reduction numericalschemesbasedon introduction voronoi ... · monge-ampere equation seismicwave...

95
Voronoi’s reduction Jean-Marie Mirebeau Introduction Anisotropy in PDEs Lattice geometry Voronoi’s first reduction Riemannian operators Anisotropic diffusion Eikonal equation HJB operators Monge-Ampere equation Seismic wave travel times Conclusion Numerical schemes based on Voronoi’s first reduction Jean-Marie Mirebeau University Paris Sud, CNRS, University Paris-Saclay November 29, 2019 Modélisation, Analyse, Simulation Conférence à l’occasion des 50 ans du LJLL In collaboration with F. Bonnans, L. Metivier, PhD students G. Bonnet, F. Desquilbet.

Upload: others

Post on 19-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Numerical schemes based onVoronoi’s first reduction

Jean-Marie Mirebeau

University Paris Sud, CNRS, University Paris-Saclay

November 29, 2019

Modélisation, Analyse, SimulationConférence à l’occasion des 50 ans du LJLL

In collaboration with F. Bonnans, L. Metivier,PhD students G. Bonnet, F. Desquilbet.

Page 2: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 3: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 4: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Anisotropy in Partial Differential Equations (PDEs)

Anisotropy is the existence of preferred directions, locally, in adomain. The phenomenon is generic and ubiquitous, and mayhave a variety of causes, such as:I Micro-structure, either biological, geologic, synthetic.I Different nature of the domain dimensions, e.g. R2 × S1.I Proximity of the domain boundary, or of discontinuities.

In the numerical analysis of PDEs, (strong) anisotropy is asource of difficulties.I Increased numerical cost, accuracy loss, instabilities or

failure of the numerical methods.Several approaches can be envisioned to address these.

Page 5: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Anisotropy in Partial Differential Equations (PDEs)

Anisotropy is the existence of preferred directions, locally, in adomain. The phenomenon is generic and ubiquitous, and mayhave a variety of causes, such as:I Micro-structure, either biological, geologic, synthetic.I Different nature of the domain dimensions, e.g. R2 × S1.I Proximity of the domain boundary, or of discontinuities.

In the numerical analysis of PDEs, (strong) anisotropy is asource of difficulties.I Increased numerical cost, accuracy loss, instabilities or

failure of the numerical methods.Several approaches can be envisioned to address these.

Page 6: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

First approach: adapt the domain representation

I Encode the problem anisotropy in a Riemannian metric.I Create an anisotropic mesh of the domain.

Figure: Adaptive interpolation of a function with a sharp transition.

Page 7: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

First approach: adapt the domain representationI Encode the problem anisotropy in a Riemannian metric.

I Create an anisotropic mesh of the domain.

Figure: Adaptive interpolation of a function with a sharp transition.

Page 8: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

First approach: adapt the domain representationI Encode the problem anisotropy in a Riemannian metric.I Create an anisotropic mesh of the domain.

Figure: Adaptive interpolation of a function with a sharp transition.

Page 9: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Second approach: adapt the numerical scheme

I A basic cartesian grid is used throughout this work.

I Local adaptive stencils are created independently at eachpoint, without any consistency constraint.

I Easily address asymmetric or three dimensional anisotropy.

Page 10: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Second approach: adapt the numerical scheme

I A basic cartesian grid is used throughout this work.

I Local adaptive stencils are created independently at eachpoint, without any consistency constraint.

I Easily address asymmetric or three dimensional anisotropy.

Page 11: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Second approach: adapt the numerical scheme

I A basic cartesian grid is used throughout this work.I Local adaptive stencils are created independently at each

point, without any consistency constraint.

I Easily address asymmetric or three dimensional anisotropy.

Page 12: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Second approach: adapt the numerical scheme

I A basic cartesian grid is used throughout this work.I Local adaptive stencils are created independently at each

point, without any consistency constraint.

First

First

Last

Last

I Easily address asymmetric or three dimensional anisotropy.

Page 13: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Second approach: adapt the numerical scheme

I A basic cartesian grid is used throughout this work.I Local adaptive stencils are created independently at each

point, without any consistency constraint.

First Last

First

Last

I Easily address asymmetric or three dimensional anisotropy.

Page 14: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Second approach: adapt the numerical schemeI A basic cartesian grid is used throughout this work.I Local adaptive stencils are created independently at each

point, without any consistency constraint.

I Easily address asymmetric or three dimensional anisotropy.

Page 15: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Comparative advantages of the two approachesAdaptive meshes

I Locally adjust the sampling density.I Domains of arbitrary shape, and topology.

I Conforming meshes are a pre-requisite for someapplications (e.g. finite volume or finite element schemes).

Adaptive stencils on cartesian grids

I Simplicity of implementation.I Numerical cost.I Tools of lattice geometry.

I Cartesian grids are a pre-requisite for some applications(e.g image processing).

Different tools for different applications.

Page 16: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Comparative advantages of the two approachesAdaptive meshes

I Locally adjust the sampling density.I Domains of arbitrary shape, and topology.

I Conforming meshes are a pre-requisite for someapplications (e.g. finite volume or finite element schemes).

Adaptive stencils on cartesian grids

I Simplicity of implementation.I Numerical cost.I Tools of lattice geometry.

I Cartesian grids are a pre-requisite for some applications(e.g image processing).

Different tools for different applications.

Page 17: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Comparative advantages of the two approachesAdaptive meshes

I Locally adjust the sampling density.I Domains of arbitrary shape, and topology.I Conforming meshes are a pre-requisite for some

applications (e.g. finite volume or finite element schemes).

Adaptive stencils on cartesian grids

I Simplicity of implementation.I Numerical cost.I Tools of lattice geometry.I Cartesian grids are a pre-requisite for some applications

(e.g image processing).

Different tools for different applications.

Page 18: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Comparative advantages of the two approachesAdaptive meshes

I Locally adjust the sampling density.I Domains of arbitrary shape, and topology.I Conforming meshes are a pre-requisite for some

applications (e.g. finite volume or finite element schemes).

Adaptive stencils on cartesian grids

I Simplicity of implementation.I Numerical cost.I Tools of lattice geometry.I Cartesian grids are a pre-requisite for some applications

(e.g image processing).

Different tools for different applications.

Page 19: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 20: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Lattice geometryIs the simultaneous study of a positive quadratic form, and of adiscrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?

I Which integers are sums of three squares ?I Message coding: error correction, cryptography.

What are the prime factors of RSA-768 ?1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has100+ pages of references,

and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.M. et al, 14, ...

Page 21: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Lattice geometryIs the simultaneous study of a positive quadratic form, and of adiscrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?

I Which integers are sums of three squares ?I Message coding: error correction, cryptography.

What are the prime factors of RSA-768 ?1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has100+ pages of references,

and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.M. et al, 14, ...

Page 22: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Lattice geometryIs the simultaneous study of a positive quadratic form, and of adiscrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?

I Which integers are sums of three squares ?I Message coding: error correction, cryptography.

What are the prime factors of RSA-768 ?1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has100+ pages of references,

and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.M. et al, 14, ...

Page 23: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Lattice geometryIs the simultaneous study of a positive quadratic form, and of adiscrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?I Which integers are sums of three squares ?

I Message coding: error correction, cryptography.What are the prime factors of RSA-768 ?

1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has100+ pages of references,

and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.M. et al, 14, ...

Page 24: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Lattice geometryIs the simultaneous study of a positive quadratic form, and of adiscrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?I Which integers are sums of three squares ?

Legendre’s theorem:

N = i2 + j2 + k2; (i , j , k) ∈ Z3 t 4a(8b + 7); a, b ∈ N.

I Message coding: error correction, cryptography.What are the prime factors of RSA-768 ?

1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has100+ pages of references,

and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.M. et al, 14, ...

Page 25: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Lattice geometryIs the simultaneous study of a positive quadratic form, and of adiscrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?I Which integers are sums of three squares ?I Message coding: error correction, cryptography.

What are the prime factors of RSA-768 ?1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has100+ pages of references,

and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.M. et al, 14, ...

Page 26: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Lattice geometryIs the simultaneous study of a positive quadratic form, and of adiscrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?I Which integers are sums of three squares ?I Message coding: error correction, cryptography.

What are the prime factors of RSA-768 ?1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has100+ pages of references,

and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.M. et al, 14, ...

Page 27: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Lattice geometryIs the simultaneous study of a positive quadratic form, and of adiscrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?I Which integers are sums of three squares ?I Message coding: error correction, cryptography.

What are the prime factors of RSA-768 ?1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has100+ pages of references, and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.M. et al, 14, ...

Page 28: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Lattice geometryIs the simultaneous study of a positive quadratic form, and of adiscrete subgroup of a vector space.

Sample applications

I What is the densest periodic packing of spheres ?I Which integers are sums of three squares ?I Message coding: error correction, cryptography.

What are the prime factors of RSA-768 ?1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413

Conway, Sloane, Sphere packings, lattices and groups, 1998, has100+ pages of references, and has been cited 6000+ times.

I Few applications to PDE discretization. Bonnans et al, 04.M. et al, 14, ...

Page 29: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Voronoi’s reductions associate a discrete object to each positivedefinite quadratic form on Rd , and are covariant with GL(Zd).I ρ : S++

d → X , ρ(ATDA) = A · ρ(D) for A ∈ GL(Zd).

Reduction to a fundamental domainI If x1, · · · , xn is a system of representatives of X modulo

A, then ρ−1(x1, · · · , xn) is (under assumptions) afundamental domain in D modulo A.

I Classify positive quadratic forms modulo isomorphisms ofthe lattice Zd .

Page 30: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Intended use: following closely related ideas, Lagrange providesa table of the positive quadratic forms with integer entries andsmall determinant.

Figure: Lagrange, Recherches d’arithmétique, 1774

Page 31: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I D =

(1 + a bb 1− a

), a2 + b2 < 1. Unit ball of ‖ · ‖D .

I Voronoi’s second reduction of D =germ of Delaunay’s triangulation of Z2 w.r.t. ‖ · ‖D .

Page 32: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Voronoi’s second reduction of D =germ of Delaunay’s triangulation of Z2 w.r.t. ‖ · ‖D .

Page 33: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Voronoi’s second reduction of D =germ of Delaunay’s triangulation of Z2 w.r.t. ‖ · ‖D .

Page 34: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Voronoi’s second reduction of D =germ of Delaunay’s triangulation of Z2 w.r.t. ‖ · ‖D .

I Dimension 1 2 3 4 5# Inequivalent triangulations 1 1 1 3 222

Shurmann, Computational geometry of positive quadratic forms,2009

Page 35: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 36: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Voronoi’s first reductionAssociates to a given D ∈ S++

d the solution M ∈ S++d to

minM

Tr(DM) subject to ‖e‖2M ≥ 1, ∀e ∈ Zd \ 0.

where ‖e‖M :=√〈e,Me〉.

Geometric interpretation

I M defines a disjoint ellipsoid packing, with centers in Zd .

(z + 12BM)z∈Zd where BM := x ∈ Rd ; ‖x‖M < 1.

I Minimize∑d

i=1 r−2i , where ri is radius along the i-th

principal axis, in the geometry defined by D.

Page 37: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Voronoi’s first reductionAssociates to a given D ∈ S++

d the solution M ∈ S++d to

minM

Tr(DM) subject to ‖e‖2M ≥ 1, ∀e ∈ Zd \ 0.

where ‖e‖M :=√〈e,Me〉.

Geometric interpretation

I M defines a disjoint ellipsoid packing, with centers in Zd .

(z + 12BM)z∈Zd where BM := x ∈ Rd ; ‖x‖M < 1.

I Minimize∑d

i=1 r−2i , where ri is radius along the i-th

principal axis, in the geometry defined by D.

Page 38: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Unit ball defined by D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Optimal tiling of Z2 w.r.t. ‖ · ‖D .

Optimal M (×2).

Page 39: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Unit ball defined by D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Optimal tiling of Z2 w.r.t. ‖ · ‖D .

Optimal M (×2).

Page 40: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Unit ball defined by D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Optimal tiling of Z2 w.r.t. ‖ · ‖D . Optimal M (×2).

2 -1-1 2

2 11 2

2 -3-3 6

6 -3-3 2

6 33 2

2 33 6

2 -5-5 14

6 -9-9 14

14 -9-9 6

14 -5-5 2

14 55 2

14 99 6

6 99 14

2 55 14

Page 41: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Voronoi’s first reduction is a linear minimization problemon Ryskov’s polyhedron

P = M ∈ Sd ;∀e ∈ Zd \ 0, 〈e,Me〉 ≥ 1.

I Locally finite polyhedron, vertices are called perfect forms.

Theorem (Voronoi, 1905)In any dimension d , Voronoi’s first reduction is a feasible linearprogram. In addition, there is only a finite number ofinequivalent perfect forms.

Dimension 1 2 3 4 5 6 7 8 9# Ineq perf forms 1 1 1 2 3 7 33 10916 >500 000

Shurmann, Computational geometry of positive quadratic forms, 09

Page 42: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Voronoi’s first reduction is a linear minimization problemon Ryskov’s polyhedron

P = M ∈ Sd ;∀e ∈ Zd \ 0, 〈e,Me〉 ≥ 1.

I Locally finite polyhedron, vertices are called perfect forms.

Theorem (Voronoi, 1905)In any dimension d , Voronoi’s first reduction is a feasible linearprogram. In addition, there is only a finite number ofinequivalent perfect forms.

Dimension 1 2 3 4 5 6 7 8 9# Ineq perf forms 1 1 1 2 3 7 33 10916 >500 000

Shurmann, Computational geometry of positive quadratic forms, 09

Page 43: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Voronoi’s first reduction is a linear minimization problemon Ryskov’s polyhedron

P = M ∈ Sd ;∀e ∈ Zd \ 0, 〈e,Me〉 ≥ 1.

I Locally finite polyhedron, vertices are called perfect forms.

Theorem (Voronoi, 1905)In any dimension d , Voronoi’s first reduction is a feasible linearprogram. In addition, there is only a finite number ofinequivalent perfect forms.

Dimension 1 2 3 4 5 6 7 8 9# Ineq perf forms 1 1 1 2 3 7 33 10916 >500 000

Shurmann, Computational geometry of positive quadratic forms, 09

Page 44: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Voronoi’s first reduction is a linear program, in Sd , subjectto infinitely many constraints. (Locally: finitely many)

I Dual program is an optimal tensor decomposition problem.

Voronoi’s first reduction (dual formulation)Associates to D ∈ S++

d a decomposition

D =∑

1≤i≤Iλieie

Ti , with λi ≥ 0, ei ∈ Zd \ 0,

which maximizes the criterion

(w.l.o.g. I ≤ d(d + 1)/2)

∑1≤i≤I

λi .

Page 45: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Voronoi’s first reduction is a linear program, in Sd , subjectto infinitely many constraints. (Locally: finitely many)

I Dual program is an optimal tensor decomposition problem.

Voronoi’s first reduction (dual formulation)Associates to D ∈ S++

d a decomposition

D =∑

1≤i≤Iλieie

Ti , with λi ≥ 0, ei ∈ Zd \ 0,

which maximizes the criterion

(w.l.o.g. I ≤ d(d + 1)/2)

∑1≤i≤I

λi .

Page 46: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Voronoi’s first reduction is a linear program, in Sd , subjectto infinitely many constraints. (Locally: finitely many)

I Dual program is an optimal tensor decomposition problem.

Voronoi’s first reduction (dual formulation)Associates to D ∈ S++

d a decomposition

D =∑

1≤i≤Iλieie

Ti , with λi ≥ 0, ei ∈ Zd \ 0,

which maximizes the criterion

(w.l.o.g. I ≤ d(d + 1)/2)

∑1≤i≤I

λi .

Page 47: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Voronoi’s first reduction is a linear program, in Sd , subjectto infinitely many constraints. (Locally: finitely many)

I Dual program is an optimal tensor decomposition problem.

Voronoi’s first reduction (dual formulation)Associates to D ∈ S++

d a decomposition

D =∑

1≤i≤Iλieie

Ti , with λi ≥ 0, ei ∈ Zd \ 0,

which maximizes the criterion (w.l.o.g. I ≤ d(d + 1)/2)∑1≤i≤I

λi .

Page 48: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Unit ball defined by D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Support of the optimal decomposition.

Page 49: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Unit ball defined by D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Support of the optimal decomposition.

Page 50: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Practical decomposition in dimension d ∈ 2, 3I A superbase of Zd is a tuple (e0, · · · , ed) ∈ (Zd)d+1 s.t.

e0 + · · ·+ ed = 0, | det(e1, · · · , ed)| = 1.

I Selling’s algorithm, 1874.Input: matrix D ∈ S++

d , init superbase b = (e0, · · · , ed).While there exists i , j , such that 〈ei ,Dej〉 > 0

(d = 2) b ← (ei ,−ej , ej − ei ),

(d = 3) b ← (ei ,−ej , ek + ej , el + ej).

Output: b = (e0, · · · , ed), now an obtuse superbase.I Voronoi’s first reduction M = 1

2∑

0≤i≤d eieTi .

I Tensor decomposition, with 〈vij , ek〉 = δij − δjk

D = −∑

0≤i<j≤d〈ei ,Dej〉vijvTij .

Page 51: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Practical decomposition in dimension d ∈ 2, 3I A superbase of Zd is a tuple (e0, · · · , ed) ∈ (Zd)d+1 s.t.

e0 + · · ·+ ed = 0, | det(e1, · · · , ed)| = 1.

I Selling’s algorithm, 1874.Input: matrix D ∈ S++

d , init superbase b = (e0, · · · , ed).While there exists i , j , such that 〈ei ,Dej〉 > 0

(d = 2) b ← (ei ,−ej , ej − ei ),

(d = 3) b ← (ei ,−ej , ek + ej , el + ej).

Output: b = (e0, · · · , ed), now an obtuse superbase.

I Voronoi’s first reduction M = 12∑

0≤i≤d eieTi .

I Tensor decomposition, with 〈vij , ek〉 = δij − δjk

D = −∑

0≤i<j≤d〈ei ,Dej〉vijvTij .

Page 52: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Practical decomposition in dimension d ∈ 2, 3I A superbase of Zd is a tuple (e0, · · · , ed) ∈ (Zd)d+1 s.t.

e0 + · · ·+ ed = 0, | det(e1, · · · , ed)| = 1.

I Selling’s algorithm, 1874.Input: matrix D ∈ S++

d , init superbase b = (e0, · · · , ed).While there exists i , j , such that 〈ei ,Dej〉 > 0

(d = 2) b ← (ei ,−ej , ej − ei ),

(d = 3) b ← (ei ,−ej , ek + ej , el + ej).

Output: b = (e0, · · · , ed), now an obtuse superbase.I Voronoi’s first reduction M = 1

2∑

0≤i≤d eieTi .

I Tensor decomposition, with 〈vij , ek〉 = δij − δjk

D = −∑

0≤i<j≤d〈ei ,Dej〉vijvTij .

Page 53: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Practical decomposition in dimension d ∈ 2, 3I A superbase of Zd is a tuple (e0, · · · , ed) ∈ (Zd)d+1 s.t.

e0 + · · ·+ ed = 0, | det(e1, · · · , ed)| = 1.

I Selling’s algorithm, 1874.Input: matrix D ∈ S++

d , init superbase b = (e0, · · · , ed).While there exists i , j , such that 〈ei ,Dej〉 > 0

(d = 2) b ← (ei ,−ej , ej − ei ),

(d = 3) b ← (ei ,−ej , ek + ej , el + ej).

Output: b = (e0, · · · , ed), now an obtuse superbase.I Voronoi’s first reduction M = 1

2∑

0≤i≤d eieTi .

I Tensor decomposition, with 〈vij , ek〉 = δij − δjk

D = −∑

0≤i<j≤d〈ei ,Dej〉vijvTij .

Page 54: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 55: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 56: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Divergence form anisotropic diffusion

I Consider the anisotropic elliptic energy of u : Ω→ R

E(u) =

∫Ω‖∇u(x)‖2D(x)dx .

I Taking the L2 gradient flow yields

∂tu = div(D(x)∇u(x))I Existing approaches fail the maximum principle for large

anisotropies, or use very wide stencils (Weickert, 96).

Proposed discretization (Ferenbach, M., 2014)I Given x ∈ Ω, assume D(x) =

∑Ii=1 λieie

Ti . Then

‖∇u(x)‖2D(x) =∑

1≤i≤Iλi 〈∇u(x), ei 〉2

I Insert the second order accurate finite difference

〈∇u(x), ei 〉2 ≈12

[(u(x)− u(x + hei )

h

)2+(u(x)− u(x − hei )

h

)2]

Page 57: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Divergence form anisotropic diffusion

I Consider the anisotropic elliptic energy of u : Ω→ R

E(u) =

∫Ω‖∇u(x)‖2D(x)dx .

I Taking the L2 gradient flow yields

∂tu = div(D(x)∇u(x))I Existing approaches fail the maximum principle for large

anisotropies, or use very wide stencils (Weickert, 96).

Proposed discretization (Ferenbach, M., 2014)I Given x ∈ Ω, assume D(x) =

∑Ii=1 λieie

Ti . Then

‖∇u(x)‖2D(x) =∑

1≤i≤Iλi 〈∇u(x), ei 〉2

I Insert the second order accurate finite difference

〈∇u(x), ei 〉2 ≈12

[(u(x)− u(x + hei )

h

)2+(u(x)− u(x − hei )

h

)2]

Page 58: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Divergence form anisotropic diffusion

I Consider the anisotropic elliptic energy of u : Ω→ R

E(u) =

∫Ω‖∇u(x)‖2D(x)dx .

I Taking the L2 gradient flow yields

∂tu = div(D(x)∇u(x))I Existing approaches fail the maximum principle for large

anisotropies, or use very wide stencils (Weickert, 96).

Proposed discretization (Ferenbach, M., 2014)I Given x ∈ Ω, assume D(x) =

∑Ii=1 λieie

Ti . Then

‖∇u(x)‖2D(x) =∑

1≤i≤Iλi 〈∇u(x), ei 〉2

I Insert the second order accurate finite difference

〈∇u(x), ei 〉2 ≈12

[(u(x)− u(x + hei )

h

)2+(u(x)− u(x − hei )

h

)2]

Page 59: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Application to image processing, with J. Fehrenbach.Weickert’s coherence enhancing diffusion D = D(u).

Theorem (Equivalence with anisotropic Delaunay, in 2D)Assume Ω = [0, 1]2 equipped with periodic bc, and discretizedon 0, h, · · · , 1− h2 where h = 1/n. Assume D : Ω→ S++

d isLipschitz. Denote Eh the AD-LBR energy, and Eh the finiteelement energy on Shewchuk’s anisotropic Delaunay. Then

(1− ch)Eh(u) ≤ Eh(u) ≤ (1 + ch)Eh(u), ∀u,∀0 < h ≤ h0

Page 60: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Application to image processing, with J. Fehrenbach.Weickert’s coherence enhancing diffusion D = D(u).

Theorem (Equivalence with anisotropic Delaunay, in 2D)Assume Ω = [0, 1]2 equipped with periodic bc, and discretizedon 0, h, · · · , 1− h2 where h = 1/n. Assume D : Ω→ S++

d isLipschitz. Denote Eh the AD-LBR energy, and Eh the finiteelement energy on Shewchuk’s anisotropic Delaunay. Then

(1− ch)Eh(u) ≤ Eh(u) ≤ (1 + ch)Eh(u), ∀u,∀0 < h ≤ h0

Page 61: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Application to image processing, with J. Fehrenbach.Weickert’s coherence enhancing diffusion D = D(u).

Theorem (Equivalence with anisotropic Delaunay, in 2D)Assume Ω = [0, 1]2 equipped with periodic bc, and discretizedon 0, h, · · · , 1− h2 where h = 1/n. Assume D : Ω→ S++

d isLipschitz. Denote Eh the AD-LBR energy, and Eh the finiteelement energy on Shewchuk’s anisotropic Delaunay. Then

(1− ch)Eh(u) ≤ Eh(u) ≤ (1 + ch)Eh(u), ∀u,∀0 < h ≤ h0

Page 62: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Application to image processing, with J. Fehrenbach.Weickert’s coherence enhancing diffusion D = D(u).

Theorem (Equivalence with anisotropic Delaunay, in 2D)Assume Ω = [0, 1]2 equipped with periodic bc, and discretizedon 0, h, · · · , 1− h2 where h = 1/n. Assume D : Ω→ S++

d isLipschitz. Denote Eh the AD-LBR energy, and Eh the finiteelement energy on Shewchuk’s anisotropic Delaunay. Then

(1− ch)Eh(u) ≤ Eh(u) ≤ (1 + ch)Eh(u), ∀u,∀0 < h ≤ h0

Page 63: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 64: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Computing minimal Riemannian geodesics

I Solve the Riemannian eikonal equation, D(x) := M(x)−1,

‖∇u(x)‖2D(x) = 1 (+b.c .)

I Backrack the minimal paths with gradient descent

γ(t) = V (γ(t)), where V (x) = D(x)∇u(x).

I Existing approaches use either wide stencils (Kimmel,Sethian, 01) or multi-pass methods (Bornemann, 06).

Proposed discretization (M, 2019)

I Given x ∈ Ω, assume D(x) =∑I

i=1 λieieTi . Then

‖∇u(x)‖2D(x) =∑

1≤i≤Iλi 〈∇u(x), ei 〉2.

I Insert the first order accurate upwind finite difference

|〈∇u(x), ei 〉| ≈ max0, u(x)− u(x + hei ), u(x)− u(x − hei )

/h

Page 65: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Computing minimal Riemannian geodesics

I Solve the Riemannian eikonal equation, D(x) := M(x)−1,

‖∇u(x)‖2D(x) = 1 (+b.c .)

I Backrack the minimal paths with gradient descent

γ(t) = V (γ(t)), where V (x) = D(x)∇u(x).

I Existing approaches use either wide stencils (Kimmel,Sethian, 01) or multi-pass methods (Bornemann, 06).

Proposed discretization (M, 2019)

I Given x ∈ Ω, assume D(x) =∑I

i=1 λieieTi . Then

‖∇u(x)‖2D(x) =∑

1≤i≤Iλi 〈∇u(x), ei 〉2.

I Insert the first order accurate upwind finite difference

|〈∇u(x), ei 〉| ≈ max0, u(x)− u(x + hei ), u(x)− u(x − hei )

/h

Page 66: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Computing minimal Riemannian geodesics

I Solve the Riemannian eikonal equation, D(x) := M(x)−1,

‖∇u(x)‖2D(x) = 1 (+b.c .)

I Backrack the minimal paths with gradient descent

γ(t) = V (γ(t)), where V (x) = D(x)∇u(x).

I Existing approaches use either wide stencils (Kimmel,Sethian, 01) or multi-pass methods (Bornemann, 06).

Proposed discretization (M, 2019)

I Given x ∈ Ω, assume D(x) =∑I

i=1 λieieTi . Then

‖∇u(x)‖2D(x) =∑

1≤i≤Iλi 〈∇u(x), ei 〉2.

I Insert the first order accurate upwind finite difference

|〈∇u(x), ei 〉| ≈ max0, u(x)− u(x + hei ), u(x)− u(x − hei )

/h

Page 67: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Computing minimal Riemannian geodesics

I Solve the Riemannian eikonal equation, D(x) := M(x)−1,

‖∇u(x)‖2D(x) = 1 (+b.c .)

I Backrack the minimal paths with gradient descent

γ(t) = V (γ(t)), where V (x) = D(x)∇u(x).

I Existing approaches use either wide stencils (Kimmel,Sethian, 01) or multi-pass methods (Bornemann, 06).

Proposed discretization (M, 2019)

I Given x ∈ Ω, assume D(x) =∑I

i=1 λieieTi . Then

‖∇u(x)‖2D(x) =∑

1≤i≤Iλi 〈∇u(x), ei 〉2.

I Insert the first order accurate upwind finite difference

|〈∇u(x), ei 〉| ≈ max0, u(x)− u(x + hei ), u(x)− u(x − hei )

/h

Page 68: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Computing minimal Riemannian geodesics

I Solve the Riemannian eikonal equation, D(x) := M(x)−1,

‖∇u(x)‖2D(x) = 1 (+b.c .)

I Backrack the minimal paths with gradient descent

γ(t) = V (γ(t)), where V (x) = D(x)∇u(x).

I Existing approaches use either wide stencils (Kimmel,Sethian, 01) or multi-pass methods (Bornemann, 06).

Proposed discretization (M, 2019)

I Given x ∈ Ω, assume D(x) =∑I

i=1 λieieTi . Then

‖∇u(x)‖2D(x) =∑

1≤i≤Iλi 〈∇u(x), ei 〉2.

I Insert the first order accurate upwind finite difference

|〈∇u(x), ei 〉| ≈ max0, u(x)− u(x + hei ), u(x)− u(x − hei )

/h

Page 69: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Application to tubular structure segmentationI Segmenting the retinal vascular tree using Reeds-Shepp

model, with data driven c(x , n). With R. Duits et al.

Page 70: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Application to tubular structure segmentationI Segmenting the retinal vascular tree using Reeds-Shepp

model, with data driven c(x , n). With R. Duits et al.

Figure: Density plot of the cost function c(x , y , θ).Related: (radius lift) Li and Yezzi 07, (θ lift) Péchaud et al 09.

Page 71: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Application to tubular structure segmentation

I Segmenting the retinal vascular tree using Reeds-Sheppmodel, with data driven c(x , n). With R. Duits et al.

Figure: Subriemannian control sets

Related: (radius lift) Li and Yezzi 07, (θ lift) Péchaud et al 09.

Page 72: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion Figure: Optimal paths for the Reeds-Shepp car in R3 × S2.Application to (simulated) dMRI data, with Duits et al (2018)

Page 73: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 74: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Anisotropy and non-linearity

I In HJB equations, non-linearity can (often) be seen assimultaneous anisotropy in multiple incompatible directions:

Λu(x) = maxD∈D(x)

Tr(D∇2u(x)), where D(x) ⊆ S++d .

I Finite difference discretization of Tr(D∇2u(x))

∆hDu(x) :=

∑1≤i≤I

λiu(x − hei )− 2u(x) + u(x + hei )

h2

where D =∑

1≤i≤I λieieTi .

Proposed discretization (Bonnet, Bonnans, M. 2019)

I Partition S++d based on the support of Voronoi’s optimal

decompositionS++d =

⊔b∈BSb.

I Write Λ = maxb∈B Λb where Λbu(x) = maxD∈D(x)∩Sb

∆hDu(x).

Page 75: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Anisotropy and non-linearity

I In HJB equations, non-linearity can (often) be seen assimultaneous anisotropy in multiple incompatible directions:

Λu(x) = maxD∈D(x)

Tr(D∇2u(x)), where D(x) ⊆ S++d .

I Finite difference discretization of Tr(D∇2u(x))

∆hDu(x) :=

∑1≤i≤I

λiu(x − hei )− 2u(x) + u(x + hei )

h2

Proposed discretization (Bonnet, Bonnans, M. 2019)

I Partition S++d based on the support of Voronoi’s optimal

decompositionS++d =

⊔b∈BSb.

I Write Λ = maxb∈B Λb where Λbu(x) = maxD∈D(x)∩Sb

∆hDu(x).

Page 76: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Unit ball defined by D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Support of the optimal decomposition.

Page 77: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

I Unit ball defined by D =

(1 + a bb 1− a

), a2 + b2 < 1.

I Support of the optimal decomposition.

Page 78: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 79: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

The Monge-Ampere equation

I A fully non-linear second order equation

det(∇2u) = f , u convex.

I Variants, with appropriate boundary conditions, appear inoptimal transport, optical design, etc.

I Existing computational approaches for OT : entropicrelaxation (Cuturi 2013), semi-discrete (Aurenhammer1998, Merigot 2011), ...

Proposed discretization

I Express the non-linear operator as an extremum of linearoperators: for any M 0

d(detM)1d = inf

detD=1D0

Tr(DM)

I The minimization associated with each supportb = (e0, e1, e2) is solvable in analytical form

Page 80: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

The Monge-Ampere equation

I A fully non-linear second order equation

det(∇2u) = f , u convex.

I Variants, with appropriate boundary conditions, appear inoptimal transport, optical design, etc.

I Existing computational approaches for OT : entropicrelaxation (Cuturi 2013), semi-discrete (Aurenhammer1998, Merigot 2011), ...

Proposed discretization

I Express the non-linear operator as an extremum of linearoperators: for any M 0

d(detM)1d = inf

detD=1D0

Tr(DM)

I The minimization associated with each supportb = (e0, e1, e2) is solvable in analytical form

Page 81: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

The Monge-Ampere equation

I A fully non-linear second order equation

det(∇2u) = f , u convex.

I Variants, with appropriate boundary conditions, appear inoptimal transport, optical design, etc.

I Existing computational approaches for OT : entropicrelaxation (Cuturi 2013), semi-discrete (Aurenhammer1998, Merigot 2011), ...

Proposed discretization

I Express the non-linear operator as an extremum of linearoperators: for any M 0

d(detM)1d = inf

detD=1D0

Tr(DM)

I The minimization associated with each supportb = (e0, e1, e2) is solvable in analytical form

Page 82: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

The Monge-Ampere equation

I A fully non-linear second order equation

det(∇2u) = f , u convex.

I Variants, with appropriate boundary conditions, appear inoptimal transport, optical design, etc.

I Existing computational approaches for OT : entropicrelaxation (Cuturi 2013), semi-discrete (Aurenhammer1998, Merigot 2011), ...

Proposed discretization

I Express the non-linear operator as an extremum of linearoperators: for any M 0

d(detM)1d = inf

detD=1D0

Tr(DM)

I The minimization associated with each supportb = (e0, e1, e2) is solvable in analytical form

Page 83: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Λhu(x) = min(e0,e1,e2) superbase

H(∆he0u(x),∆h

e1u(x),∆he2u(x))

where ∆heu(x) = (u(x + h)− 2u(x) + u(x − h))/h2, and

H(a, b, c) =

ab if a + b ≤ c12(ab + bc + ca)− 1

4(a2 + b2 + c2) otherwise.

Figure: Numerical optimal Transport, Benamou, Duval (2017), basedon Benamou, Collino, M, 2016.

Page 84: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

ConclusionFigure: Top : various stencil choices. Above: reconstruction ofsynthetic solution |x +

√10| by a Monge-Ampere equation.

Uniformly elliptic variant of the scheme: Bonnet, Bonnans, M, Monotone and consistent schemes forthe Pucci and Monge-Ampere equation, preprint, 2019

Page 85: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 86: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Minimal travel-time of seismic wavesI The high frequency asymptotic yields a Finslerian eikonal

equation1 = max

D∈D(x)‖∇u(x)‖D

where D(x) ⊆ S++d depends on the Hooke elasticity tensor.

I In the TTI (Tilted Transversely Isotropic) case

1 = maxs∈[0,1]

‖∇u(x)‖D(x ,s)

I Existing numerical methods are multi-pass

Proposed discretization (Desquilbet, Metivier, M)

I For a given x ∈ Ω, find 0 = s0 < · · · < sn = 1 such thatthe optimal decomposition support is constant over each[si , si+1], 0 ≤ i < n.

I Use the Riemannian eikonal discretization, along with 1Doptimization, on each [si , si+1].

Page 87: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Minimal travel-time of seismic wavesI The high frequency asymptotic yields a Finslerian eikonal

equation1 = max

D∈D(x)‖∇u(x)‖D

where D(x) ⊆ S++d depends on the Hooke elasticity tensor.

I In the TTI (Tilted Transversely Isotropic) case

1 = maxs∈[0,1]

‖∇u(x)‖D(x ,s)

I Existing numerical methods are multi-pass

Proposed discretization (Desquilbet, Metivier, M)

I For a given x ∈ Ω, find 0 = s0 < · · · < sn = 1 such thatthe optimal decomposition support is constant over each[si , si+1], 0 ≤ i < n.

I Use the Riemannian eikonal discretization, along with 1Doptimization, on each [si , si+1].

Page 88: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Minimal travel-time of seismic wavesI The high frequency asymptotic yields a Finslerian eikonal

equation1 = max

D∈D(x)‖∇u(x)‖D

where D(x) ⊆ S++d depends on the Hooke elasticity tensor.

I In the TTI (Tilted Transversely Isotropic) case

1 = maxs∈[0,1]

‖∇u(x)‖D(x ,s)

I Existing numerical methods are multi-pass

Figure: Example of 1D problem involved in the numerical scheme

Page 89: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Figure: Work in progress with L. Metivier and PhD student F.Desquilbet. (Top) Constant 2D medium. (Bottom) Varying tilt 2Dmedium. (Pics based on closely related approach)

Page 90: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

IntroductionAnisotropy in PDEsLattice geometryVoronoi’s first reduction

Riemannian operatorsAnisotropic diffusionEikonal equation

Hamilton-Jacobi-Bellman operatorsMonge-Ampere equationSeismic wave travel times

Conclusion and perspectives

Page 91: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Perspective: dimension >3

Structure of Voronoi’s decomposition

I Voronoi’s first reduction is nice in dimension d ≤ 3:Unique decomposition depending continuously on thematrix. Unifying concept of superbase. The decompositionsupport spans Zd additively.

I These good properties are lost in dimension d > 3.

Potential applications with d > 3

I (d = 4) Shortest paths with a trailer, in R2 × S× S.I (d = 5) MRI data processing, in R3 × S2.I (d = 6) Three dimensional elasticity.

Hooke tensor in S++(S(R3)), and dim(S(R3)) = 6.

Page 92: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Perspective: dimension >3

Structure of Voronoi’s decomposition

I Voronoi’s first reduction is nice in dimension d ≤ 3:Unique decomposition depending continuously on thematrix. Unifying concept of superbase. The decompositionsupport spans Zd additively.

I These good properties are lost in dimension d > 3.

Potential applications with d > 3

I (d = 4) Shortest paths with a trailer, in R2 × S× S.I (d = 5) MRI data processing, in R3 × S2.I (d = 6) Three dimensional elasticity.

Hooke tensor in S++(S(R3)), and dim(S(R3)) = 6.

Page 93: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Thanks for your attention.

I Cartesian grids, which are natural for numerousapplications, are not incompatible with anisotropic PDEs.

I The tools of lattice geometry yield a new class of adaptivenumerical schemes, which can be fast, robust, accurate.

I Handling (strongly) anisotropic PDEs allows to addressnew models and applications.

Numerical codes, demo notebooks, available atgithub.com/mirebeau/

Page 94: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Thanks for your attention.

I Cartesian grids, which are natural for numerousapplications, are not incompatible with anisotropic PDEs.

I The tools of lattice geometry yield a new class of adaptivenumerical schemes, which can be fast, robust, accurate.

I Handling (strongly) anisotropic PDEs allows to addressnew models and applications.

Numerical codes, demo notebooks, available atgithub.com/mirebeau/

Page 95: reduction Numericalschemesbasedon Introduction Voronoi ... · Monge-Ampere equation Seismicwave traveltimes Conclusion Numericalschemesbasedon Voronoi’sfirstreduction Jean-MarieMirebeau

Voronoi’sreduction

Jean-MarieMirebeau

IntroductionAnisotropy inPDEs

Lattice geometry

Voronoi’s firstreduction

RiemannianoperatorsAnisotropicdiffusion

Eikonal equation

HJBoperatorsMonge-Ampereequation

Seismic wavetravel times

Conclusion

Thanks for your attention.

I Cartesian grids, which are natural for numerousapplications, are not incompatible with anisotropic PDEs.

I The tools of lattice geometry yield a new class of adaptivenumerical schemes, which can be fast, robust, accurate.

I Handling (strongly) anisotropic PDEs allows to addressnew models and applications.

Numerical codes, demo notebooks, available atgithub.com/mirebeau/