reduced basis methods for nonlinear parametrized …reduced basis methods for nonlinear parametrized...

118
Reduced Basis Methods for Nonlinear Parametrized Partial Differential Equations M. Grepl Aachen Institute for Advanced Study in Computational Engineering Science Workshop on Model Order Reduction of Transport-dominated Phenomena Brandenburg-Berlin Academy of Sciences and Humanities May 19-20, 2015

Upload: others

Post on 25-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Reduced Basis Methods for

Nonlinear Parametrized Partial Differential Equations

M. Grepl

Advisory Board MeetingRWTH Aachen University

July 12, 2011

Aachen Institute for Advanced Studyin Computational Engineering Science

AICES Progress since 2009

• Overview of the AICES project

• New Principal Investigators

• New Young Researchers

• New facilities

• Recent highlights

• Goals and schedule of Advisory Board meeting

Outline

2

• Excellence Initiative Graduate School

• First period Nov 2006–Oct 2012

• Annually 1 M! + overhead

• Proposed for 2013–2017

• Funded personnel growth:

Overview of the AICES Project

3

0

4

8

12

16

20

24

28

32

36

40

1 3 3 3 3 3 3

1 1 3 3 4 41

1 1 1 11

6

912

18 201

4

72

2

02/200712/2007

12/200812/2010

Service Team

Junior Research Group Leaders

Adjunct Professors

Doctoral Fellows

Master Students

Postdoctoral Research Associates

• Computational engineering science is maturing

• “Old” challenges are still here:• complexity increasing intricacy of analyzed systems• multiscale interacting scales considered at once• multiphysics interacting physical phenomena

• AICES concentrates on areas of synthesis:• model identification and discovery supported by

model-based experimental analysis (MEXA)• understanding scale interaction and scale integration• optimal design and operation of engineered systems

• Inspiration: Collaborative Research Center 540• established in 1999, continued until 2009• Marquardt: coordinator, 6 AICES PIs: project leads

Overview of AICES Academic Aims

SFB 540

4

Workshop on Model Order Reduction of Transport-dominated Phenomena

Brandenburg-Berlin Academy of Sciences and Humanities

May 19-20, 2015

Page 2: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Acknowledgments

Collaborators:

I Eduard Bader

I Mark Karcher

I Dirk Klindworth

I Robert O’Connor

I Mohammad Rasty

I Karen Veroy

Sponsors:

I Excellence Initiative of the German federal and state governments

I German Research Foundation through Grant GSC 111

M. Grepl (RWTH Aachen) 1

Page 3: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Outline

PART I: A Reduced Basis Primer

I Introduction

I Key Ingredients

I Extensions & References

PART II: Nonlinear (and Nonaffine) Problems

I Empirical Interpolation Method

I Nonlinear Elliptic Problems

I Extensions & References

I Numerical Results

Nonlinear Reaction Diffusion Systems

M. Grepl (RWTH Aachen) 2

Page 4: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Outline

PART I: A Reduced Basis Primer

I Introduction

I Key Ingredients

I Extensions & References

PART II: Nonlinear (and Nonaffine) Problems

I Empirical Interpolation Method

I Nonlinear Elliptic Problems

I Extensions & References

I Numerical Results

Nonlinear Reaction Diffusion Systems

M. Grepl (RWTH Aachen) 2

Page 5: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Outline

PART I: A Reduced Basis Primer

I Introduction

I Key Ingredients

I Extensions & References

PART II: Nonlinear (and Nonaffine) Problems

I Empirical Interpolation Method

I Nonlinear Elliptic Problems

I Extensions & References

I Numerical Results

Nonlinear Reaction Diffusion Systems

M. Grepl (RWTH Aachen) 2

Page 6: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Part I

A Reduced Basis Primer

M. Grepl (RWTH Aachen) 3

Page 7: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Introduction

The Reduced Basis Method

is a model order reduction technique that provides

rapid and reliable approximation of solutions

to parametrized partial differential equations (µPDEs)

for design and optimization, control, parameter estimation, . . .

— i.e., for parameter space exploration.

M. Grepl (RWTH Aachen) 4

Page 8: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Introduction

The Reduced Basis Method

is a model order reduction technique that provides

rapid and reliable approximation of solutions

to parametrized partial differential equations (µPDEs)

for design and optimization, control, parameter estimation, . . .

— i.e., for parameter space exploration.

M. Grepl (RWTH Aachen) 4

Page 9: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Introduction

The Reduced Basis Method

is a model order reduction technique that provides

rapid and reliable approximation of solutions

to parametrized partial differential equations (µPDEs)

for design and optimization, control, parameter estimation, . . .

— i.e., for parameter space exploration.

M. Grepl (RWTH Aachen) 4

Page 10: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Introduction

The Reduced Basis Method

is a model order reduction technique that provides

rapid and reliable approximation of solutions

to parametrized partial differential equations (µPDEs)

for design and optimization, control, parameter estimation, . . .

— i.e., for parameter space exploration.

M. Grepl (RWTH Aachen) 4

Page 11: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Introduction

The Reduced Basis Method

is a model order reduction technique that provides

rapid and reliable approximation of solutions

to parametrized partial differential equations (µPDEs)

for design and optimization, control, parameter estimation, . . .

— i.e., for parameter space exploration.

M. Grepl (RWTH Aachen) 4

Page 12: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Introduction

The Reduced Basis Method

is a model order reduction technique that provides

rapid and reliable approximation of solutions

to parametrized partial differential equations (µPDEs)

for design and optimization, control, parameter estimation, . . .

— i.e., for parameter space exploration.

M. Grepl (RWTH Aachen) 4

Page 13: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACE

a(u(µ), v;µ) = f(v;µ), for all v ∈ X

M. Grepl (RWTH Aachen) 5

Page 14: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACE

a(u(µ), v;µ) = f(v;µ), for all v ∈ X

M. Grepl (RWTH Aachen) 5

Page 15: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACE

a(u(µ), v;µ) = f(v;µ), for all v ∈ X

M. Grepl (RWTH Aachen) 5

Page 16: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACEHIGH-DIMENSIONAL

a(u(µ), v;µ) = f(v;µ), for all v ∈ X

M. Grepl (RWTH Aachen) 5

Page 17: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACE

SNAPSHOTS

u(µi)

HIGH-DIMENSIONAL

XN = spanu(µi) , i = 1, . . . , N

M. Grepl (RWTH Aachen) 5

Page 18: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACE

SNAPSHOTS

u(µi)

EXACT SOLUTION

u(µ)

HIGH-DIMENSIONAL

a(u(µ), v;µ) = f(v;µ), for all v ∈ X

M. Grepl (RWTH Aachen) 5

Page 19: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACE

u(µi)SNAPSHOTS

(1) APPROXIMATIONuN(µ)

EXACT SOLUTION

u(µ)

HIGH-DIMENSIONAL

a(uN(µ), v;µ) = f(v;µ), for all v ∈ XN .

M. Grepl (RWTH Aachen) 5

Page 20: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACE

u(µi)SNAPSHOTS

(2) ERROR BOUND

∆N(µ)

(1) APPROXIMATIONuN(µ)

EXACT SOLUTION

u(µ)

HIGH-DIMENSIONAL

‖u(µ)− uN(µ)‖X ≤ ∆uN

(µ) :=‖rN(·;µ)‖X ′

αLB(µ)

M. Grepl (RWTH Aachen) 5

Page 21: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACE

u(µi)SNAPSHOTS

(2) ERROR BOUND

∆N(µ)

uN(µ)(1) APPROXIMATION

EXACT SOLUTION

u(µ)

HIGH-DIMENSIONAL

(3) OFFLINE-ONLINE COMPUTATIONAL DECOMPOSITION

a(w, v;µ) =Q∑q=1

θq(µ) aq(w, v), ∀w, v ∈ X︸ ︷︷ ︸µ-DEPENDENTCOEFFICIENTS

︸ ︷︷ ︸µ-INDEPENDENTBILINEAR FORMS

M. Grepl (RWTH Aachen) 5

Page 22: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

The Reduced Basis Method

FE SPACE

u(µi)SNAPSHOTS

(2) ERROR BOUND

∆N(µ)

uN(µ)(1) APPROXIMATION

EXACT SOLUTION

u(µ)

HIGH-DIMENSIONAL

(3) OFFLINE-ONLINE COMPUTATIONAL DECOMPOSITION(4) GREEDY ALGORITHM

µn+1 = arg maxµ∈Ds

∆un(µ)

‖uN(µ)‖X

M. Grepl (RWTH Aachen) 5

Page 23: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Problem Statement

We wish to compute, for any parameter µ ∈ D,

s(µ) = `(u(µ);µ) OUTPUT

where u(µ) ∈ X satisfies

a(u, v;µ) = f(v;µ), for all v ∈ X , FEMN (µ)

and

f(v;µ), `(v;µ) are bounded linear functionals

a(·, ·;µ) : X × X → R is continuous and coercive

for all µ ∈ D.

M. Grepl (RWTH Aachen) 6

Page 24: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(1) Approximation

We letXN = span

u(µi)︸ ︷︷ ︸ , i = 1, . . . , N

SNAPSHOTS

and compute our approximation as

sN(µ) = `(uN(µ);µ)

where uN(µ) ∈ XN satisfies

a(uN , v;µ) = f(v;µ), for all v ∈ XN . ROMN(µ)

M. Grepl (RWTH Aachen) 7

Page 25: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(1) Approximation (Algebraic Formulation)

We let

XN =[ζ1︸︷︷︸ ζ2︸︷︷︸ . . . ζN︸︷︷︸ ] s.t. uN(µ) = XNuN(µ)

X -ORTHONORMAL SNAPSHOTS ζi “=” u(µi)

and compute our approximation as

sN(µ) = L(µ)TXN︸ ︷︷ ︸ uN(µ)

= LTN

(µ) uN(µ)

where uN(µ) ∈ RN satisfies

XTNA(µ)XN︸ ︷︷ ︸ uN(µ) = XT

NF (µ)︸ ︷︷ ︸

AN(µ) uN(µ) = FN(µ)

How do we quantify the error?

M. Grepl (RWTH Aachen) 8

Page 26: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(1) Approximation (Algebraic Formulation)

We let

XN =[ζ1︸︷︷︸ ζ2︸︷︷︸ . . . ζN︸︷︷︸ ] s.t. uN(µ) = XNuN(µ)

X -ORTHONORMAL SNAPSHOTS ζi “=” u(µi)

and compute our approximation as

sN(µ) = L(µ)TXN︸ ︷︷ ︸ uN(µ)

= LTN

(µ) uN(µ)

where uN(µ) ∈ RN satisfies

XTNA(µ)XN︸ ︷︷ ︸ uN(µ) = XT

NF (µ)︸ ︷︷ ︸

AN(µ) uN(µ) = FN(µ)

How do we quantify the error?

M. Grepl (RWTH Aachen) 8

Page 27: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(1) Approximation (Algebraic Formulation)

We let

XN =[ζ1︸︷︷︸ ζ2︸︷︷︸ . . . ζN︸︷︷︸ ] s.t. uN(µ) = XNuN(µ)

X -ORTHONORMAL SNAPSHOTS ζi “=” u(µi)

and compute our approximation as

sN(µ) = L(µ)TXN︸ ︷︷ ︸ uN(µ)

= LTN

(µ) uN(µ)

where uN(µ) ∈ RN satisfies

XTNA(µ)XN︸ ︷︷ ︸ uN(µ) = XT

NF (µ)︸ ︷︷ ︸

AN(µ) uN(µ) = FN(µ)

How do we quantify the error?

M. Grepl (RWTH Aachen) 8

Page 28: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(2) Error Estimation

Let α(µ) be the coercivity constant of a

α(µ) := infv∈X

a(v, v;µ)

‖v‖2Xand define residual rN(v;µ) := f(v;µ)− a(uN , v;µ), ∀v ∈ X .

The error, eN(µ) := u(µ)− uN(µ), then satisfies

a(eN , v;µ) = rN(v;µ), ∀ v ∈ X ,

and, for any µ ∈ D and αLB(µ) ≤ α(µ), we have

‖eN(µ)‖X ≤‖rN(·;µ)‖X ′αLB(µ)︸ ︷︷ ︸

=: ∆uN(µ)

and |s− sN | ≤ ‖`‖X ′∆uN︸ ︷︷ ︸

=: ∆`N(µ)

How do we compute uN , sN ,∆uN,∆`

Nefficiently?

M. Grepl (RWTH Aachen) 9

Page 29: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(2) Error Estimation

Let α(µ) be the coercivity constant of a

α(µ) := infv∈X

a(v, v;µ)

‖v‖2Xand define residual rN(v;µ) := f(v;µ)− a(uN , v;µ), ∀v ∈ X .

The error, eN(µ) := u(µ)− uN(µ), then satisfies

a(eN , v;µ) = rN(v;µ), ∀ v ∈ X ,

and, for any µ ∈ D and αLB(µ) ≤ α(µ), we have

‖eN(µ)‖X ≤‖rN(·;µ)‖X ′αLB(µ)︸ ︷︷ ︸

=: ∆uN(µ)

and |s− sN | ≤ ‖`‖X ′∆uN︸ ︷︷ ︸

=: ∆`N(µ)

How do we compute uN , sN ,∆uN,∆`

Nefficiently?

M. Grepl (RWTH Aachen) 9

Page 30: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(2) Error Estimation

Let α(µ) be the coercivity constant of a

α(µ) := infv∈X

a(v, v;µ)

‖v‖2Xand define residual rN(v;µ) := f(v;µ)− a(uN , v;µ), ∀v ∈ X .

The error, eN(µ) := u(µ)− uN(µ), then satisfies

a(eN , v;µ) = rN(v;µ), ∀ v ∈ X ,

and, for any µ ∈ D and αLB(µ) ≤ α(µ), we have

‖eN(µ)‖X ≤‖rN(·;µ)‖X ′αLB(µ)︸ ︷︷ ︸

=: ∆uN(µ)

and |s− sN | ≤ ‖`‖X ′∆uN︸ ︷︷ ︸

=: ∆`N(µ)

How do we compute uN , sN ,∆uN,∆`

Nefficiently?

M. Grepl (RWTH Aachen) 9

Page 31: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(2) Error Estimation

Let α(µ) be the coercivity constant of a

α(µ) := infv∈X

a(v, v;µ)

‖v‖2Xand define residual rN(v;µ) := f(v;µ)− a(uN , v;µ), ∀v ∈ X .

The error, eN(µ) := u(µ)− uN(µ), then satisfies

a(eN , v;µ) = rN(v;µ), ∀ v ∈ X ,

and, for any µ ∈ D and αLB(µ) ≤ α(µ), we have

‖eN(µ)‖X ≤‖rN(·;µ)‖X ′αLB(µ)︸ ︷︷ ︸

=: ∆uN(µ)

and |s− sN | ≤ ‖`‖X ′∆uN︸ ︷︷ ︸

=: ∆`N(µ)

How do we compute uN , sN ,∆uN,∆`

Nefficiently?

M. Grepl (RWTH Aachen) 9

Page 32: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(3) Offline/Online Decomposition

We assume a(v, w;µ) =Q∑q=1

θq(µ) aq(v, w)︸ ︷︷ ︸µ-DEPENDENTCOEFFICIENTS

︸ ︷︷ ︸µ-INDEPENDENTBILINEAR FORMS

so that AN(µ)︸ ︷︷ ︸RB-MATRIX

= XTNA(µ)︸ ︷︷ ︸

FE-MATRIX

XN =Q∑q=1

θq(µ) XTNAqXN︸ ︷︷ ︸

µ-INDEPENDENT

M. Grepl (RWTH Aachen) 10

Page 33: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(3) Offline/Online Decomposition – Example

Affine Parameter Dependence: Example 1

Parameters:µ = ( k0, k1, k2, k3, k4︸ ︷︷ ︸

THERMALCONDUCTIVITIES

)

Governing Equation:

−ki∇2yi = 0

in Ωi, i = 0 to 4

The matrix A(µ) then represents the bilinear form

a(v, w;µ) =4∑i=0

ki︸︷︷︸θq(µ)

∫Ωi

∇v · ∇w︸ ︷︷ ︸“=”Aq

M. Grepl (RWTH Aachen) 11

Page 34: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(3) Offline/Online Decomposition – Example

Affine Parameter Dependence: Example 1

Parameters:µ = ( k0, k1, k2, k3, k4︸ ︷︷ ︸

THERMALCONDUCTIVITIES

)

Governing Equation:

−ki∇2yi = 0

in Ωi, i = 0 to 4

The matrix A(µ) then represents the bilinear form

a(v, w;µ) =4∑i=0

ki︸︷︷︸θq(µ)

∫Ωi

∇v · ∇w︸ ︷︷ ︸“=”Aq

M. Grepl (RWTH Aachen) 11

Page 35: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(3) Offline/Online Decomposition – Example

Affine Parameter Dependence: Example 2

x1

x2

1

PARAMETRIZED DOMAIN

Ω(µ) µ

Bilinear Form on Parameter-Dependent Domain

a(v, w;µ) =

∫Ω(µ)

(∂v

∂x1

∂w

∂x1

+∂v

∂x2

∂w

∂x2

)︸ ︷︷ ︸

∇v·∇w

dΩ(µ), v, w ∈ H1(Ω(µ))

After (Affine) Mapping to a Reference Domain

a(v, w;µ) =

∫Ω

(∂v

∂x1

∂w

∂x1

+1

µ2

∂v

∂x2

∂w

∂x2

)µdΩ, v, w ∈ H1(Ω)

M. Grepl (RWTH Aachen) 12

Page 36: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(3) Offline/Online Decomposition – Example

Affine Parameter Dependence: Example 2

x2Ω(µ)

x1 x1

x2µ

1

PARAMETRIZED DOMAIN

1

REFERENCE DOMAIN

Ω 1

Bilinear Form on Parameter-Dependent Domain

a(v, w;µ) =

∫Ω(µ)

(∂v

∂x1

∂w

∂x1

+∂v

∂x2

∂w

∂x2

)︸ ︷︷ ︸

∇v·∇w

dΩ(µ), v, w ∈ H1(Ω(µ))

After (Affine) Mapping to a Reference Domain

a(v, w;µ) =

∫Ω

(∂v

∂x1

∂w

∂x1

+1

µ2

∂v

∂x2

∂w

∂x2

)µdΩ, v, w ∈ H1(Ω)

M. Grepl (RWTH Aachen) 12

Page 37: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(3) Offline/Online Decomposition

We assume a(v, w;µ) =Q∑q=1

θq(µ) aq(v, w)︸ ︷︷ ︸µ-DEPENDENTCOEFFICIENTS

︸ ︷︷ ︸µ-INDEPENDENTBILINEAR FORMS

so that AN(µ)︸ ︷︷ ︸RB-MATRIX

= XTNA(µ)︸ ︷︷ ︸

FE-MATRIX

XN =Q∑q=1

θq(µ) XTNAqXN︸ ︷︷ ︸

µ-INDEPENDENT

Since all required quantities can be decomposed in this manner, we can

OFFLINE: Form and store µ-independent quantities

at cost O(N ∗)

ONLINE: For any µ ∈ D, compute approx and error bounds

at cost O(QN2 +N3) and O(Q2N2)

How do we choose the snapshots?

M. Grepl (RWTH Aachen) 13

Page 38: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(3) Offline/Online Decomposition

We assume a(v, w;µ) =Q∑q=1

θq(µ) aq(v, w)︸ ︷︷ ︸µ-DEPENDENTCOEFFICIENTS

︸ ︷︷ ︸µ-INDEPENDENTBILINEAR FORMS

so that AN(µ)︸ ︷︷ ︸RB-MATRIX

= XTNA(µ)︸ ︷︷ ︸

FE-MATRIX

XN =Q∑q=1

θq(µ) XTNAqXN︸ ︷︷ ︸

µ-INDEPENDENT

Since all required quantities can be decomposed in this manner, we can

OFFLINE: Form and store µ-independent quantities

at cost O(N ∗)

ONLINE: For any µ ∈ D, compute approx and error bounds

at cost O(QN2 +N3) and O(Q2N2)

How do we choose the snapshots?

M. Grepl (RWTH Aachen) 13

Page 39: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(4) (Weak) Greedy Algorithm

Given X2 = spanu(µ1), u(µ2), how do we choose µ3?

µ3 = arg maxµ∈Ds

∆2(µ)

‖u2(µ)‖X

where Ds ⊂ D is a finite train sample

X3 = spanu(µ1) u(µ2) u(µ3)

Key points:

I ∆n(µ) is sharp and inexpensive to compute (online)

I Error bounds enable choice of good approximation spaces

M. Grepl (RWTH Aachen) 14

Page 40: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(4) (Weak) Greedy Algorithm

Given X2 = spanu(µ1), u(µ2), how do we choose µ3?

µ1

∆n

‖un‖X

µ2

µ3 = arg maxµ∈Ds

∆2(µ)

‖u2(µ)‖X

where Ds ⊂ D is a finite train sample

X3 = spanu(µ1) u(µ2) u(µ3)

Key points:

I ∆n(µ) is sharp and inexpensive to compute (online)

I Error bounds enable choice of good approximation spaces

M. Grepl (RWTH Aachen) 14

Page 41: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(4) (Weak) Greedy Algorithm

Given X2 = spanu(µ1), u(µ2), how do we choose µ3?

∆n

‖un‖X

µ2µ1

µ3 = arg maxµ∈Ds

∆2(µ)

‖u2(µ)‖X

where Ds ⊂ D is a finite train sample

X3 = spanu(µ1) u(µ2) u(µ3)

Key points:

I ∆n(µ) is sharp and inexpensive to compute (online)

I Error bounds enable choice of good approximation spaces

M. Grepl (RWTH Aachen) 14

Page 42: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(4) (Weak) Greedy Algorithm

Given X2 = spanu(µ1), u(µ2), how do we choose µ3?

µ3

∆n

‖un‖X

µ2µ1

µ3 = arg maxµ∈Ds

∆2(µ)

‖u2(µ)‖X

where Ds ⊂ D is a finite train sample

X3 = spanu(µ1) u(µ2) u(µ3)

Key points:

I ∆n(µ) is sharp and inexpensive to compute (online)

I Error bounds enable choice of good approximation spaces

M. Grepl (RWTH Aachen) 14

Page 43: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(4) (Weak) Greedy Algorithm

Given X2 = spanu(µ1), u(µ2), how do we choose µ3?

µ3

∆n

‖un‖X

µ2µ1

µ3 = arg maxµ∈Ds

∆2(µ)

‖u2(µ)‖X

where Ds ⊂ D is a finite train sample

X3 = spanu(µ1) u(µ2) u(µ3)

Key points:

I ∆n(µ) is sharp and inexpensive to compute (online)

I Error bounds enable choice of good approximation spaces

M. Grepl (RWTH Aachen) 14

Page 44: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(4) (Weak) Greedy Algorithm

Given X2 = spanu(µ1), u(µ2), how do we choose µ3?

µ3

∆n

‖un‖X

µ2µ1

µ3 = arg maxµ∈Ds

∆2(µ)

‖u2(µ)‖X

where Ds ⊂ D is a finite train sample

X3 = spanu(µ1) u(µ2) u(µ3)

Key points:

I ∆n(µ) is sharp and inexpensive to compute (online)

I Error bounds enable choice of good approximation spaces

M. Grepl (RWTH Aachen) 14

Page 45: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

(4) (Weak) Greedy Algorithm

Given X2 = spanu(µ1), u(µ2), how do we choose µ3?

µ3

∆n

‖un‖X

µ2µ1

µ3 = arg maxµ∈Ds

∆2(µ)

‖u2(µ)‖X

where Ds ⊂ D is a finite train sample

X3 = spanu(µ1) u(µ2) u(µ3)

Key points:

I ∆n(µ) is sharp and inexpensive to compute (online)

I Error bounds enable choice of good approximation spaces

M. Grepl (RWTH Aachen) 14

Page 46: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Summary

The reduced basis method provides

accurate uN ≈ u APPROX

reliable ∆N ≥ ‖u− uN‖X ERR EST

efficient surrogates cost O(N∗) DECOMP

N small GREEDY

to solutions of parametrized PDEs

for the many-query, real-time,

and slim-computing contexts.

M. Grepl (RWTH Aachen) 15

Page 47: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Extensions & References

Review Articles: [RHP08], [QRM11], . . .

Book: [HRS15]

Reduced Basis Methods for:

I elliptic coercive [PRV+02], [PRVP02], . . .

I elliptic noncoercive [VPRP03], [MPR02], . . .

I saddle point (Stokes) [Rov03], [RV07], [GV12], . . .

I parabolic [GP05], [RMM06], [HO08], [UP14], . . .

I hyperbolic (transport-dominated) [PR07], [HKP11], [DPW14], . . .

Disclaimer:

I List contains – to the best of my knowledge – only the first paperson these topics and is thus not meant to be exhaustive

I References to nonaffine and nonlinear problems to follow . . .M. Grepl (RWTH Aachen) 16

Page 48: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Extensions & References

References by topic for:

I error bounds (adjoint techniques) [PRV+02], [GP05], . . .

I stability factor lower bounds [VRP02], [HRSP07], [HKC+10], [CHMR09],

I a priori convergence [MPT02], . . .

I greedy algorithm

original papger [VPRP03]

convergence analysis [BMP+12], [BCD+11], [DPW12], [Haa13], . . . variations (hpRB, ...) [EPR10], [BTWGvBW07], [BTWG08], . . .

I geometry parametrization [RHP08], [LR10], . . .

I multiscale problems [Ngu08]

I stochastic problems [BBM+09], [BBL+10]

I . . .

Disclaimer: see previous slide . . .M. Grepl (RWTH Aachen) 17

Page 49: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Part II

Nonlinear (and Nonaffine) Problems

M. Grepl (RWTH Aachen) 18

Page 50: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Problems

Distinguish between problems involving

I quadratic nonlinearities

– (Petrov-)Galerkin projection

– A posteriori error bounds: Brezzi-Rappaz-Raviart [BRR80]

– Offline/online: dominant online cost O(N4)

– Ref.: [VPP03], [VP05], [Dep08], [DL12], [RG12], [MPU14], [Yan14], . . .

I higher-order or nonpolynomial nonlinearities

– Additional approximation of nonlinearity (EIM)

– A posteriori error estimation (in general no bounds)

– Offline-online decomposition possible

– References: to follow . . .

M. Grepl (RWTH Aachen) 19

Page 51: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Problems

Distinguish between problems involving

I quadratic nonlinearities

– (Petrov-)Galerkin projection

– A posteriori error bounds: Brezzi-Rappaz-Raviart [BRR80]

– Offline/online: dominant online cost O(N4)

– Ref.: [VPP03], [VP05], [Dep08], [DL12], [RG12], [MPU14], [Yan14], . . .

I higher-order or nonpolynomial nonlinearities

– Additional approximation of nonlinearity (EIM)

– A posteriori error estimation (in general no bounds)

– Offline-online decomposition possible

– References: to follow . . .

M. Grepl (RWTH Aachen) 19

Page 52: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Problems

Distinguish between problems involving

I quadratic nonlinearities

– (Petrov-)Galerkin projection

– A posteriori error bounds: Brezzi-Rappaz-Raviart [BRR80]

– Offline/online: dominant online cost O(N4)

– Ref.: [VPP03], [VP05], [Dep08], [DL12], [RG12], [MPU14], [Yan14], . . .

I higher-order or nonpolynomial nonlinearities

– Additional approximation of nonlinearity (EIM)

– A posteriori error estimation (in general no bounds)

– Offline-online decomposition possible

– References: to follow . . .

M. Grepl (RWTH Aachen) 19

Page 53: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Problem Statement

We wish to compute, for any parameter µ ∈ D,

s(µ) = `(u(µ);µ)

where u(µ) ∈ X satisfies

a(u, v;µ) +

∫Ωgnl(u;x;µ) v = f(v), ∀v ∈ X ,

andf(v;µ), `(v;µ) are bounded linear functionals

a(·, ·;µ) : X × X → R is continuous and coercive

and the nonlinearity satisfies

– gnl : R× Ω×D → R continuous;

– gnl(u1;x;µ) ≤ gnl(u2;x;µ), ∀u1 ≤ u2;

– u gnl(u;x;µ) ≥ 0, ∀u ∈ R, for any x ∈ Ω, µ ∈ D.

M. Grepl (RWTH Aachen) 20

Page 54: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

RB-Galerkin Approximation

We letXN = span

u(µi)︸ ︷︷ ︸ , i = 1, . . . , n

SNAPSHOTS

and compute our approximation as

sN(µ) = `(uN(µ);µ)

where uN(µ) ∈ XN satisfies

a(uN , v;µ) +

∫Ωgnl(uN ;x;µ) v = f(v), ∀ v ∈ XN .

Can we still compute uN efficiently?

M. Grepl (RWTH Aachen) 21

Page 55: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

RB-Galerkin Approximation

We letXN = span

u(µi)︸ ︷︷ ︸ , i = 1, . . . , n

SNAPSHOTS

and compute our approximation as

sN(µ) = `(uN(µ);µ)

where uN(µ) ∈ XN satisfies

a(uN , v;µ) +

∫Ωgnl(uN ;x;µ) v = f(v), ∀ v ∈ XN .

Can we still compute uN efficiently?

M. Grepl (RWTH Aachen) 21

Page 56: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

RB-Galerkin Approximation

Sample Computation:

We expand uN(µ) =

N∑j=1

uN j(µ) ζj ,

and obtain (v = ζi, 1 ≤ i ≤ N )∫Ωgnl(uN(µ);x;µ) ζi =

∫Ωgnl

(N∑j=1

uN j(µ) ζj;x;µ

)ζi

Issues

I Online assembly requires N -dependent cost

I Similar to nonaffine problems: assume gna is nonaffine, then

b(ζi;µ) =

∫Ωgna(x;µ) ζi e.g. e−(x−µ

σ)2

requires N -dependent cost.

M. Grepl (RWTH Aachen) 22

Page 57: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

RB-Galerkin Approximation

Sample Computation:

We expand uN(µ) =

N∑j=1

uN j(µ) ζj ,

and obtain (v = ζi, 1 ≤ i ≤ N )∫Ωgnl(uN(µ);x;µ) ζi =

∫Ωgnl

(N∑j=1

uN j(µ) ζj;x;µ

)ζi

Issues

I Online assembly requires N -dependent cost

I Similar to nonaffine problems: assume gna is nonaffine, then

b(ζi;µ) =

∫Ωgna(x;µ) ζi e.g. e−(x−µ

σ)2

requires N -dependent cost.

M. Grepl (RWTH Aachen) 22

Page 58: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

RB-Galerkin Approximation

Sample Computation:

We expand uN(µ) =

N∑j=1

uN j(µ) ζj ,

and obtain (v = ζi, 1 ≤ i ≤ N )∫Ωgnl(uN(µ);x;µ) ζi =

∫Ωgnl

(N∑j=1

uN j(µ) ζj;x;µ

)ζi

Issues

I Online assembly requires N -dependent cost

I Similar to nonaffine problems: assume gna is nonaffine, then

b(ζi;µ) =

∫Ωgna(x;µ) ζi e.g. e−(x−µ

σ)2

requires N -dependent cost.

M. Grepl (RWTH Aachen) 22

Page 59: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Main Idea:

gna(x;µ) ≈ gnaM

(x;µ) =M∑m=1

ϕMm(µ)︸ ︷︷ ︸EIM

qm(x)︸ ︷︷ ︸Collateral RB

Then: b(ζi;µ) =

∫Ωgna(x;µ) ζi ≈

∫ΩgnaM

(x;µ) ζi

=M∑m=1

ϕMm(µ)

∫Ωqm(x) ζi ,

Issues

I How do we choose XgM = spanqm(x), m = 1, . . . ,M?

I Can we compute the coefficients ϕMm(µ) efficiently?

I How do we quantify the (interpolation) error introduced?

M. Grepl (RWTH Aachen) 23

Page 60: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Main Idea:

gna(x;µ) ≈ gnaM

(x;µ) =M∑m=1

ϕMm(µ)︸ ︷︷ ︸EIM

qm(x)︸ ︷︷ ︸Collateral RB

Then: b(ζi;µ) =

∫Ωgna(x;µ) ζi ≈

∫ΩgnaM

(x;µ) ζi

=M∑m=1

ϕMm(µ)

∫Ωqm(x) ζi ,

Issues

I How do we choose XgM = spanqm(x), m = 1, . . . ,M?

I Can we compute the coefficients ϕMm(µ) efficiently?

I How do we quantify the (interpolation) error introduced?

M. Grepl (RWTH Aachen) 23

Page 61: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Main Idea:

gna(x;µ) ≈ gnaM

(x;µ) =M∑m=1

ϕMm(µ)︸ ︷︷ ︸EIM

qm(x)︸ ︷︷ ︸Collateral RB

Then: b(ζi;µ) =

∫Ωgna(x;µ) ζi ≈

∫ΩgnaM

(x;µ) ζi

=M∑m=1

ϕMm(µ)

∫Ωqm(x) ζi ,

Issues

I How do we choose XgM = spanqm(x), m = 1, . . . ,M?

I Can we compute the coefficients ϕMm(µ) efficiently?

I How do we quantify the (interpolation) error introduced?

M. Grepl (RWTH Aachen) 23

Page 62: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Main Idea:

gna(x;µ) ≈ gnaM

(x;µ) =M∑m=1

ϕMm(µ)︸ ︷︷ ︸EIM

qm(x)︸ ︷︷ ︸Collateral RB

Then: b(ζi;µ) =

∫Ωgna(x;µ) ζi ≈

∫ΩgnaM

(x;µ) ζi

=M∑m=1

ϕMm(µ)

∫Ωqm(x) ζi ,

Issues

I How do we choose XgM = spanqm(x), m = 1, . . . ,M?

I Can we compute the coefficients ϕMm(µ) efficiently?

I How do we quantify the (interpolation) error introduced?

M. Grepl (RWTH Aachen) 23

Page 63: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Greedy Procedure [MNPP07]

Initialize: Choose µg1 ∈ D and set

xT1 = arg maxx∈Ω|g(x;µg1)|, q1 =

g(x;µg1)

g(xT1 ;µg1).

For 1 ≤M ≤Mmax − 1:

I Sample Set

µgM+1 ≡ arg maxµ∈Ξ

gtrain

‖g(·;µ)− gM(·;µ)‖L∞(Ω)

I Interpolation Points

xTM+1

= arg maxx∈Ω|rM+1(x)|,

where rM+1(x) = g(x;µgM+1)− gM(x;µgM+1)

I EIM Space

qM+1(x) =rM+1(x)

rM+1(xTM+1)

M. Grepl (RWTH Aachen) 24

Page 64: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Greedy Procedure [MNPP07]

Initialize: Choose µg1 ∈ D and set

xT1 = arg maxx∈Ω|g(x;µg1)|, q1 =

g(x;µg1)

g(xT1 ;µg1).

For 1 ≤M ≤Mmax − 1:

I Sample Set

µgM+1 ≡ arg maxµ∈Ξ

gtrain

‖g(·;µ)− gM(·;µ)‖L∞(Ω)

I Interpolation Points

xTM+1

= arg maxx∈Ω|rM+1(x)|,

where rM+1(x) = g(x;µgM+1)− gM(x;µgM+1)

I EIM Space

qM+1(x) =rM+1(x)

rM+1(xTM+1)

M. Grepl (RWTH Aachen) 24

Page 65: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Greedy Procedure [MNPP07]

Initialize: Choose µg1 ∈ D and set

xT1 = arg maxx∈Ω|g(x;µg1)|, q1 =

g(x;µg1)

g(xT1 ;µg1).

For 1 ≤M ≤Mmax − 1:

I Sample Set

µgM+1 ≡ arg maxµ∈Ξ

gtrain

‖g(·;µ)− gM(·;µ)‖L∞(Ω)

I Interpolation Points

xTM+1

= arg maxx∈Ω|rM+1(x)|,

where rM+1(x) = g(x;µgM+1)− gM(x;µgM+1)

I EIM Space

qM+1(x) =rM+1(x)

rM+1(xTM+1)

M. Grepl (RWTH Aachen) 24

Page 66: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Greedy Procedure [MNPP07]

Initialize: Choose µg1 ∈ D and set

xT1 = arg maxx∈Ω|g(x;µg1)|, q1 =

g(x;µg1)

g(xT1 ;µg1).

For 1 ≤M ≤Mmax − 1:

I Sample Set

µgM+1 ≡ arg maxµ∈Ξ

gtrain

‖g(·;µ)− gM(·;µ)‖L∞(Ω)

I Interpolation Points

xTM+1

= arg maxx∈Ω|rM+1(x)|,

where rM+1(x) = g(x;µgM+1)− gM(x;µgM+1)

I EIM Space

qM+1(x) =rM+1(x)

rM+1(xTM+1)

M. Grepl (RWTH Aachen) 24

Page 67: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Greedy Procedure [MNPP07]

Initialize: Choose µg1 ∈ D and set

xT1 = arg maxx∈Ω|g(x;µg1)|, q1 =

g(x;µg1)

g(xT1 ;µg1).

For 1 ≤M ≤Mmax − 1:

I Sample Set

µgM+1 ≡ arg maxµ∈Ξ

gtrain

‖g(·;µ)− gM(·;µ)‖L∞(Ω)

I Interpolation Points

xTM+1

= arg maxx∈Ω|rM+1(x)|,

where rM+1(x) = g(x;µgM+1)− gM(x;µgM+1)

I EIM Space

qM+1(x) =rM+1(x)

rM+1(xTM+1)

M. Grepl (RWTH Aachen) 24

Page 68: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Interpolation Points, Samples, and Spaces:

T gM = xT1 ∈ Ω, . . . , xTM∈ Ω,

SgM ≡ µg1 ∈ D, . . . , µgM ∈ D, and associated

XgM = spanq1, . . . , qM, 1 ≤M ≤Mmax,

chosen by greedy procedure.

Approximation: for given µ ∈ D

g(x;µ) ≈ gM(x;µ) =M∑m=1

ϕMm(µ) qm(x),

whereM∑m=1

qm(xTn) ϕMm(µ) = g(xTn ;µ), 1 ≤ n ≤M.

Note: BMnm = qm(xTn) lower triangular and invertible.

How do we quantify the (interpolation) error?

M. Grepl (RWTH Aachen) 25

Page 69: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Interpolation Points, Samples, and Spaces:

T gM = xT1 ∈ Ω, . . . , xTM∈ Ω,

SgM ≡ µg1 ∈ D, . . . , µgM ∈ D, and associated

XgM = spanq1, . . . , qM, 1 ≤M ≤Mmax,

chosen by greedy procedure.

Approximation: for given µ ∈ D

g(x;µ) ≈ gM(x;µ) =M∑m=1

ϕMm(µ) qm(x),

whereM∑m=1

qm(xTn) ϕMm(µ) = g(xTn ;µ), 1 ≤ n ≤M.

Note: BMnm = qm(xTn) lower triangular and invertible.

How do we quantify the (interpolation) error?

M. Grepl (RWTH Aachen) 25

Page 70: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

Interpolation Points, Samples, and Spaces:

T gM = xT1 ∈ Ω, . . . , xTM∈ Ω,

SgM ≡ µg1 ∈ D, . . . , µgM ∈ D, and associated

XgM = spanq1, . . . , qM, 1 ≤M ≤Mmax,

chosen by greedy procedure.

Approximation: for given µ ∈ D

g(x;µ) ≈ gM(x;µ) =M∑m=1

ϕMm(µ) qm(x),

whereM∑m=1

qm(xTn) ϕMm(µ) = g(xTn ;µ), 1 ≤ n ≤M.

Note: BMnm = qm(xTn) lower triangular and invertible.

How do we quantify the (interpolation) error?

M. Grepl (RWTH Aachen) 25

Page 71: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

“Next Point” Estimator

Given an approximation gM(x;µ) for M ≤Mmax − 1, we define

εM(µ) ≡ |g(xTM+1

;µ)− gM(xTM+1

;µ)|

and, if g( · ;µ) ∈ XgM+1, we have

‖g( · ;µ)− gM( · ;µ)‖L∞(Ω) ≤ εM(µ).

Note

I The estimator εM(µ) is very cheap to evaluate

I In general g( · ;µ) 6∈ XgM+1, and hence our estimator εM(µ) is

indeed a lower bound

I An a posteriori error bound exists [EGP10], but does not extend tothe nonlinear case

M. Grepl (RWTH Aachen) 26

Page 72: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

“Next Point” Estimator

Given an approximation gM(x;µ) for M ≤Mmax − 1, we define

εM(µ) ≡ |g(xTM+1

;µ)− gM(xTM+1

;µ)|

and, if g( · ;µ) ∈ XgM+1, we have

‖g( · ;µ)− gM( · ;µ)‖L∞(Ω) ≤ εM(µ).

Note

I The estimator εM(µ) is very cheap to evaluate

I In general g( · ;µ) 6∈ XgM+1, and hence our estimator εM(µ) is

indeed a lower bound

I An a posteriori error bound exists [EGP10], but does not extend tothe nonlinear case

M. Grepl (RWTH Aachen) 26

Page 73: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

“Next Point” Estimator

Given an approximation gM(x;µ) for M ≤Mmax − 1, we define

εM(µ) ≡ |g(xTM+1

;µ)− gM(xTM+1

;µ)|

and, if g( · ;µ) ∈ XgM+1, we have

‖g( · ;µ)− gM( · ;µ)‖L∞(Ω) ≤ εM(µ).

Note

I The estimator εM(µ) is very cheap to evaluate

I In general g( · ;µ) 6∈ XgM+1, and hence our estimator εM(µ) is

indeed a lower bound

I An a posteriori error bound exists [EGP10], but does not extend tothe nonlinear case

M. Grepl (RWTH Aachen) 26

Page 74: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Empirical Interpolation Method

“Next Point” Estimator

Given an approximation gM(x;µ) for M ≤Mmax − 1, we define

εM(µ) ≡ |g(xTM+1

;µ)− gM(xTM+1

;µ)|

and, if g( · ;µ) ∈ XgM+1, we have

‖g( · ;µ)− gM( · ;µ)‖L∞(Ω) ≤ εM(µ).

Note

I The estimator εM(µ) is very cheap to evaluate

I In general g( · ;µ) 6∈ XgM+1, and hence our estimator εM(µ) is

indeed a lower bound

I An a posteriori error bound exists [EGP10], but does not extend tothe nonlinear case

M. Grepl (RWTH Aachen) 26

Page 75: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

EIM-RB-Galerkin Approximation

Given µ ∈ D, we evaluate

sN,M(µ) = `(uN,M(µ);µ)

where uN,M(µ) ∈ XN satisfies

a(uN,M , v;µ) +

∫Ωg

nl,uN,MM (x;µ) v = f(v), ∀ v ∈ XN .

and

gnl,uN,MM (x;µ) ≡

M∑m=1

ϕMm(µ)qm(x),

withM∑j=1

BMij ϕM j(µ) = gnl(uN,M(xTi ;µ);xTi ;µ), 1 ≤ i ≤M.

Admits offline/online treatment:online cost (per Newton iteration) O(M2 +MN2 +N3)

How do we quantify the (RB+EIM) error?

M. Grepl (RWTH Aachen) 27

Page 76: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

EIM-RB-Galerkin Approximation

Given µ ∈ D, we evaluate

sN,M(µ) = `(uN,M(µ);µ)

where uN,M(µ) ∈ XN satisfies

a(uN,M , v;µ) +

∫Ωg

nl,uN,MM (x;µ) v = f(v), ∀ v ∈ XN .

and

gnl,uN,MM (x;µ) ≡

M∑m=1

ϕMm(µ)qm(x),

withM∑j=1

BMij ϕM j(µ) = gnl(uN,M(xTi ;µ);xTi ;µ), 1 ≤ i ≤M.

Admits offline/online treatment:online cost (per Newton iteration) O(M2 +MN2 +N3)

How do we quantify the (RB+EIM) error?

M. Grepl (RWTH Aachen) 27

Page 77: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

EIM-RB-Galerkin Approximation

Given µ ∈ D, we evaluate

sN,M(µ) = `(uN,M(µ);µ)

where uN,M(µ) ∈ XN satisfies

a(uN,M , v;µ) +

∫Ωg

nl,uN,MM (x;µ) v = f(v), ∀ v ∈ XN .

and

gnl,uN,MM (x;µ) ≡

M∑m=1

ϕMm(µ)qm(x),

withM∑j=1

BMij ϕM j(µ) = gnl(uN,M(xTi ;µ);xTi ;µ), 1 ≤ i ≤M.

Admits offline/online treatment:online cost (per Newton iteration) O(M2 +MN2 +N3)

How do we quantify the (RB+EIM) error?

M. Grepl (RWTH Aachen) 27

Page 78: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Error Estimation

Define the dual norm

ϑqM = supv∈X

∫Ω qM+1 v

‖v‖Xand the residual, for all v ∈ X ,

rN,M(v;µ) := f(v)− a(uN,M , v;µ)−∫

Ωg

nl,uN,MM (x;µ) v.

If gnl(uN,M ;x;µ) ∈ XgM+1, the error, eN,M := u− uN,M , is

bounded by

‖eN,M(µ)‖X ≤1

αLB(µ)

(‖rN,M(·;µ)‖X ′ + εM(µ)ϑq

M

).

Note

I Admits offline/online treatment: online cost O(M2N2)

I In general gnl(uN,M ;x;µ) 6∈ XgM+1, and hence the bound is

more like an estimator

M. Grepl (RWTH Aachen) 28

Page 79: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Error Estimation

Define the dual norm

ϑqM = supv∈X

∫Ω qM+1 v

‖v‖Xand the residual, for all v ∈ X ,

rN,M(v;µ) := f(v)− a(uN,M , v;µ)−∫

Ωg

nl,uN,MM (x;µ) v.

If gnl(uN,M ;x;µ) ∈ XgM+1, the error, eN,M := u− uN,M , is

bounded by

‖eN,M(µ)‖X ≤1

αLB(µ)

(‖rN,M(·;µ)‖X ′ + εM(µ)ϑq

M

).

Note

I Admits offline/online treatment: online cost O(M2N2)

I In general gnl(uN,M ;x;µ) 6∈ XgM+1, and hence the bound is

more like an estimator

M. Grepl (RWTH Aachen) 28

Page 80: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Error Estimation

Define the dual norm

ϑqM = supv∈X

∫Ω qM+1 v

‖v‖Xand the residual, for all v ∈ X ,

rN,M(v;µ) := f(v)− a(uN,M , v;µ)−∫

Ωg

nl,uN,MM (x;µ) v.

If gnl(uN,M ;x;µ) ∈ XgM+1, the error, eN,M := u− uN,M , is

bounded by

‖eN,M(µ)‖X ≤1

αLB(µ)

(‖rN,M(·;µ)‖X ′ + εM(µ)ϑq

M

).

Note

I Admits offline/online treatment: online cost O(M2N2)

I In general gnl(uN,M ;x;µ) 6∈ XgM+1, and hence the bound is

more like an estimator

M. Grepl (RWTH Aachen) 28

Page 81: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Error Estimation

Define the dual norm

ϑqM = supv∈X

∫Ω qM+1 v

‖v‖Xand the residual, for all v ∈ X ,

rN,M(v;µ) := f(v)− a(uN,M , v;µ)−∫

Ωg

nl,uN,MM (x;µ) v.

If gnl(uN,M ;x;µ) ∈ XgM+1, the error, eN,M := u− uN,M , is

bounded by

‖eN,M(µ)‖X ≤1

αLB(µ)

(‖rN,M(·;µ)‖X ′ + εM(µ)ϑq

M

).

Note

I Admits offline/online treatment: online cost O(M2N2)

I In general gnl(uN,M ;x;µ) 6∈ XgM+1, and hence the bound is

more like an estimatorM. Grepl (RWTH Aachen) 28

Page 82: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Parabolic Problems

We wish to compute, for any µ ∈ D,

s(t;µ) = `(u(t;µ))

where u(t;µ) ∈ Y , satisfies u(0;µ) = 0

m(u(t;µ), v;µ) + a(u(t;µ), v;µ)

+

∫Ωgnl(u(t;µ);x;µ) v = b(v)u(t), ∀v ∈ Y.

Key Ingredients:

I FE[x]-FD[t] truth approximation

I POD/Greedy algorithm to construct XN and XgM

I Error bound/estimator for space-time energy norm

I Online cost: O(M2 +MN2 +N3)† plus O(KM2N2).

† Cost per Newton iteration per timestep.

M. Grepl (RWTH Aachen) 29

Page 83: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Parabolic Problems

We wish to compute, for any µ ∈ D,

s(t;µ) = `(u(t;µ))

where u(t;µ) ∈ Y , satisfies u(0;µ) = 0

m(u(t;µ), v;µ) + a(u(t;µ), v;µ)

+

∫Ωgnl(u(t;µ);x;µ) v = b(v)u(t), ∀v ∈ Y.

Key Ingredients:

I FE[x]-FD[t] truth approximation

I POD/Greedy algorithm to construct XN and XgM

I Error bound/estimator for space-time energy norm

I Online cost: O(M2 +MN2 +N3)† plus O(KM2N2).

† Cost per Newton iteration per timestep.

M. Grepl (RWTH Aachen) 29

Page 84: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Parabolic Problems

We wish to compute, for any µ ∈ D,

s(t;µ) = `(u(t;µ))

where u(t;µ) ∈ Y , satisfies u(0;µ) = 0

m(u(t;µ), v;µ) + a(u(t;µ), v;µ)

+

∫Ωgnl(u(t;µ);x;µ) v = b(v)u(t), ∀v ∈ Y.

Key Ingredients:

I FE[x]-FD[t] truth approximation

I POD/Greedy algorithm to construct XN and XgM

I Error bound/estimator for space-time energy norm

I Online cost: O(M2 +MN2 +N3)† plus O(KM2N2).

† Cost per Newton iteration per timestep.

M. Grepl (RWTH Aachen) 29

Page 85: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Parabolic Problems

We wish to compute, for any µ ∈ D,

s(t;µ) = `(u(t;µ))

where u(t;µ) ∈ Y , satisfies u(0;µ) = 0

m(u(t;µ), v;µ) + a(u(t;µ), v;µ)

+

∫Ωgnl(u(t;µ);x;µ) v = b(v)u(t), ∀v ∈ Y.

Key Ingredients:

I FE[x]-FD[t] truth approximation

I POD/Greedy algorithm to construct XN and XgM

I Error bound/estimator for space-time energy norm

I Online cost: O(M2 +MN2 +N3)† plus O(KM2N2).

† Cost per Newton iteration per timestep.

M. Grepl (RWTH Aachen) 29

Page 86: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Parabolic Problems

We wish to compute, for any µ ∈ D,

s(t;µ) = `(u(t;µ))

where u(t;µ) ∈ Y , satisfies u(0;µ) = 0

m(u(t;µ), v;µ) + a(u(t;µ), v;µ)

+

∫Ωgnl(u(t;µ);x;µ) v = b(v)u(t), ∀v ∈ Y.

Key Ingredients:

I FE[x]-FD[t] truth approximation

I POD/Greedy algorithm to construct XN and XgM

I Error bound/estimator for space-time energy norm

I Online cost: O(M2 +MN2 +N3)† plus O(KM2N2).

† Cost per Newton iteration per timestep.

M. Grepl (RWTH Aachen) 29

Page 87: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Extensions & References

Empirical Interpolation Method:

I methodology [BMNP04], [GMNP07], [MNPP07], . . .

I error bounds [EGP10], [EGPR13], . . .

I generalized EIM [MM13], [MMPY15], . . .

I variations [CS10], . . .

Related Methods:

I best points interpolation [NPP08], . . .

I adaptive cross approximation [Beb00], [Beb11], . . .

I gappy POD [ES95], [BTDW04], [Wil06], [GFWG10], . . .

I missing point estimation [AWWB08], . . .

For a comparison of these methods: [BMS14]

M. Grepl (RWTH Aachen) 30

Page 88: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Extensions & References

RB for nonaffine problems:

I elliptic [BMNP04], [GMNP07], [Ngu07], [Roz09], . . .

I parabolic [GMNP07], [Gre12a], [KGV12], . . .

RB for nonlinear problems:

I elliptic [GMNP07], [NP08], [CTU09], . . .

I parabolic [GMNP07], [Gre12a], [DHO12], [Gre12b], . . .

Issues

I Convergence and stability of EIM-RB approximation

I Greedy EIM algorithm requires (truth) solution at all µ ∈ Ds

I Simultaneous EIM + RB [DP15]

M. Grepl (RWTH Aachen) 31

Page 89: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Model Problem

Given µ = (µ1, µ2) ∈ D ≡ [0.01, 10]2, evaluate Ω =]0, 1[2

sk(µ) =

∫Ωuk(µ)

where uk(µ) ∈ X , 1 ≤ k ≤ K, satisfies u0(µ) = 0

1∆tm(uk(µ)− uk−1(µ), v) + a(uk(µ), v)

+

∫Ωgnl(uk(µ);x;µ) v = b(v) sin(2πtk), ∀ v ∈ X ,

with gnl(uk(µ);x;µ) = µ1eµ2 uk(µ) − 1

µ2.

Truth Approximation:

I Space: X ⊂ X e ≡ H10(Ω) with dimension N = 2601;

I Time: I = (0, 2], ∆t = 0.01, and thus K = 200.M. Grepl (RWTH Aachen) 32

Page 90: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Sample Results

Truth solution u(tk;µ) at time tk = 25∆t and

µ = (0.01, 0.01) µ = (10, 10)

0

0.5

1

0

0.5

1−1.5

−1

−0.5

0

0.5

1

1.5

x(1)

Solution for µ = (0.01,0.01), tk = 25 ∆ t

x(2)

yk (µ)

0

0.5

1

0

0.5

1−1.5

−1

−0.5

0

0.5

1

1.5

x(1)

Solution for µ = (10,10), tk = 25 ∆ t

x(2)

yk (µ)

b(v) = 100∫Ω v sin(2πx1) sin(2πx2)

M. Grepl (RWTH Aachen) 33

Page 91: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Convergence: Energy Norm

0 5 10 15 20 25 30 35 40 45 50 5510

−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

N

ε N,M

,max

,rel

y

M = 10M = 20M = 40M = 60M = 80M = 100

0 5 10 15 20 25 30 35 40 45 50 5510

−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

N

∆ N,M

,max

,rel

y

M = 20M = 40M = 70M = 100M = 130M = 160

Results for sample Ξtest ∈ D of size 225.

I “Plateau” in curves for M fixed.

I “Knees” reflect balanced contribution of both error terms.

I Sharp bounds require conservative choice of M .

M. Grepl (RWTH Aachen) 34

Page 92: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Convergence: Energy Norm & Output

N M εyN,M,max,rel ∆yN,M,max,rel ηyN,M

1 40 3.83E – 01 1.15E + 00 2.445 60 1.32E – 02 4.59E – 02 2.4310 80 9.90E – 04 3.41E – 03 2.1020 100 9.40E – 05 4.16E – 04 2.7740 140 3.36E – 06 8.75E – 06 1.64

N M εsN,M,max,rel ∆sN,M,max,rel ηsN,M

1 40 9.99E – 01 2.49E + 01 14.15 60 5.35E – 03 1.00E + 00 13010 80 2.57E – 04 7.42E – 02 14620 100 1.43E – 05 9.06E – 03 43640 140 2.85E – 06 1.90E – 04 205

Results for sample Ξtest ∈ D of size 225.

M. Grepl (RWTH Aachen) 35

Page 93: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Online Computational Times

N M sN,M(µ, tk) ∆sN,M(µ, tk) s(µ, tk)

1 40 5.42E – 05 9.29E – 05 15 60 9.67E – 05 8.58E – 05 110 80 1.19E – 04 9.37E – 05 120 100 1.71E – 04 1.05E – 04 140 140 3.15E – 04 1.35E – 04 1

Average CPU times for sample Ξtest ∈ D of size 225.

I Computational savings O(103) for ∆sN,M,max,rel < 1%.

I But offline stage much more expensive than for linear case.

M. Grepl (RWTH Aachen) 36

Page 94: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Reaction-Diffusion Systems

General formulation: [Gre12b]

∂y(x, t;µ)

∂t= ∇(D(µ)∇y(x, t;µ)) + f(y(x, t;µ);µ)

Self-ignition of a coal stockpile∂T (x,t)∂t

= ∇2T (x, t) + βΦ2 (c(x, t) + 1) e−γ/(T (x,t)+1),

∂c(x,t)∂t

= Le∇2c(x, t)− Φ2 (c(x, t) + 1) e−γ/(T (x,t)+1),

where

γ : Arrhenius number,

β : Prater temperature,

Le : Lewis number,

Φ : Thiele modulus.

s1

s2

T (x, t)

c(x, t)

0.50.20 1 x

1

I Nonlinearity not monotonic: a posterior error bounds not valid.

M. Grepl (RWTH Aachen) 37

Page 95: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Reaction-Diffusion Systems

I Very complex dynamic behavior (depending on parameters).

I Here: µ ≡ γ ∈ [12, 12.6], all other parameters fixed, N = 501

Temperature and Concentration: γ = 12.0

0 1 2 3 4 5 60

0.5

1

1.5

2

2.5

3

3.5

4Outputs, µ = 12

Time t

Out

put

s1(t;µ): Temperature

s2(t;µ): Concentration

1 1.5 2 2.5 3 3.50

0.1

0.2

0.3

0.4

0.5

0.6

Temperature s1(t;µ)

Con

cent

ratio

n s 2(t

;µ)

Phase Plot: µ = 12.0

M. Grepl (RWTH Aachen) 38

Page 96: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Reaction-Diffusion Systems

I Very complex dynamic behavior (depending on parameters).

I Here: µ ≡ γ ∈ [12, 12.6], all other parameters fixed, N = 501

Temperature and Concentration: γ = 12.5

0 1 2 3 4 5 60

0.5

1

1.5

2

2.5

3

3.5

4Outputs, µ = 12.5

Time t

Out

put

s1(t;µ): Temperature

s2(t;µ): Concentration

1.2 1.4 1.6 1.8 2 2.2 2.40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Temperature s1(t;µ)

Con

cent

ratio

n s 2(t

;µ)

Phase Plot: µ = 12.5

M. Grepl (RWTH Aachen) 38

Page 97: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Reaction-Diffusion Systems

I Very complex dynamic behavior (depending on parameters).

I Here: µ ≡ γ ∈ [12, 12.6], all other parameters fixed, N = 501

Temperature and Concenctration: γ = 12.58

0 1 2 3 4 5 60

0.5

1

1.5

2

2.5

3

3.5

4Outputs, µ = 12.58

Time t

Out

put

s1(t;µ): Temperature

s2(t;µ): Concentration

1.2 1.4 1.6 1.8 2 2.2 2.40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Temperature s1(t;µ)

Con

cent

ratio

n s 2(t

;µ)

Phase Plot: µ = 12.58

M. Grepl (RWTH Aachen) 38

Page 98: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Reaction-Diffusion Systems

I Very complex dynamic behavior (depending on parameters).

I Here: µ ≡ γ ∈ [12, 12.6], all other parameters fixed, N = 501NT = Nc = 16, M = 36: tRB/tFEM = 5.12E – 03

FEM solution and RB approximation: γ = 12.6

0 1 2 3 4 5 60

1

2

3

4

Time t

Out

put s

1(t;µ

)

Temperature, µ = 12.6

s1(t;µ)

s1,N

(t;µ)

0 1 2 3 4 5 610

−8

10−6

10−4

10−2

Time t

Rel

. Err

or in

s1(t

;µ)

0 1 2 3 4 5 60

0.20.40.60.8

1

Time t

Out

put s

2(t;µ

)

Concentration, µ = 12.6

s2(t;µ)

s2,N

(t;µ)

0 1 2 3 4 5 610

−8

10−6

10−4

10−2

Time t

Rel

. Err

or in

s2(t

;µ)

M. Grepl (RWTH Aachen) 38

Page 99: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Reaction-Diffusion Systems

I Very complex dynamic behavior (depending on parameters).

I Here: µ ≡ γ ∈ [12, 12.6], all other parameters fixed, N = 501NT = Nc = 16, M = 36: tRB/tFEM = 5.12E – 03

FEM, RB, and output interpolation: γ = 12.5

0 1 2 3 4 5 60

1

2

3

4

Time t

Ou

tpu

t s

1(t

;µ)

Temperature, µ = 12.5

0 1 2 3 4 5 610

−8

10−6

10−4

10−2

100

Time t

Re

l. E

rro

r in

s1(t

;µ)

s1(t;µ)

s1,N

(t;µ)

s1,int

(t;µ)

RB

Int.

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Time t

Ou

tpu

t s

2(t

;µ)

Concentration, µ = 12.5

0 1 2 3 4 5 610

−8

10−6

10−4

10−2

100

Time t

Re

l. E

rro

r in

s2(t

;µ)

s2(t;µ)

s2,N

(t;µ)

s2,int

(t;µ)

RB

Int.

M. Grepl (RWTH Aachen) 38

Page 100: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Nonlinear Reaction-Diffusion Systems

I Very complex dynamic behavior (depending on parameters).

I Here: µ ≡ γ ∈ [12, 12.6], all other parameters fixed, N = 501NT = Nc = 16, M = 36: tRB/tFEM = 5.12E – 03

FEM, RB, and output interpolation: γ = 12.5

0.5 0.55 0.6 0.65 0.7 0.75 0.80

1

2

3

4

Time t

Ou

tpu

t s

1(t

;µ)

Temperature, µ = 12.5

0.5 0.55 0.6 0.65 0.7 0.75 0.810

−8

10−6

10−4

10−2

100

Time t

Re

l. E

rro

r in

s1(t

;µ)

s1(t;µ)

s1,N

(t;µ)

s1,int

(t;µ)

RB

Int.

0.5 0.55 0.6 0.65 0.7 0.75 0.80

0.2

0.4

0.6

0.8

1

Time t

Ou

tpu

t s

2(t

;µ)

Concentration, µ = 12.5

0.5 0.55 0.6 0.65 0.7 0.75 0.810

−8

10−6

10−4

10−2

100

Time t

Re

l. E

rro

r in

s2(t

;µ)

s2(t;µ)

s2,N

(t;µ)

s2,int

(t;µ)

RB

Int.

M. Grepl (RWTH Aachen) 38

Page 101: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

References I

[AWWB08] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing point estimation in models described by properorthogonal decomposition. IEEE Transactions on Automatic Control, 53(10):2237–2251, 2008.

[BBL+10] S. Boyaval, C. Le Bris, T. Lelievre, Y. Maday, N.C. Nguyen, and A.T. Patera. Reduced basis techniquesfor stochastic problems. Arch. Comput. Method. E., 17:435–454, 2010.

[BBM+09] S. Boyaval, C. Le Bris, Y. Maday, N.C. Nguyen, and A.T. Patera. A reduced basis approach forvariational problems with stochastic parameters: Application to heat conduction with variable robincoefficient. Comput. Methods Appl. Mech. Engrg., 198(41-44):3187 – 3206, 2009.

[BCD+11] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. Convergence rates forgreedy algorithms in reduced basis methods. SIAM J. Math. Anal., 43(3):1457–1472, 2011.

[Beb00] M. Bebendorf. Approximation of boundary element matrices. Numer. Math., 86(4):565–589, 2000.

[Beb11] M. Bebendorf. Adaptive cross approximation of multivariate functions. Constr. Approx., 34(2):149–179,2011.

[BMNP04] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An ’empirical interpolation’ method: applicationto efficient reduced-basis discretization of partial differential equations. C. R. Math., 339(9):667 – 672,2004.

[BMP+12] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme, and G. Turinici. A priori convergence of the greedyalgorithm for the parametrized reduced basis method. ESAIM: Math. Model. Num., 46(03):595–603, 42012.

[BMS14] M. Bebendorf, Y. Maday, and B. Stamm. Comparison of some reduced representation approximations. InA. Quarteroni and G. Rozza, editors, Reduced Order Methods for Modeling and ComputationalReduction, volume 9 of MS&A - Modeling, Simulation and Applications, pages 67–100. SpringerInternational Publishing, 2014.

[BRR80] F. Brezzi, J. Rappaz, and P. A. Raviart. Finite dimensional approximation of nonlinear problems. Numer.Math., 38(1):1–30, 1980. 10.1007/BF01395805.

M. Grepl (RWTH Aachen) 39

Page 102: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

References II

[BTDW04] T. Bui-Thanh, M. Damodaran, and K. Willcox. Aerodynamic data reconstruction and inverse designusing proper orthogonal decomposition. AIAA Journal, 42(8):1505–1516, 2004.

[BTWG08] T. Bui-Thanh, K. Willcox, and O. Ghattas. Model reduction for large-scale systems withhigh-dimensional parametric input space. SIAM J. Sci. Comput., 30:3270–3288, October 2008.

[BTWGvBW07] T. Bui-Thanh, K. Willcox, O. Ghattas, and B. van Bloemen Waanders. Goal-oriented, model-constrainedoptimization for reduction of large-scale systems. J. Comput. Phys., 224(2):880 – 896, 2007.

[CHMR09] Y. Chen, J.S. Hesthaven, Y. Maday, and J. Rodrıguez. Improved successive constraint method based aposteriori error estimate for reduced basis approximation of 2d maxwell’s problem. ESAIM: Math. Model.Num., null:1099–1116, 10 2009.

[CS10] S. Chaturantabut and D.C. Sorensen. Nonlinear model reduction via discrete empirical interpolation.SIAM J. Sci. Comput., 32(5):2737–2764, 2010.

[CTU09] C. Canuto, T. Tonn, and K. Urban. A-posteriori error analysis of the reduced basis method for non-affineparameterized nonlinear pde’s. SIAM J. Numer. Anal., 47:2001–2022, 2009.

[Dep08] S. Deparis. Reduced basis error bound computation of parameter-dependent Navier-Stokes equations bythe natural norm approach. SIAM Journal of Numerical Analysis, 46(4):2039–2067, 2008.

[DHO12] M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced basis approximation for nonlinear parametrizedevolution equations based on empirical operator interpolation. SIAM J. Sci. Comput., 34(2):A937–A969,2012.

[DL12] S. Deparis and A.E. Løvgren. Stabilized reduced basis approximation of incompressible three-dimensionalNavier-Stokes equations in parametrized deformed domains. J. Sci. Comput., 50:198–212, 2012.10.1007/s10915-011-9478-2.

[DP15] C. Daversin and C. Prud’homme. Simultaneous empirical interpolation and reduced basis method fornon-linear problems. Technical report, arXiv:1504.06131 [math.AP], 2015.

M. Grepl (RWTH Aachen) 40

Page 103: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

References III

[DPW12] R. DeVore, G. Petrova, and P. Wojtaszczyk. Greedy algorithms for reduced bases in Banach spaces.Constr. Approx., 2012.

[DPW14] W. Dahmen, C. Plesken, and G. Welper. Double greedy algorithms: Reduced basis methods for transportdominated problems. ESAIM: Mathematical Modelling and Numerical Analysis, 48:623–663, 5 2014.

[EGP10] J.L. Eftang, M.A. Grepl, and A.T. Patera. A posteriori error bounds for the empirical interpolationmethod. C. R. Math., 348:575–579, 2010.

[EGPR13] J.L. Eftang, M.A. Grepl, A.T. Patera, and E.M. Rønquist. Approximation of parametric derivatives bythe empirical interpolation method. Foundations of Computational Mathematics, 13(5):763–787, 2013.

[EPR10] J.L. Eftang, A.T. Patera, and E.M. Rønquist. An ”hp” certified reduced basis method for parametrizedelliptic partial differential equations. SIAM J. Sci. Comput., 32:3170–3200, 2010.

[ES95] R. Everson and L. Sirovich. Karhunen-Loeve procedure for gappy data. JOSA A, 12(8):1657–1664, 1995.

[GFWG10] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas. Non-linear model reduction for uncertaintyquantification in large-scale inverse problems. Int. J. Numer. Meth. Engng, 81(12):1581–1608, 2010.

[GMNP07] M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera. Efficient reduced-basis treatment of nonaffine andnonlinear partial differential equations. ESAIM: Math. Model. Num., 41(3):575–605, 2007.

[GP05] M.A. Grepl and A.T. Patera. A posteriori error bounds for reduced-basis approximations of parametrizedparabolic partial differential equations. ESAIM: Math. Model. Num., 39(1):157–181, 2005.

[Gre12a] M.A. Grepl. Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolicpartial differential equations. M3AS: Mathematical Models and Methods in Applied Sciences, 22(3):40,2012.

[Gre12b] M.A. Grepl. Model order reduction of parametrized nonlinear reaction-diffusion systems. Computers andChemical Engineering, 43(0):33 – 44, 2012.

M. Grepl (RWTH Aachen) 41

Page 104: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

References IV

[GV12] A.-L. Gerner and K. Veroy. Certified reduced basis methods for parametrized saddle point problems.SIAM J. Sci. Comput., 34(5):A2812–A2836, 2012.

[Haa13] B. Haasdonk. Convergence rates of the pod-greedy method. ESAIM: Math. Model. Num., 47:859–873, 42013.

[HKC+10] D. B. P. Huynh, D. J. Knezevic, Y. Chen, J.S. Hesthaven, and A.T. Patera. A natural-norm successiveconstraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Engrg.,199(29-32):1963–1975, 2010.

[HKP11] D. P. B. Huynh, D. J. Knezevic, and A. T. Patera. A laplace transform certified reduced basis method;application to the heat equation and wave equation. C. R. Math., 349:401–405, 2011.

[HO08] B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume approximations of parametrizedlinear evolution equations. ESAIM: Math. Model. Num., 42(02):277–302, 2008.

[HRS15] J.S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Problems.Springer Briefs in Mathematics. Springer, 2015.

[HRSP07] D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera. A successive constraint linear optimization methodfor lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math., 345(8):473–478,2007.

[KGV12] D. Klindworth, M.A. Grepl, and G. Vossen. Certified reduced basis methods for parametrized parabolicpartial differential equations with non-affine source terms. Comput. Methods Appl. Mech. Engrg.,209-212(0):144–155, 2012.

[LR10] T. Lassila and G. Rozza. Parametric free-form shape design with pde models and reduced basis method.Comput. Methods Appl. Mech. Engrg., 199(23-24):1583–1592, 2010.

M. Grepl (RWTH Aachen) 42

Page 105: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

References V

[MM13] Y. Maday and O. Mula. A generalized empirical interpolation method: Application of reduced basistechniques to data assimilation. In Analysis and Numerics of Partial Differential Equations, volume 4 ofSpringer INdAM Series, pages 221–235. Springer Milan, 2013.

[MMPY15] Y. Maday, O. Mula, A.T. Patera, and M. Yano. The generalized empirical interpolation method:Stability theory on hilbert spaces with an application to the stokes equation. Computer Methods inApplied Mechanics and Engineering, 287(0):310 – 334, 2015.

[MNPP07] Y. Maday, N.C. Nguyen, A.T. Patera, and G.S.H. Pau. A general, multipurpose interpolation procedure:the magic points. Communications on Pure and Applied Analysis (CPAA), 8:383 – 404, 2007.

[MPR02] Y. Maday, A. T. Patera, and D. V. Rovas. A blackbox reduced-basis output bound method fornoncoercive linear problems. Studies in Mathematics and its Applications, D. Cioranescu and J. L. Lions,eds., Elsevier Science B.V., 31:533–569, 2002.

[MPT02] Y. Maday, A.T. Patera, and G. Turinici. Global a priori convergence theory for reduced-basisapproximations of single-parameter symmetric coercive elliptic partial differential equations. C. R. Math.,335(3):289 – 294, 2002.

[MPU14] M.Yano, A.T. Patera, and K. Urban. A space-time hp-interpolation-based certified reduced basis methodfor burgers’ equation. Mathematical Models and Methods in Applied Sciences, 0(0):1–33, 2014.

[Ngu07] N. C. Nguyen. A posteriori error estimation and basis adaptivity for reduced-basis approximation ofnonaffine-parametrized linear elliptic partial differential equations. J. Comput. Phys., 227:983–1006,December 2007.

[Ngu08] N.C. Nguyen. A multiscale reduced-basis method for parametrized elliptic partial differential equationswith multiple scales. J. Comput. Phys., 227(23):9807 – 9822, 2008.

[NP08] N. C. Nguyen and J. Peraire. An efficient reduced-order modeling approach for non-linear parametrizedpartial differential equations. Int. J. Numer. Methods Eng., 76:27–55, 2008.

M. Grepl (RWTH Aachen) 43

Page 106: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

References VI

[NPP08] N. C. Nguyen, A. T. Patera, and J. Peraire. A ”best points” interpolation method for efficientapproximation of parametrized functions. Int. J. Numer. Methods Eng., 73(4):521–543, 2008.

[PR07] Anthony T. Patera and Einar M. Ronquist. Reduced basis approximation and a posteriori error estimationfor a boltzmann model. Comput. Methods Appl. Mech. Engrg., 196(29-30):2925 – 2942, 2007.

[PRV+02] C. Prud’homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and G. Turinici. Reliablereal-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J.Fluid. Eng., 124(1):70–80, 2002.

[PRVP02] C. Prud’homme, D.V. Rovas, K. Veroy, and A.T. Patera. A mathematical and computational frameworkfor reliable real-time solution of parametrized partial differential equations. ESAIM: Math. Model. Num.,36:747–771, 2002.

[QRM11] A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approximation for parametrized partialdifferential equations and applications. Journal of Mathematics in Industry, 1(3):1–49, 2011.

[RG12] M. Rasty and M.A. Grepl. Efficient reduced basis solution of quadratically nonlinear diffusion equations.In Proceedings of 7th Vienna Conference on Mathematical Modelling – MATHMOD 2012, 2012.accepted.

[RHP08] G. Rozza, D.B.P. Huynh, and A.T. Patera. Reduced basis approximation and a posteriori error estimationfor affinely parametrized elliptic coercive partial differential equations. Archives of ComputationalMethods in Engineering, 15(3):229–275, 2008.

[RMM06] D. V. Rovas, L. Machiels, and Y. Maday. Reduced-basis output bound methods for parabolic problems.IMA J. Numer. Anal., 26(3):423–445, 2006.

[Rov03] D.V. Rovas. Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations. PhDthesis, Massachusetts Institute of Technology, February 2003.

M. Grepl (RWTH Aachen) 44

Page 107: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

References VII

[Roz09] G. Rozza. Reduced basis methods for stokes equations in domains with non-affine parameter dependence.Computing and Visualization in Science, 12:23–35, 2009. 10.1007/s00791-006-0044-7.

[RV07] G. Rozza and K. Veroy. On the stability of the reduced basis method for Stokes equations inparametrized domains. Comput. Methods Appl. Mech. Engrg., 196(7):1244 – 1260, 2007.

[UP14] K. Urban and A.T. Patera. An improved error bound for reduced basis approximation of linear parabolicproblems. Math. Comp., 83:1599–1615, 2014.

[VP05] K. Veroy and A. T. Patera. Certified real-time solution of the parametrized steady incompressibleNavier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Internat. J. Numer. MethodsFluids, 47:773–788, 2005.

[VPP03] K. Veroy, C. Prud’homme, and A.T. Patera. Reduced-basis approximation of the viscous burgersequation: rigorous a posteriori error bounds. C. R. Math., 337(9):619–624, 2003.

[VPRP03] K. Veroy, C. Prud’homme, D. V. Rovas, and A. T. Patera. A posteriori error bounds for reduced-basisapproximation of parametrized noncoercive and nonlinear elliptic partial differential equations. InProceedings of the 16th AIAA Computational Fluid Dynamics Conference, 2003. AIAA Paper 2003-3847.

[VRP02] K. Veroy, D.V. Rovas, and A.T. Patera. A posteriori error estimation for reduced-basis approximation ofparametrized elliptic coercive partial differential equations: ”convex inverse” bound conditioners. ESAIM:Contr. Optim. Ca., 8:1007–1028, 2002. Special Volume: A tribute to J.L. Lions.

[Wil06] K. Willcox. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition.Computers and Fluids, 35(2):208 – 226, 2006.

[Yan14] M. Yano. A space-time petrov–galerkin certified reduced basis method: Application to the boussinesqequations. SIAM J. Sci. Comput., 36(1):A232–A266, 2014.

M. Grepl (RWTH Aachen) 45

Page 108: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Thank you for your attention!

For questions or comments:

[email protected]

M. Grepl (RWTH Aachen) 46

Page 109: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Part III

Extra Slides

M. Grepl (RWTH Aachen) 47

Page 110: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Offline/Online Decomposition: Error Bounds

Crucial ingredient: Dual norm of residual ‖rN(·;µ)‖X ′

We expand uN(µ) =N∑j=1

uN j(µ) ζj

and obtain from the definition of the residual and affine dependence

rN(v;µ) = f(v)− a(uN(µ), v;µ)

= f(v)− a(

N∑n=1

uN n(µ)ζn, v;µ

)= f(v)−

N∑n=1

uN n(µ) a(ζn, v;µ

)= f(v)−

N∑n=1

uN n(µ)Qa∑q=1

θqa(µ) aq(ζn, v

)For simplicity, we assume here that f(v) does not depend on µ.

M. Grepl (RWTH Aachen) 48

Page 111: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Offline/Online Decomposition: Error Bounds

Riesz representation:

(e(µ), v)X = rN(v;µ)

= f(v)−Qa∑q=1

N∑n=1

θqa(µ)uN n(µ)aq(ζn, v

),

Linear Superposition:

⇒ e(µ) = C +Qa∑q=1

N∑n=1

θqa(µ)uN n(µ)Aqn

where

(C, v)X = f(v), ∀v ∈ X ;

(Aqn, v)X = −aq(ζn, v), ∀v ∈ X ,1 ≤ n ≤ N, 1 ≤ q ≤ Qa.

M. Grepl (RWTH Aachen) 49

Page 112: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Offline/Online Decomposition: Error Bounds

Riesz representation:

(e(µ), v)X = rN(v;µ)

= f(v)−Qa∑q=1

N∑n=1

θqa(µ)uN n(µ)aq(ζn, v

),

Linear Superposition:

⇒ e(µ) = C +Qa∑q=1

N∑n=1

θqa(µ)uN n(µ)Aqn

where

(C, v)X = f(v), ∀v ∈ X ;

(Aqn, v)X = −aq(ζn, v), ∀v ∈ X ,1 ≤ n ≤ N, 1 ≤ q ≤ Qa.

M. Grepl (RWTH Aachen) 49

Page 113: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Offline/Online Decomposition: Error Bounds

Thus

‖e(µ)‖2X =

(C +

Qa∑q=1

N∑n=1

θqa(µ)uN n(µ)Aqn , ·)X

=

(C, C)X +Qa∑q=1

N∑n=1

θqa(µ)uN n(µ)

2(C,Aqn)X +Qa∑q′=1

N∑n′=1

θq′a (µ)uN n′(µ)(Aqn,A

q′

n′)X

M. Grepl (RWTH Aachen) 50

Page 114: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Offline/Online Decomposition: Error Bounds

Thus

‖e(µ)‖2X =

(C +

Qa∑q=1

N∑n=1

θqa(µ)uN n(µ)Aqn , ·)X

= (C, C)X +Qa∑q=1

N∑n=1

θqa(µ)uN n(µ)

2(C,Aqn)X +Qa∑q′=1

N∑n′=1

θq′a (µ)uN n′(µ)(Aqn,A

q′

n′)X

M. Grepl (RWTH Aachen) 50

Page 115: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Offline/Online Decomposition: Error Bounds

Offline: once, parameter independent

I Compute C,Aqn, 1 ≤ n ≤ Nmax, 1 ≤ q ≤ Qa, from

(C, v)X = f(v), ∀v ∈ X ;

(Aqn, v)X = −aq(ζn, v), ∀v ∈ X ,1 ≤ n ≤ N, 1 ≤ q ≤ Qa.

I Form/Store (C, C)X , (C,Aqn)X , (Aqn,Aq′

n′)X ,

1 ≤ n, n′ ≤ Nmax, 1 ≤ q, q′ ≤ Qa.

Complexity depends on N , Qa, and N .

M. Grepl (RWTH Aachen) 51

Page 116: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Offline/Online Decomposition: Error Bounds

Offline: once, parameter independent

I Compute C,Aqn, 1 ≤ n ≤ Nmax, 1 ≤ q ≤ Qa, from

(C, v)X = f(v), ∀v ∈ X ;

(Aqn, v)X = −aq(ζn, v), ∀v ∈ X ,1 ≤ n ≤ N, 1 ≤ q ≤ Qa.

I Form/Store (C, C)X , (C,Aqn)X , (Aqn,Aq′

n′)X ,

1 ≤ n, n′ ≤ Nmax, 1 ≤ q, q′ ≤ Qa.

Complexity depends on N , Qa, and N .

M. Grepl (RWTH Aachen) 51

Page 117: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Offline/Online Decomposition: Error Bounds

Online: many times, for each new µ(and associated solution uN(µ))

I Evaluate

‖e(µ)‖2X = (C, C)X +Qa∑q=1

N∑n=1

θqa(µ)uN n(µ)

2(C,Aqn)X +Qa∑q′=1

N∑n′=1

θq′a (µ)uN n′(µ)(Aqn,A

q′

n′)X

– O(Q2

aN2)

Complexity depends on N , Qa, but not N .

M. Grepl (RWTH Aachen) 52

Page 118: Reduced Basis Methods for Nonlinear Parametrized …Reduced Basis Methods for Nonlinear Parametrized Partial Di erential Equations M. Grepl Advisory Board Meeting RWTH Aachen University

Offline/Online Decomposition: Error Bounds

Summary of computational cost:

OFFLINE —

O(QaNmaxN •) + O(Q2aN

2maxN )

solve Poisson problems form µ-independent inner products;

ONLINE —

O(Q2aN

2)

evaluate ‖e(µ)‖X -sum;

Online cost is independent of N .

M. Grepl (RWTH Aachen) 53