Journal of Manufacturing Science and Technology, Vol. 1, pp. 114-118,

2008.

276

21. Boothroyd, G. and Knight, W.A. “Fundamentals of machining and

machine tools”, Third edition, CRC Press, 2006.

22. Borouchaki, H., Cherouat, A., Laug, P. and Saanouni, K. “Adaptive

remeshing for ductile fracture prediction in metal forming”, Comptes

Rendus Mec, Vol. 330, pp.709 -716, 2002.

23. Brozzo, P., De Luca, B. and Rendina, R. “A new method for the

prediction of formability limit of metal sheet”, In: Veerman C (ed)

Proceedings of the 7th Biennial Conference of the International Deep

Drawing Research Group, IDDRG, pp. 3.1-3.5, 1972.

24. Budak, E., Altintas, Y. and Armarego, E.J.A. “Prediction of milling

force coefficients from orthogonal cutting data”, Transactions of

ASME Journal of Manufacturing Science Engineering, Vol. 118,

pp. 216-224, 1996.

25. Burns, T.J. and Davies, M.A “Non linear dynamics model for

chip segmentation in machining”, Physical review letters, Vol. 79,

pp. 447-450, 1997.

26. Calamaz, M., Coupard, D. and Girot, F. “A new material model for 2D

numerical simulation of serrated chip formation when machining

titanium alloy Ti-6Al-4V”, International Journal of Machine Tools and

Manufacture, Vol. 48, pp. 275-288, 2008.

27. Carroll, J. T. and Strenkowski, J.S “Finite element models of

orthogonal cutting with application to single point diamond turning”,

International Journal of Mechanical Sciences, Vol. 30, pp. 899-920,

1988.

28. Ceretti, E., Fallbohmer, P., Wu, W.T and Altan, T. “Application of 2D

FEM to chip formation in orthogonal cutting”, Journal of Materials

Processing Technology, Vol. 59, pp. 169-180, 1996.

29. Ceretti, E., Lucchi, M and Altan, T. “FEM simulation of orthogonal

cutting: serrated chip formation”, Journal of Materials Processing

Technology, Vol. 95, pp. 17-26, 1999.

30. Chandrasekaran, H., Saoubi, R.M. and Chazal, H. “Modelling of

material flow stress in chip formation process from orthogonal milling

and split hopkinson bar tests”, Machining Science and Technology,

Vol. 9, pp. 131-145, 2005.

277

31. Chandrasekharan, V., Kapoor, S.G. and DeVor, R.E. “A Mechanistic

approach to predicting the cutting forces in drilling; with application to

fiber reinforced composite materials”, ASME Journal of Engineering

for Industry, Vol. 117, pp. 559-570, 1995.

32. Childs, T.H.C. “Numerical experiments on the influence of material

and other variables on plane strain continuous chip formation in metal

machining”, International Journal of Mechanical Sciences, Vol. 48,

pp. 307-322, 2006.

33. Childs, T.H.C. “Material Property Requirements for Modelling Metal

Machining”, Journal of Physics IV France 7, pp. 21-36, 1997.

34. Childs, T.H.C. and Rahmad, R. “Modelling orthogonal machining of

carbon steels Part II: Comparisons with experiments”, International

Journal of Mechanical Sciences, Vol. 51, pp. 465-472, 2009.

35. Childs, T.H.C., Maekawa, K., Obikawa, T. and Yamane, Y. “Metal

machining: theory and applications”, Arnold, Paris, 2000.

36. Childs, T.H.C. and Maekawa, K. “Computer-aided simulation and

experimental studies of chip flow and tool wear in the turning of low

alloy steels by cemented carbide tools”, Wear, Vol. 139, pp. 235-250,

1990.

37. Childs, T.H.C. “Material property needs in modeling metal machining”

Proceedings of the CIRP International Workshop on Modeling of

Machining Operations, Atlanta, GA, pp. 193-202, 1998.

38. Chineseta, F., Filice, L., Micari, F., Rizzuti, S. and Umbrello, D.

“Assessment of material models through simple machining tests”,

International Journal of Material Forming, Vol. 1, pp. 507-510, 2008.

39. Cockroft, M.G and Latham, D.J “Ductility and workability of metals”,

Journal of Institute of Metals, Vol. 96, pp. 33-39, 1968.

40. Courbon, C., Mabrouki, T., Rech, J., Rigal, J.F., Mazuyer, D.,

D’Eramo, E. and Daguier, P. “On the identification conditions of a

constitutive model in machining of AISI 1045 steel”, International

Journal of Material Forming, Vol. 3 pp. 439-442, 2010.

41. Dae-Cheol Ko., Sung-Lim Ko and Byung-Min Kim. “Rigid

thermoviscoplastic finite element simulation of non steady state

orthogonal cutting”, Journal of Materials Processing Technology,

Vol. 130-131, pp. 345-350, 2002.

278

42. Dal Negro, T., D’ Alvise, L., Chastel, Y. and Massoni, E. “Inverse

analysis applied to Rheological Parameter Identification in Tension,

Torsion and Compression Conditions”, in Proceedings of Eurotherm,

Futuroscope Chasseneuil, 2001.

43. Das, M.K. and Tobias, S.A. “The relationship between the static and

the dynamic cutting of metals”, International Journal of M.T.D.R.,

Vol. 7, pp. 63-89, 1967.

44. Dautzenberg, J.H., Veenstra, P.C. and Van der Wolf, A.C.H. “The

minimum energy principle for the cutting process in theory and

experiment”, Annals of CIRP, Vol. 30, pp. 1- 4, 1981.

45. Davies, M.A., Yoon, H., Schmitz, T.L., Burns, T.J. and Kennedy,

M.D. “Calibrated thermal microscopy of the tool-chip interface in

machining”, Journal of Machining Science and Technology, Vol. 7,

pp. 167-190, 2003.

46. Davies, M.A. and Burns, T.J. “Thermomechanical oscillations in

material flow during high-speed machining”, Philosophical

transactions of the Royal society of London A, Vol. 359, pp. 821-846,

2001.

47. Davim, J.P. and Maranhao, C. “A study of plastic strain and plastic

strain rate in machining of steel AISI 1045 using FEM analysis”,

Materials and Design, Vol. 30, pp.160-165, 2009.

48. Deform-User Manual, Scientific Forming Technologies Corporation

Ed., Columbus, OH, USA, 2006.

49. Deshpade, A., Madhavan, V., Pednekar, V., Adibi – Sedeh, A.H. and

Ivester, R. “Dependence of cutting simulations on the Johnson Cook

model thermal softening parameter”, Transactions of NAMRI, Vol. 34,

pp.293-300, 2006.

50. DeVor, R.E., Kline, W.A. and Zdeblick, W.J. “A mechanistic model

for the force system in end milling with application to machining

airframe structures”, Proceedings of the eighth NAMRC, pp.297-303,

1980.

51. Di Lorenzo, R., Fratini, L., Filice, L., Micari, F. and Bruschi, S.

“Comparison of analytical methods and AI tools for characterization

in hot forming”, Journal of Materials Processing Technology,

Vol. 125-126, pp. 434-439, 2002.

279

52. Dirikolu, M.H. and Childs, T.H.C “Modelling requirements for

computer simulation of metal machining”, Turkish Journal of

Engineering and Environmental Science’ Vol. 24, pp.81- 93, 2000.

53. Dirikolu, M.H., Childs, T.H.C and Maekawa K. “Finite element

simulation of chip flow in metal machining”, International Journal of

Mechanical Sciences, Vol. 43, pp.2699-2713, 2001.

54. Dusunceli, N., Colak, O.U and Filiz, C. “Determination of material

parameters of a viscoplastic model by genetic algorithm”, Materials

and Design, Vol. 31, pp.1250-1255, 2010.

55. Ehmann, K.F., Kapoor, S.G., DeVor, R.E and Lazoglu, I. “Machining

processes modeling: a review”, Journal of Manufacturing Science

Engineering Transactions of ASME, Vol. 119, pp.655-663, 1997.

56. El-Magd, E., Treppmann, C., and Korthauer, M. “Constitutive

modelling of CK45N, AlZnMgCu1.5 and Ti–6Al–4V in a wide

range of strain rate and temperature”, Journal de Physique, Vol. 110,

pp. 141-146, 2003.

57. Ernst, H. and Merchant, M.E. “Chip formation, friction and high

quality machined surfaces”, Transactions of the American Society of

Metals, Vol. 29 pp. 299-335, 1941.

58. Fang, N. “A New Quantitative Sensitivity Analysis of the Flow Stress

of 18 Engineering Materials in Machining”, Journal of Engineering

Materials and Technology, Vol. 127, pp.192, 2005.

59. Fang, X.D. and Jawahir, I.S. “An Analytical Model for Cyclic Chip

Formation in 2-D Machining with Chip Breaking”, CIRP Annals-

Manufacturing Technology,Vol. 45, pp. 53-58,1996.

60. Fang, N. and Jawahir, I. S. “A new methodology for determining the

stress state of the plastic region in machining with restricted

contact tools”, International Journal of Mechanical Sciences,

Vol. 43,pp.1747-1770, 2001.

61. Fang, N. and Jawahir, I.S. “Analytical predictions and experimental

validation of cutting force ratio, chip thickness and chip back flow

angle in restricted contact machining using universal slip line model”,

International Journal of Machine Tools and Manufacture, Vol. 42,

pp. 681- 694, 2002.

280

62. Fang, S., Zhanqiang, L., Yi, W. and Zhenyu, S. “Finite element

simulation of machining of Ti-6Al-4V alloy with thermo dynamical

constitutive equation”, International Journal of Advanced

Manufacturing Technology, pp.1- 9, 2009.

63. Filice, L., Micari, F., Rizzuti, S. and Umbrello, D. “A critical analysis

on the friction modeling in orthogonal machining”, International

Journal of Machine Tools and Manufacture, Vol. 47, pp. 709-714,

2007.

64. Follansbee, P.S. and Gray, III G.T. “An analysis of the low

temperature, low and high strain-rate deformation of Ti–6Al–4V”,

Metallurgical Transactions A, Vol. 20, pp. 863-874, 1989.

65. Forestier, R., Massoni, E. and Chastel, Y. “Estimation of constitutive

parameters using an inverse method coupled to a 3D finite element

software”, Journal of Materials Processing Technology, Vol. 125-126,

pp. 594-601, 2002.

66. Gelin, J.C. and Ghouati, O. “The inverse approach for the

determination of constitutive equations in metal forming”, Annals of

the CIRP, Vol. 44, pp. 189 -192, 1995.

67. Gelin, J.C. and Ghouati, O. “A finite element - based identification

method for complex metallic material behaviours”, Computational

Materials Science, Vol. 21, pp. 57-68, 2001.

68. Gray, C.L.T., Chen, S. R., Wright, W., and Lopez, M. F. “Constitutive

Equations for Annealed Metals under Compression at High Strain

Rates and High Temperatures”, LA-12669-MS, Los Alamos, NM,

1994.

69. Grzesik, W. “Determination of temperature distribution in the cutting

zone using hybrid analytical-FEM technique”, International Journal of

Machine Tools and Manufacture, Vol. 46, pp.651- 658, 2006.

70. Guo, Y.B “An integral method to determine the mechanical behavior

of materials in metal cutting”, Journal of Materials Processing

Technology, Vol. 142 pp. 72-81, 2003.

71. Guo, Y.B and Dornfeld D.A. “Finite element modeling of burr

formation process in drilling 304 stainless steel”, Journal of

Manufacturing Science Engineering, Transactions of ASME, Vol. 122,

pp. 612-619, 2000.

281

72. Guo, Y.B and Liu C.R. “3D FEA modeling of hard turning”, Journal of

Manufacturing Science Engineering, Transactions of ASME, Vol. 124,

pp.189-199, 2002.

73. Gygax, P.E. “Experimental full cut milling dynamics”, Annals of

CIRP, Vol. 29, pp .61- 66, 1980.

74. Haglund, A.J., Kishawy, H.A. and Rogers, R.J. “An Exploration of

Friction Models for the Chip–Tool Interface Using an Arbitrary

Lagrangian–Eulerian Finite Element Model”, Wear, Vol. 265,

pp. 452-460, 2008.

75. Halil, B ., Engin Kilic, S. and Erman Tekkaya, A. “A comparison of

orthogonal cutting data from experiments with three different finite

element models”, International Journal of Machine Tools and

Manufacture, Vol. 44, pp. 933-944, 2004.

76. Hashemi, J., Tseng, A. and Chou, P.C. “Finite element modeling of

segmental chip formation in high-speed machining”, Journal of

Materials Engineering Performance, Vol. 3, pp.712-721, 1994.

77. Holmquist, T.J and Johnson, G.R. “Determination of constants and

comparison of results for various constitutive models”, Journal de

Physique IV, Vol. 1, pp.853-860, 1991.

78. Hua, J. and Shivpuri, R. “Prediction of chip morphology and

segmentation during the machining of titanium alloys”, Journal of

Materials Processing Technology, Vol. 150, pp.124-133, 2004.

79. Huang, J.M and Black, J.T. “An evaluation of chip separation criteria

for the FEM simulation of machining”, Journal of Manufacturing

Science Engineering, Transactions of ASME, Vol. 118, pp.545-554,

1996.

80. Huang, Y. and Liang, S.Y. “Cutting forces modeling considering the

effect of tool thermal property-application to CBN hard turning”,

International Journal of Machine Tools and Manufacture, Vol. 43,

pp.307-315, 2003.

81. Hu, R.S., Mathew, P., Oxley, P.L.B. and Young, H.T. “Allowing for

end cutting edge effects in predicting forces in bar turning with oblique

machining conditions”, Proceedings of the Institute of Mechanical

Engineers, Vol. 200, pp.89-99, 1986.

282

82. Iqbal, S.A., Mativenga, P.T. and Sheikh, M. A. “Characterization of

machining of AISI 1045 steel over a wide range of cutting speeds. Part

1: investigation of contact phenomena”, Proceedings of the Institution

of Mechanical Engineers, Part B: Journal of Engineering Manufacture,

Vol. 221, pp.909-916, 2007.

83. Iwata, K., Osakada, K. and Terasaka, Y. “Process modeling of

orthogonal cutting by the rigid plastic finite element method”, Journal

of Engineering Industry Transactions of ASME, Vol. 106, pp.132-138,

1984.

84. Jaspers, S.P.F.C. and Dautzenberg, J.H. “Material behavior in

conditions similar to metal cutting: flow stress in the primary

shear zone”, Journal of Materials Processing Technology, Vol. 122,

pp. 322-330, 2002.

85. Jaspers, S.P.F.C. “Metal cutting mechanics and material behaviour”,

Ph.D. Thesis, Eindhoven University of Technology, Eindhoven,

The Netherlands, 1999.

86. Johnson, G.R. and Cook, W.H. “A constitutive model and data for

metals subjected to large strains, high strain rates and high

temperatures”, Proceedings of the 7th

International Symposium on

Ballistics, The Hague, The Netherlands, pp.541-547, 1983.

87. Joshi, V.S., Dixit, P.M and Jain, V.K “Viscoplastic analysis of metal

cutting by finite element method”, International Journal of Machine

Tools and Manufacture, Vol. 34, pp.53-571, 1994.

88. Joyot, P., Rakotomalala, R., Pantale, O., Touratier, M. and Hakem, N.

“A numerical simulation of steady state metal cutting”, Proceedings of

the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, Vol. 212, pp.331- 341, 1998.

89. Karpat, Y. and Ozel, T. “Predictive analytical and thermal modeling of

orthogonal cutting process-Part I: Predictions of tool forces, stresses,

and temperature distributions”, Journal of Manufacturing Science and

Engineering, Vol. 128, pp.435-444, 2006.

90. Khan, A.S., Suh, Y.S. and Kazmi, R. “Quasi-static and dynamic

loading responses and constitutive modeling of titanium alloys”,

International Journal of Plasticity, Vol. 20, pp.2233-2248, 2004.

283

91. Kim, K.W., Lee, W.Y. and Sin, H.C “A finite element analysis for the

characteristics of temperature and stress in micro-machining

considering the size effect”, International Journal of Machine Tools

and Manufacture, Vol. 39, pp.1507-1524, 1999.

92. Kim, K.W., Lee, W.Y and Sin, H.C “A finite-element analysis of

machining with the tool edge considered”, Journal of Materials

Processing Technology Vol. 86, pp.45-55, 1999.

93. Klamecki, B.E “Incipient chip formation in metal cutting-a three

dimensional finite element analysis”, Ph.D. thesis, University of

Illinois at Urbana-Champaign, Urbana, 1973.

94. Klocke, F., Raedt, H.W. and Hoppe, S. “2D-FEM simulation of the

orthogonal high speed cutting process”, Machining Science and

Technology, Vol. 5, pp.323-340, 2001.

95. Ko, D.C., Ko, S.L. and Kim, B.M. “Rigid-thermoviscoplastic finite

element simulation of non-steady-state orthogonal cutting”, Journal of

Materials Processing Technology, Vol.130-131, pp.345-350, 2002.

96. Koenigsberger, F. and Sabberwal, A.J.P. “An investigation into the

cutting force pulsations during milling operations”, International

Journal of M.T.D.R., Vol. 1, pp.15-33, 1961.

97. Komanduri, R. and Hou, Z.B. “Thermal modelling of the metal cutting

process Part I: Temperature rise distribution due to shear plane heat

source”, International Journal of Mechanical Sciences, Vol. 42,

pp.1715-1752, 2001 a.

98. Komanduri, R. and Hou, Z.B. “Thermal modelling of the metal cutting

process Part II: Temperature rise distribution due to frictional heat

source at the tool chip interface”, International Journal of Mechanical

Sciences, Vol. 43, pp.57-88, 2001 b.

99. Komanduri, R. and Hou, Z.B “Thermal modelling of the metal cutting

process Part III: Temperature rise distribution due to the combined

effects of shear plane heat source and tool chip interface frictional

heat source”, International Journal of Mechanical Sciences, Vol. 43,

pp. 89-107, 2001 c.

100. Komvopoulos, K. and Erpenbeck, S.A. “Finite element modeling of

orthogonal metal cutting”, Journal of Engineering Industry,

Transactions of ASME, Vol. 113, pp. 253-267, 1991.

284

101. Kopac, J., Korosec, K. and Kuzman, K. “Determination of flow stressproperties of machinable materials with help of simple compressionand orthogonal machining test”, International Journal of MachineTools and Manufacture, Vol. 41, pp.1275-1282, 2001.

102. Kumar, S., Fallbohmer, P. and Altan, T. “Computer simulation oforthogonal cutting process: determination of material properties andeffects of tool geometry on chip flow”, Technical Paper NAMRI/SMEXXV, Vol.177, pp.1-6, 1997.

103. Lalwani, D.I., Mehta, N.K. and Jain, P.K. “Extension of Oxley’spredictive machining theory for Johnson and Cook flow stress model”,Journal of Materials Processing Technology, Vol. 209, pp.5305-5312,2009.

104. Lee, E.H. and Shaffer, B.W. “The theory of plasticity applied toa problem of machining’ Journal of Applied Mechanics, Vol. 18,

pp.405-413, 1961.

105. Lee, P. and Altintas, Y. “Prediction of ball-end milling forces fromorthogonal cutting data”, International Journal of Machine Tools andManufacture, Vol. 36, pp.1059-1072,1996.

106. Lee, W.S. and Lin, C.F. “High temperature deformation behaviour ofTi6Al4V alloy evaluated by high strain rate compression tests”,Journal of Materials Processing Technology, Vol.75, pp.127-136,1998.

107. Lei, S., Shin, Y.C and Incropera, F.P. “Thermo-mechanical modelingof orthogonal machining process by finite element analysis”,International Journal of Machine Tools and Manufacture, Vol. 39,pp.731-750, 1999.

108. Lei, S., Shin, Y.C., and Incropera, F.P. “Material ConstitutiveModeling under High strain rates and Temperatures throughOrthogonal Machining Tests”, ASME Journal of ManufacturingScience Engineering, Vol.121, pp. 577-585, 1999.

109. Lemaitre, J. “A continuous damage mechanics model for ductilefracture”, Journal of Engineering Materials Technology, Transactionsof ASME, Vol.107, pp.83-89, 1991.

110. Lesuer, D.R. “Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum”, In: Final Report,DOT/FAA/AR-00/25, US Department of Transportation, FederalAviation Administration, 2000.

285

111. Li, K., Gao, X.L. and Sutherland, J.W. “Finite element simulation of

the orthogonal metal cutting process for qualitative understanding of

the effects of crater wear on the chip formation process”, Journal of

Materials Processing Technology, Vol.127, pp.309-324, 2002.

112. Lin, G.C.I., Mathew, P., Oxley, P.L.B. and Watson, A.R. “Predicting

cutting forces for oblique machining conditions”, Proceedings of the

Institute of Mechanical Engineers, Vol.196, pp.141-148, 1982.

113. Lin, Z.C. and Lin, S.Y. “A coupled finite element model of thermo-

elastic-plastic large deformation for orthogonal cutting”, Journal of

Engineering Materials Technology, Transactions of ASME, Vol. 114,

pp.218-226, 1992.

114. Lin, Z.C. and Lin, Y.Y. “Fundamental modeling for oblique cutting by

thermo-elastic-plastic FEM”, International Journal of Mechanical

Sciences, Vol. 41, pp.941- 965, 1999.

115. Lin, Z.C. and Lin, Y.Y. “Three-dimensional elastic-plastic finite

element analysis for orthogonal cutting with discontinuous chip of

6-4 brass” Theoretical and Applied Fracture Mechanics, Vol. 35,

pp.137-153, 2001.

116. Lin, Z.C. and Lo, S.P. “2-D discontinuous chip cutting model by using

strain energy density theory and elastic-plastic finite element method”,

International Journal of Mechanical Sciences, Vol. 43, pp.381-398,

2001.

117. Litonski, J. “Plastic Flow of a Tube Under Adiabatic Torsion”, Bulletin

of the Academy of Polish Sciences, Science and Technology, XXV,

p. 7, 1977.

118. Lo, S.P. “An analysis of cutting under different rake angles using the

finite element method”, Journal of Materials Processing Technology,

Vol.105, pp.143-151, 2000.

119. Mabrouki, T. and Rigal, J.F. “A contribution to a qualitative

understanding of thermo-mechanical effects during chip formation in

hard turning”, Journal of Materials Processing Technology, Vol. 176,

pp.214-221, 2006.

120. MacDougall, D.A.S. and Harding, J. “A constitutive relation and

failure criterion for Ti6Al4V alloy at impact rates of strain”, Journal of

the Mechanics and Physics of Solids, Vol. 47, pp.1157-1185, 1999.

286

121. Mackerle, J. “Finite-element analysis and simulation of machining: a

bibliography (1976-1996)”, Journal of Materials Processing

Technology, Vol. 86, pp.17-44, 1999.

122. Mackerle, J. “Finite element analysis and simulation of machining: an

addendum a bibliography (1996-2002)”, International Journal of

Machine Tools and Manufacture, Vol.43, pp.103-114, 2003.

123. Madhavan, V. and Adibi-Sedeh, A.H. “Understanding of finite element

analysis results under the framework of Oxley’s machining model”,

Machining Science and Technology, Vol. 9, pp.345-368, 2005.

124. Madhavan, V. and Chandrasekar, S. “Some observations on the

uniqueness of machining. In: Predictable modeling of metal cutting as

a means of bridging the gap between theory and practice”, Proceedings

of the 1997 ASME international mechanical engineering congress &

exposition, MED, ASME, Vol. 6-2, New York, pp 99-109, 1997.

125. Maekawa, K., Kitagawa, T. and Childs, T.H.C. “Effects of flow stress

and friction characteristics on the machinability of free cutting steels”,

Second International Conference on the Behavior of Materials in

Machining, pp.132-145, 1991.

126. Maekawa, K., Shirakashi, T. and Usui, E. “Flow stress of low carbon

steel at high temperature and strain rate (part 2) – flow stress under

variable temperature and variable strain rate”, Bulletin of the Japanese

Society for Precision Engineering, Vol.17, pp. 167-172, 1983.

127. Mamalis, A.G., Branis, A.S. and Manolakos, D.E. “Modelling of

precision hard cutting using implicit finite element methods”, Journal

of Materials Processing Technology, Vol.123, pp.464-475, 2002.

128. Mamalis, A.G, Horvath, M., Branis, A.S. and Manolakos, D.E. “Finite

element simulation of chip formation in orthogonal metal cutting”,

Journal of Materials Processing Technology, Vol. 110, pp.19-27, 2001.

129. Manjunathaiah, J. and Endres, W. “A new model and analysis of

orthogonal machining with an edge radiused tool”, Proceedings of the

ASME Manufacturing science and engineering division, MED, Vol.8,

pp.259-267, 1998.

130. Maranhao, C. and Davim, J.P “Finite element modelling of machining

of AISI 316 steel: Numerical simulation and experimental validation”,

Simulation Modelling Practice and Theory, Vol.18, pp.139-156, 2010.

287

131. Marusich, T.D and Ortiz, M. “Modelling and simulation of high speed

machining”, International Journal of Numerical Methods in

Engineering, Vol. 38, pp.3675-3694, 1995.

132. Mathew, P. and Arya, N.S. “Material properties from machining”

Proceedings of the conference on dynamic loading in manufacturing

and service, Melbourne, Australia, pp.33-39, 1993.

133. Mathew, P. and Oxley, P.L.B. “Predicting the effects of very high

cutting speeds on cutting forces”, CIRP Annals-Manufacturing

Technology, Vol.31, pp. 49-52, 1982.

134. McClain, B., Batzer, S. and Maldonado, G. I. “A numeric investigation

of rake face stress distribution in orthogonal machining”, Journal of

Materials Processing Technology, Vol.123, pp.114-119, 2002.

135. Mecking, H. and Kocks, U.F. “Kinetics of flow and strain-hardening”,

Acta Metallurgica, Vol. 29, pp. 1865-1875, 1981.

136. Meyer, Jr, H.W. and Kleponis, D.S. “Modelling the high strain rate

behavior of titanium undergoing ballistic impact and penetration”,

International Journal of Impact Engineering, Vol.26, pp.509-521, 2001.

137. Montgomery, D. C. “Design and Analysis of Experiments”, 5th

edition, John Wiley & Sons, New York, NY, 2001.

138. Moriwaki, T. “Measurement of cutting dynamics by time series

analysis techniques”, Annals of CIRP, Vol.22, pp.117-118, 1973.

139. Moriwaki, T. and Hoshi, T. “Systems identification of digital

techniques. New tools for dynamic analysis”, Annals of CIRP, Vol.23,

pp.239-246, 1974.

140. Mousavi Anijdan, S.H., Madaah-Hosseini, H.R and Bahrami, A. “Flow

stress optimization for 304 stainless steel under cold and warm

compression by artificial neural network and genetic algorithm”,

Materials and Design, Vol. 28, pp. 609-615, 2007.

141. Movahhedy, M., Gadala, M.S. and Altintas, Y. “Simulation of the

orthogonal metal cutting process using an arbitrary Lagrangian-

Eulerian finite-element method”, Journal of Materials Processing

Technology, Vol.103, pp.267-275, 2000.

288

142. Mukherjee, I. and Ray, P.K. “A review of optimization techniques

in metal cutting processes”, Computers and Industrial Engineering,

Vol. 50, pp.15-34, 2006.

143. Mulyadi, M., Rist, M.A., Edwards, L. and Brooks, J.W. “Parameter

optimisation in constitutive equations for hot forging”, Journal of

Materials Processing Technology, Vol. 177, pp. 311-314, 2006.

144. Nemmat-Nasser Sia., Guo Wei-Guo., Nesterenko Vitali, F., Indrakanti,

S.S., Gu Ya-Bei. “Dynamic response of conventional and hot

isostatically pressed Ti–6Al–4V alloys: experiments and modeling”,

Mechanics of Materials, Vol.33, pp. 425-439, 2001.

145. Ng, E-G., El-Wardany, T.I., Dumitrescu, M. and Elbestawi, M.A

“Physics-based simulation of high speed machining”, Machining

Science and Technology, Vol. 6, pp.301-329, 2002.

146. Obikawa, T., Sasahara, H., Shirakashi, T. and Usui, E. “Application of

computational machining method to discontinuous chip formation”,

Journal of Manufacturing Science and Engineering, Transactions of

ASME, Vol. 119, pp.667-674, 1997.

147. Obikawa, T. and Usui, E. “Computational machining of titanium alloy

-finite element modeling and a few results”, Journal of Manufacturing

Science and Engineering, Transactions of ASME, Vol.118, pp. 208-215,

1996.

148. Olovsson, L., Nilsson, L. and Simonsson, K “An ALE formulation for

the solution of two-dimensional metal cutting problems”,

Computational Structures, Vol. 72, pp.497-507, 1999.

149. Osakada, K., Watadani, A. and Sekiguchi, H. “Ductile fracture

of carbon steel under cold metal forming conditions”, Bull JSME,

Vol. 20, pp.1557-1565, 1977.

150. Ott, E. R. “Process Quality Control”, McGraw-Hill Kogakusha Ltd.,

Tokyo, 1975.

151. Owen, D.R.J and Vaz, Jr M. “Computational techniques applied tohigh-speed machining under adiabatic strain localization conditions”,Computational Methods in Applied Mechanical Engineering, Vol. 171,pp.445-461, 1999.

152. Oxley, P.L.B. “Mechanics of machining, an analytical approach toassessing machinability”, Ellis Harwood Limited, 1989.

289

153. Oyane, M., Takashima, F., Osakada, K. and Tanaka, H. “The behaviorof some steels under dynamic compression”, in: Proceedings of 10thJapan Congress on Testing Materials, pp. 72-76, 1967.

154. Ozel, T. “Development of a predictive machining simulator fororthogonal metal cutting process”, 4

th International conference on

Engineering Design and Automation, Orlando, Florida, USA, pp.1-7,2000.

155. Ozel, T. “The influence of friction models on finite elementsimulations of machining”, International Journal of Machine Tools andManufacture, Vol. 46, pp.518-530, 2006.

156. Ozel, T. and Altan, T. “Process simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in highspeed flat end milling”, International Journal of Machine Tools andManufacture, Vol.40, pp.713-738, 2000.

157. Ozel, T. and Karpat, Y. “Identification of Constitutive Material modelParameters for High-Strain Rate Metal Cutting Conditions UsingEvolutionary Computational Algorithms”, Materials andManufacturing Processes, Vol. 22, pp. 659-667, 2007.

158. Ozel, T. “Modelling of hard part machining: effect of insert edgepreparation for CBN cutting tools”, Journal of Materials ProcessingTechnology, Vol. 141, pp.284-93, 2003.

159. Ozel, T. “Investigation of High Speed Flat End Milling Process”,PhD Dissertation, The Ohio State University, Columbus, Ohio, 1998.

160. Ozel, T. and Zeren, E. “Determination of work material flow stress andfriction for FEA of machining using orthogonal cutting tests”, Journalof Materials Processing Technology, Vol. 153-154, pp.1019-1025,2004.

161. Ozel, T. and Zeren, E. “A methodology to determine work material

flow stress and tool-chip interfacial friction properties by using

analysis of machining”, Journal of Manufacturing Science and

Engineering, Vol. 128, pp.119-129, 2006.

162. Ozlu, E., Budak, E. and Molinari, A. “Analytical and experimentalinvestigation of rake contact and friction behavior in metal cutting”,International Journal of Machine Tools and Manufacture, Vol.49,

pp. 865-875, 2009.

290

163. Pantale, O., Bacaria, J.L., Dalverny, O., Rakotomalala, R. and Caperaa,S. “2D and 3D numerical models of metal cutting with damageeffects”, Computational Methods in Applied Mechanical Engineering,

Vol.193, pp.4383-4399, 2004.

164. Parakkal, G., Zhu, R., Kapoor, S.G. and DeVor, E. “Modelling ofturning process cutting forces for grooved tools”, International Journal

of Machine Tools and Manufacture, Vol.42, pp. 179-191, 2002.

165. Peters, J. and Vanherck, P. “Machine tool stability tests and the

incremental stiffness”, Annals of CIRP, Vol. 17, pp.225-232, 1969.

166. Peters, J., Vanherck, P. and Van Brussel, H. “The measurement of thedynamics cutting coefficients”, Annals of CIRP, Vol.20, pp.129-136,

1971.

167. Phaniraj, M.P and Lahiri, A.K. “The applicability of neural networkmodel to predict flow stress for carbon steels”, Journal of Materials

Processing Technology, Vol.141, pp. 219-227, 2003.

168. Ross, Phillip J. “Taguchi techniques for quality engineering”, Tata

McGraw Hil1, 1996.

169. Pietrzyk, M. “Through–process modelling of microstructure evolutionin hot forming of steels”, Journal of Material Processing Technology,

Vol.125 -126, pp. 53-62, 2002.

170. Pujana, J., Arrazola, P.J., Saoubi, R.M. and Chandrasekaran, H.“Analysis of the inverse identification of constitutive equations appliedin orthogonal cutting process”, International Journal of Machine Tools

and Manufacture, Vol.47, pp. 2153-2161, 2007.

171. Raczy, A., Elmadagli, M., Altenhof, W.J. and Alpas, A.T. “AnEulerian finite-element model for determination of deformation state ofa copper subjected to orthogonal cutting”, Metallurgical and Material

Transactions A, Vol. 35, pp.2393-2400, 2004.

172. Rakotomalala, R., Joyot, P. and Touratier, M. “Arbitrary Lagrangian-Eulerian thermo mechanical finite element model of material cutting”,Computational Numerical Methods in Engineering, Vol.9, pp.975-987,

1993.

173. Rao, C.V. “Analysis of Means-A Review”, Journal of QualityTechnology, Vol. 37, pp.308-315, 2005.

291

174. Rhim, S-H and Oh, S-I “Prediction of serrated chip formation in metal

cutting process with new flow stress model for AISI 1045 steel”,

Journal of Materials Processing Technology, Vol.171, pp.417-422,

2006.

175. Sartkulvanich, P., Altan, T. and Gocmen, A. “Effects of the flow stress

and friction models in finite element simulation of orthogonal cutting-a

sensitivity analysis”, Machining Science and Technology, Vol. 9,

pp.1-26, 2005.

176. Sartkulvanich, P., Koppka, F. and Altan, T. “Determination of flow

stress for metal cutting simulation-a progress report”, Journal of

Materials Processing Technology, Vol.146, pp.61-71, 2004.

177. Seah, K.W.H., Raheman, M., Li, X.P and Zhang, X.D. “A three

dimensional model of chip flow, chip curl and chip breaking for

oblique cutting”, International Journal of Machine Tools and

Manufacture, Vol.36, pp.1385-1400, 1996.

178. Sekhon, G.S. and Chenot, J-L “Numerical simulation of continuous

chip formation during non-steady orthogonal cutting’ Engineering

Computation”, Vol. 10, pp.31- 48, 1993.

179. Shatla, M., Christian, K. and Altan, T. “Process modeling in

machining. Part I: determination of flow stress data”, International

Journal of Machine Tools and Manufacture, Vol.41, pp. 1511-1534,

2001 a.

180. Shatla, M., Christian, K. and Altan, T. “Process modeling in

machining. Part II: validation and applications of the determined flow

stress data”, International Journal of Machine Tools and Manufacture,

Vol. 41, pp. 659-1680, 2001 b.

181. Shatla, M., Yen, Y.C. and Altan, T. “Tool-workpiece interface in

orthogonal cutting-application of FEM modelling”, Transactions of

NAMRI/SME XXVII, pp.173-178, 2000.

182. Shaw, M.C. “Metal Cutting Principles”, Second ed., Oxford Science

Publications, Oxford, 2005.

183. Shet, C. and Deng, X. “Finite element analysis of the orthogonal

metal cutting process”, Journal of Materials Processing Technology,

Vol. 105, pp.95-109, 2000.

292

184. Shet, C. and Deng, X. “Residual stresses and strains in orthogonalmetal cutting”, International Journal of Machine Tools and

Manufacture, Vol.43, pp.573-587, 2003.

185. Shi, B., Attia, H. and Tounsi, N. “Identification of MaterialConstitutive Laws for Machining-Part I: An Analytical ModelDescribing the Stress, Strain, Strain Rate, and Temperature Fields inthe Primary Shear Zone in Orthogonal Metal Cutting”, Journal ofManufacturing Science and Engineering, Vol.132, 051008, pp. 1 – 11,

2010 a.

186. Shi, B., Attia, H. and Tounsi, N. “Identification of MaterialConstitutive Laws for Machining-Part II: Generation of the constitutivedata and validation of the constitutive law”, Journal of Manufacturing

Science and Engineering, Vol.132, 051009, pp. 1-9, 2010 b.

187. Shi, G., Deng, X. and Shet, C. “A finite element study of the effect offriction in orthogonal metal cutting”, Finite Elements Analysis and

Design, Vol.38, pp.863-883, 2002.

188. Shi, J. and Richard Liu, C. “The Influence of Material Models onFinite Element Simulation of Machining”, Journal of Manufacturing

Science and Engineering, Vol. 126, pp. 849-857, 2004.

189. Shih, A.J., Chandrasekar, S. and Yang, H.T. “The finite elementsimulation of metal cutting processes with strain-rate and temperatureeffects”, In: Klamecki B.E, Weinmann KJ (eds) Fundamental issues inmachining, Proceedings of the winter annual meeting of the AmericanSociety of Mechanical Engineers, PED, ASME, New York, Vol. 43,

pp. 11-24, 1990.

190. Shih, A.J. “Finite element analysis of orthogonal metal cuttingmechanics”, International Journal of Machine Tools and Manufacture,

Vol.36, pp. 255-273, 1996.

191. Shih, A.J. “Finite element simulation of orthogonal metal cutting”,

ASME Journal of Engineering for Industry, Vol.117, pp. 84-93, 1995.

192. Shirakashi, T. and Obikawa, T. “Recent progress and some difficultiesin computational modelling of machining”, Machining Science and

Technology, Vol. 2, pp.277-301, 1998.

193. Shirakashi, T. and Usui, E. “Simulation analysis of orthogonal metalcutting mechanism” In: Proceedings of the First International

conference on Production engineering, Part I, pp. 535-540, 1974.

293

194. Shirakashi, T., Maekawa, K. and Usui, E. “Flow stress of low carbon

steel at high temperature and strain rate”, (Parts I-II), Bulletin of the

Japan Society of Precision Engineering, Vol.17, pp.161-172, 1983.

195. Sima, M. and Ozel, T. “Modified material constitutive models for

serrated chip formation simulations and experimental validation in

machining of titanium alloy Ti-6Al-4V”, International Journal of

Machine Tools and Manufacture, Vol.50, pp. 943-960, 2010.

196. Soo, S.L., Aspinwall, D.K. and Dewes, R.C. “3D FE modelling of the

cutting of Inconel 718”, Journal of Materials Processing Technology,

Vol.150, pp.116-123, 2004 a.

197. Soo, S.L., Aspinwall, D.K. and Dewes, R.C. “Three-dimensional finite

element modelling of high-speed milling of Inconel 718”, Proceedings

of the Institution of Mechanical Engineers-B, Journal of Engineering

Manufacture Vol.218, pp.1555-1561, 2004 b.

198. Stevenson, M. G. and Oxley, P. L. B. “Experimental Investigation on

the Influence of Speed and Scale on the Strain-Rate in a Zone of

Intense Plastic Deformation”, Proceedings of the Institution of

Mechanical Engineers, Vol.184, pp. 561-576, 1970.

199. Strenkowski, J.S. and Athavale, S.M. “A partially constrained Eulerian

orthogonal cutting model for chip control tools”, Journal of

Manufacturing Science and Engineering, Transactions of ASME,

Vol.119, pp.681-688, 1997.

200. Strenkowski, J.S. and Moon, K.J. “Element prediction of chip

geometry and tool/workpiece temperature distributions in orthogonal

metal cutting”, Journal of Engineering Industry, Transactions of

ASME, Vol.112, pp.313-318, 1990.

201. Strenkowski, J. S. and Carroll III, J. T. “A Finite Element Model of

Orthogonal Metal Cutting”, ASME Journal of Engineering Industry,

Vol.107, pp. 349-354, 1985.

202. Sun, J. and Guo, Y.B. “Material flow stress and failure in multiscale

machining of titanium alloy Ti-6Al-4V”, International Journal of

Advanced Manufacturing Technology, Vol.41, pp.651- 659, 2009.

203. Tlutsy, J. and Goel, B.S. “Measurement of the dynamic cutting force

coefficients”, Proceedings of second NAMRC, pp.649-665, 1974.

294

204. Tlutsy, J. and MacNeil, P. “Dynamics of cutting forces in end milling”,

Annals of the CIRP, Vol.24, pp.21-25, 1975.

205. Tounsi, N., Vincenti, J., Otho, A. and Elbestawi, M. A “From the

basic mechanics of orthogonal metal cutting toward the identification

of the constitutive equation”, International Journal of Machine Tools

and Manufacture, Vol. 42, pp. 1373-1383, 2002.

206. Tyan, T. and Yang, W.H. “Analysis of orthogonal metal cutting

processes”, International Journal of Numerical Methods in

Engineering, Vol. 34, pp.365-389, 1992.

207. Umbrello, D. “Finite element simulation of conventional and high

speed machining of Ti6Al4V alloy”, Journal of Materials Processing

Technology, Vol.196, pp. 79-87, 2008.

208. Umbrello, D., Hua, J. and Shivpuri, R. “Hardness-based flow stress

and fracture models for numerical simulation of hard machining AISI

52100 bearing steel”, Materials Science and Engineering A, Vol. 374,

pp.90-100, 2004.

209. Umbrello, D., Rizzuti, S., Outeiro, J.C., Shivpuri, R. and Saoubi, R.

M. “Hardness-based flow stress for numerical simulation of hard

machining AISI H13 tool steel”, Journal of Materials Processing

Technology, Vol.199, pp. 64-73, 2008.

210. Umbrello, D., Saoubi, R.M. and Outeiro, J.C. “The influence of

Johnson-Cook material constants on finite element simulation of

machining AISI 316 L steel”, International Journal of Machine Tools

and Manufacture, Vol. 47, pp. 462-470, 2007.

211. Usui, E. and Shirakashi, T. “Mechanics of machining-from

“descriptive” to “predictive” theory”, In: Kops L, Ramalingam S (eds)

On the art of cutting metals-75 years later: a tribute to F.W. Taylor,

Proceedings of the winter annual meeting of the American Society of

Mechanical Engineers. PED, ASME, New York, Vol. 7, pp. 13-35,

1982.

212. Van der Bergh, F. and Engelbrecht, A.P. “A cooperative approach to

particle swarm optimization”, IEEE Transactions on Evolutionary

Computation, Vol.8, pp.225-239, 2004.

213. Vaz, Jr. M. “On the numerical simulation of machining processes”,

Journal of Brazilian Society of Mechanical Sciences, Vol. 22,

pp. 179-188, 2000.

295

214. Vaz, Jr. M., Owen, D.R.J., Kalhori, V., Lundblad, M. and Lindgren,

L.E “Modelling and Simulation of Machining Processes”, Archives of

Computational Methods in Engineering, Vol. 14, pp.173-204, 2007.

215. Voyiadjis, G.Z. and Almasri, A.H. “A physically based constitutive

model for f.c.c metals with applications to dynamic

hardness”, Mechanics of Materials, Vol.40, pp.549-563, 2008.

216. Wadsworth, H. M., Stephens, K. S. and Godfrey, A. B. “Modern

Methods for Quality Control and Improvement”, John Wiley & Sons,

New York, NY, 1986.

217. Wiriyacosol, S. “Thrust and torque prediction in drilling from a cutting

mechanics approach”, Annals of the CIRP, Vol.28, page 87, 1979.

218. Xie, J.Q., Bayoumi, A.E and Zbib, H.M. “Characterization of chip

formation and shear banding in orthogonal machining using finite

element analysis”, In: Batra RC, Zbib HM (eds) Material instabilities:

theory and applications, Proceedings of the 1994 ASME International

Mechanical Engineering Congress & Exposition, AMD, ASME,

New York, Vol. 183, pp 285-301, 1994.

219. Yang, M. and Park, H. “The prediction of cutting force in ball-end

milling”, International Journal of Machine Tools and Manufacture,

Vol.31, pp. 45-54, 1991.

220. Yogesh, K.P. and Zehnder, A.T. “Measurements and simulations of

temperature and deformation fields in transient metal cutting”, Journal

of Manufacturing Science and Engineering, Vol. 125, pp.645-655,

2003.

221. Young, H.T., Mathew, P. and Oxley, P.L.B. “Allowing for nose radius

effects in predicting chip flow direction and cutting forces in bar

turning”, Proceedings of the Institute of Mechanical Engineers,

Vol.201, pp.213-226, 1987.

222. Yucesan, G. and Altintas, Y. “Improved modelling of cutting

force coefficients in peripheral milling”, International Journal of

Machine Tools and Manufacture, Vol.34, pp. 473-487, 1996.

223. Zerilli, F.J. and Armstrong, R.W. “Dislocation-mechanics-based

constitutive relations for material dynamic calculations”, Journal of

Applied Physics, Vol. 61, pp.1816 -1825, 1987.

296

224. Zhang, B. and Bagchi, A. “Finite element simulation of chip formation

and comparison with machining experiments”, Journal of Engineering

Industry Transactions of ASME, Vol. 116, pp.289-297, 1994.

225. Zhu, R., Kapoor, S.G., DeVor, R.E. and Athavale. “Mechanistic force

models for chip control tools”, Journal of Manufacturing Science and

Engineering, Vol. 121, pp.408-416, 1999.

226. Zorev. N.N. “Interrelationship between shear processes occurring

along tool face and on shear plane in metal cutting”, In: Proceedings of

the International research in Production Engineering Conference.

ASME, New York, pp 42-49, 1963.