redox and electrochemistry.pdf

Upload: ernest-nsabimana

Post on 02-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Redox and Electrochemistry.pdf

    1/95

    OxidationReduction

    andElectrochemistry

    DavidA.KatzDepartmentofChemistry

    PimaCommunityCollege

  • 8/10/2019 Redox and Electrochemistry.pdf

    2/95

    OxidationReductionReactions

    Inanoxidationreduction(Redox)reaction,

    electronsaretransferredfromonespeciestoanother.

    Forexample,inasinglereplacementreaction

    Cu(s) +2AgNO3(aq) 2Ag(s)+Cu(NO3)2(aq)

    TheCuatomsloseelectronstoformCu2+intheCu(NO3)2(aq)andtheAg

    + gainselectronstoformmetallicAg

  • 8/10/2019 Redox and Electrochemistry.pdf

    3/95

    OxidationReductionReactions

    Thiscanbemoreeasilyobservedbywritingthenet

    ionicequationforthereaction:Cu(s) +2Ag

    +(aq) 2Ag(s)+Cu

    2+(aq)

    ThemetallicCuatomsareuncombined,sotheyare

    consideredtohaveanoxidationnumberofzero.

    TheinitialcombinedAg+ ionsareina+1oxidationstate.

    EachCuatomwilllose2electronsto2Ag+ ions TheresultingAgatomsareconsideredtohavean

    oxidationnumberofzero

  • 8/10/2019 Redox and Electrochemistry.pdf

    4/95

    OxidationReductionReactions

    Cu(s) +2Ag+

    (aq) 2Ag(s)+Cu2+

    (aq)

  • 8/10/2019 Redox and Electrochemistry.pdf

    5/95

    Oxidation

    Numbers

    Inordertokeeptrack

    ofwhatloses

    electronsandwhat

    gainsthem,welist

    the

    oxidation

    numbersofeach

    element.

  • 8/10/2019 Redox and Electrochemistry.pdf

    6/95

    OxidationandReduction

    Aspeciesisoxidizedwhenitloseselectrons.

    Here,zinclosestwoelectronstogofromneutralzinc

    metaltotheZn2+ ion.

  • 8/10/2019 Redox and Electrochemistry.pdf

    7/95

    Oxidation

    and

    Reduction

    Aspeciesisreducedwhenitgainselectrons.

    Here,eachoftheH+ gainsanelectronandthey

    combinetoformH2.

  • 8/10/2019 Redox and Electrochemistry.pdf

    8/95

    Oxidation

    and

    Reduction

    Thespeciesthatcontainstheelementthatisreducedistheoxidizingagent.

    H+

    oxidizes

    Zn

    by

    taking

    electrons

    from

    it. Thespeciesthatcontainstheelementthatis

    oxidizedisthereducingagent. ZnreducesH+ bygivingitelectrons.

  • 8/10/2019 Redox and Electrochemistry.pdf

    9/95

    Assigning

    Oxidation

    Numbers

    1. Elementsintheirelementalformhavean

    oxidationnumberof0.

    2. Theoxidationnumberofamonatomicion

    isthesameasitscharge.

  • 8/10/2019 Redox and Electrochemistry.pdf

    10/95

    Assigning

    Oxidation

    Numbers

    3. Theoxidationnumberofmetalsdepends

    ontheirpositionintheperiodictable GroupIAelementsare+1

    GroupIIAelementsare+2

    GroupIIIAelementsare+3

    GroupIVAmetalsareusually+2or+4

    Group

    VA

    metals

    are

    usually

    +3

    or

    +5

  • 8/10/2019 Redox and Electrochemistry.pdf

    11/95

    Assigning

    Oxidation

    Numbers4. Nonmetalstendtohavenegative

    oxidationnumbers,althoughsomearepositiveincertaincompoundsorions.

    Oxygenalwayshasanoxidationnumberof

    2,

    except

    in

    the

    peroxide

    ion

    in

    which

    it

    has

    anoxidationnumberof 1.

    Hydrogenisalways 1whenbondedtoametal

    Hydrogenis +1whenbondedtoanonmetal.

  • 8/10/2019 Redox and Electrochemistry.pdf

    12/95

    Assigning

    Oxidation

    Numbers4. Nonmetals(continued).

    Fluorinealwayshasanoxidationnumberof1.

    Thehalogens(Cl,Br,andI)haveanoxidation

    number

    of 1

    when

    they

    are

    negative Thehalogens(Cl,Br,andI)willhave

    positiveoxidationnumbersinoxyanions(ClO,ClO

    2

    ,ClO3

    ,etc.)

  • 8/10/2019 Redox and Electrochemistry.pdf

    13/95

    Assigning

    Oxidation

    Numbers

    5. Thesumoftheoxidationnumbersina

    neutralcompoundis0.6. Thesumoftheoxidationnumbersina

    polyatomicionisthechargeontheion.

  • 8/10/2019 Redox and Electrochemistry.pdf

    14/95

    BalancingOxidationReductionEquations

    Oxidationreductionequationsmaybedifficultto

    balance.

    Generally,theeasiestwaytobalancetheequation

    ofanoxidationreductionreactionisviathehalf

    reactionmethod.

    Thisinvolvestreatingtheoxidationandreduction

    astwoseparateprocesses,balancingthesehalf

    reactions,andthencombiningthemtoattainthe

    balancedequationfortheoverallreaction.

  • 8/10/2019 Redox and Electrochemistry.pdf

    15/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    1. Assignoxidationnumberstotheelements

    intheequation

    2. Determinewhatisoxidizedandwhatis

    reduced.

    3. Writetheoxidationandreductionhalf

    reactions.

  • 8/10/2019 Redox and Electrochemistry.pdf

    16/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    4.

    Balance

    each

    half

    reaction.a. BalanceelementsotherthanHandO.

    b. BalanceObyaddingH2O.

    c. BalanceHbyaddingH+.d. Balancechargebyaddingelectrons.

    5. Multiplythehalfreactionsbyintegersso

    thattheelectronsgainedandlostarethesame.

  • 8/10/2019 Redox and Electrochemistry.pdf

    17/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    6.

    Add

    the

    half

    reactions,

    subtracting

    things

    thatappearonbothsides.

    7. Makesuretheequationisbalanced

    accordingtomass.8. Makesuretheequationisbalanced

    accordingtocharge.

  • 8/10/2019 Redox and Electrochemistry.pdf

    18/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    ConsiderthereactionbetweenMnO4 andC2O4

    2 :

    MnO4

    (aq) +C2O42

    (aq) Mn2+(aq) +CO2(aq) (acidicsolution)

  • 8/10/2019 Redox and Electrochemistry.pdf

    19/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    First,

    assign

    oxidation

    numbers

    (remember

    oxygen

    is

    2)

    MnO4 + C2O4

    2Mn2+ +CO2

    +7 +3 +4+2

    Theoxidationnumberofmanganesegoesfrom+7to+2,itis

    reduced.

    Theoxidationnumberofcarbongoesfrom+3to+4,itis

    oxidized.

  • 8/10/2019 Redox and Electrochemistry.pdf

    20/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    MnO4 + C2O42

    Mn2+ +CO2

    +7 +3 +4+2

    TheMnO4 istheoxidizingagent

    TheC2O42 isthereducingagent

    Determinetheoxidizingandreducingagents

  • 8/10/2019 Redox and Electrochemistry.pdf

    21/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    Theoxidationhalfreactionis

    C2O42 CO2

    Balance

    the

    half

    reactionC2O4

    2 2CO2

    Thisbalancesboththecarbonatomsand

    theoxygenatoms

  • 8/10/2019 Redox and Electrochemistry.pdf

    22/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    Balancethechargebyadding2electronsto

    therightside.

    C2O42

    2

    CO2+

    2

    e

  • 8/10/2019 Redox and Electrochemistry.pdf

    23/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    Thereductionhalfreactionis

    MnO4

    Mn2+

    The

    manganese

    is

    balancedInordertobalancethe4oxygens,weadd4watermoleculestotherightside.

    MnO4

    Mn2+ +4H2O

  • 8/10/2019 Redox and Electrochemistry.pdf

    24/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    MnO4

    Mn2+ +4H2O

    Theadditionofwaterontherightsideofthe

    equationincludedhydrogenatoms.

    To

    balance

    the

    8

    hydrogens,

    add

    8

    H+

    to

    the

    leftside.

    8H+ +MnO4

    Mn2+ +4H2O

  • 8/10/2019 Redox and Electrochemistry.pdf

    25/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    8

    H+

    +

    MnO4

    Mn2+

    +

    4

    H2O

    Balancethecharges,add5e totheleftside.

    5e +8H+ +MnO4

    Mn2+ +4H2O

  • 8/10/2019 Redox and Electrochemistry.pdf

    26/95

    BalancingRedox Equationsbythe

    HalfReactionMethodBeforethetwohalfreactionscanbeadded

    together,

    the

    number

    of

    electrons

    lost

    must

    be

    equaltotheelectronsgained:

    C2O42 2CO2+2e

    (2e lost)

    5

    e

    +

    8

    H+

    +

    MnO4

    Mn2+

    +

    4

    H2O

    (5egained)

    Toattainthesamenumberofelectronsoneach

    side,multiplythefirstreactionby5andthe

    second

    by

    2.5C2O4

    2 10CO2+10e

    10e +16H+ +2MnO4

    2Mn2+ +8H2O

  • 8/10/2019 Redox and Electrochemistry.pdf

    27/95

    BalancingRedox Equationsbythe

    HalfReactionMethod

    5C2O42 10CO2+10e

    10e +16H+ +2MnO4

    2Mn2+ +8H2O

    Addthesehalfreactions

    10e

    +16H+ +2MnO4

    +5C2O42

    2Mn2+ +8H2O+10CO2+10e

    Cancelouttheelectronsfrombothsidestoget

    16H+ +2MnO4 +5C2O4

    2 2Mn2+ +8H2O+10CO2

  • 8/10/2019 Redox and Electrochemistry.pdf

    28/95

    BalancingRedox Equations

    inBasicSolution

    If

    a

    reaction

    occurs

    in

    basic

    solution,

    use

    OH

    andH2OinsteadoftheH+ andH2Ousedinacid

    solution

    Theeasiestmethodistobalancetheequation

    asifitoccurredinacid. Oncetheequationisbalanced,addOH toeach

    sidetoneutralizetheH+ intheequationand

    create

    water

    in

    its

    place. Ifthisresultsinwateronbothsidesoftheequation,subtractwaterfromeachsideasafinalstep.

  • 8/10/2019 Redox and Electrochemistry.pdf

    29/95

    BalancingRedox Equations

    inBasicSolution

    Completeandbalancethefollowingredoxequation

    that

    takes

    place

    in

    basic

    solutionCN (aq) + MnO4

    (aq) CNO

    (aq) + MnO2(s) (basicsolution)

    First,assignoxidationnumbers(rememberoxygenis 2)

    +2 3 +7 2 +4 3 2 +4 2

    CN(aq)

    + MnO

    4

    (aq)

    CNO(aq)

    + MnO2

    (s)

    Note: InananionsuchasCN,C,whichcomesfirst,wouldbepositiveandN

    wouldbenegative. Ifnegative,Nwouldbe 3.

  • 8/10/2019 Redox and Electrochemistry.pdf

    30/95

    BalancingRedox Equations

    inBasicSolution

    +2 3 +7 2 +4 3 2 +4 2

    CN (aq) + MnO4

    (aq) CNO

    (aq) + MnO2(s)

    The

    oxidation

    number

    of

    carbon

    goes

    from

    +2

    to

    +4,

    it

    is

    oxidized. (Clost2e)

    Theoxidationnumberofmanganesegoesfrom+7to+4,itis

    reduced. (Mngained3e)

    MnO4 istheoxidizingagent

    CN isthereducingagent

  • 8/10/2019 Redox and Electrochemistry.pdf

    31/95

    BalancingRedox Equations

    inBasicSolution

    Thereductionhalfreactionis

    MnO4

    MnO2

    Balancethehalfreaction

    MnO4

    MnO2

    Balance

    the

    oxygen

    atoms,

    add

    H+

    and

    H2O4 H+ + MnO4

    MnO2+2H2O

  • 8/10/2019 Redox and Electrochemistry.pdf

    32/95

    BalancingRedox Equations

    inBasicSolution

    Balancethecharges,add3e totheleftside

    3e + 4 H+ + MnO4

    MnO2+2H2O

  • 8/10/2019 Redox and Electrochemistry.pdf

    33/95

    BalancingRedox Equations

    inBasicSolution

    Theoxidationhalfreactionis

    CN CNO

    SincetheCatomsarebalanced,balancethe

    oxygen.

    AddH2OtotheleftsideandH+ totherightside.

    H2O

    +

    CN

    CNO

    +

    2

    H+

  • 8/10/2019 Redox and Electrochemistry.pdf

    34/95

    BalancingRedox Equations

    inBasicSolution

    H2O + CN

    CNO

    +2H+

    Balancethecharge,add2e totherightside

    H2O + CN

    CNO

    +2H+

    + 2e

  • 8/10/2019 Redox and Electrochemistry.pdf

    35/95

    BalancingRedox Equations

    inBasicSolutionBeforethetwohalfreactionscanbeadded

    together,

    the

    number

    of

    electrons

    lost

    must

    be

    equaltotheelectronsgained:

    H2O + CN

    CNO +2H+ + 2e (2e lost)

    3

    e

    +

    4

    H+

    +

    MnO4

    MnO2+

    2

    H2O

    (3

    e

    gained)Toattainthesamenumberofelectronsoneach

    side,multiplythefirstequationby3andthe

    second

    by

    2.3H2O + 3CN

    3CNO +6H+ + 6e

    6e +8H+ +2MnO4

    2MnO2+4H2O

  • 8/10/2019 Redox and Electrochemistry.pdf

    36/95

    BalancingRedox Equations

    inBasicSolution

    Addthehalfreactions

    3H2O + 3CN +8H+ +2MnO4

    3CNO +6H+ +2MnO2+4H2O

    CancelouttheH+ andH2Otoget

    2 H+ +3CN +2MnO4

    3 CNO + 2 MnO2+ H2O

  • 8/10/2019 Redox and Electrochemistry.pdf

    37/95

    BalancingRedox Equations

    inBasicSolution

    Thisreaction,however,takesplaceinbasicsolution

    2 H+ +3CN +2MnO4

    3 CNO + 2 MnO2+ H2O

    Add2OH tobothsidestocancelouttheH+

    2OH

    +2 H+ +3CN

    +2MnO4

    3 CNO

    + 2 MnO2+ H2O +2OH

    (Rememberthat H+ + OH H2O)

    2H2O+3CN +2MnO4

    3 CNO +2 MnO2+H2O+2OH

    Thebalancedequationis

    3CN +2MnO4 + H2O 3 CNO

    +2 MnO2+2OH

  • 8/10/2019 Redox and Electrochemistry.pdf

    38/95

    AHistoryofElectricity/Electrochemistry

    Thales of Miletus (640546 B.C.) is

    credited with the discovery that

    amber when rubbed with cloth or

    fur acquired the property of

    attracting light objects.

    The word electricity comes from

    "elektron" the Greek word for

    amber.

    Otto von Guericke (16021686)invented the first electrostatic

    generator in 1675. It was made of

    a sulphur ball which rotated in a

    wooden cradle. The ball itself wasrubbed by hand and the charged

    sulphur ball had to be

    transported to the place where

    the electric experiment was

    carried out.

    ThalesofMiletus OttovonGuericke

  • 8/10/2019 Redox and Electrochemistry.pdf

    39/95

    Eventually,aglassglobereplacedthe

    sulfursphereusedbyGuericke

    Later,largediskswereused

  • 8/10/2019 Redox and Electrochemistry.pdf

    40/95

    EwaldJrgenvonKleist(17001748),

    inventedtheLeydenJarin1745to

    storeelectricenergy. TheLeydenJar

    containedwaterormercuryandwas

    placedontoametalsurfacewith

    groundconnection.

    In1746,theLeydenjarwas

    independentlyinventedby physicist

    PietervanMusschenbroek (1692

    1761)and/orhislawyerfriend

    AndreasCunnaeusinLeyden/the

    Netherlands

    Leydenjarscouldbejoinedtogether

    tostorelargeelectricalcharges

  • 8/10/2019 Redox and Electrochemistry.pdf

    41/95

    In1752,BenjaminFranklin(17061790)demonstratedthatlightningwaselectricityinhisfamouskiteexperiment

    In1780,ItalianphysicianandphysicistLuigiAloisio Galvani(17371798)discoveredthatmuscleandnervecells

    produceelectricity.Whilstdissectingafrogonatablewherehehadbeenconductingexperimentswithstaticelectricity,Galvanitouchedtheexposed

    sciatic

    nerve

    with

    his

    scalpel,

    which

    had

    pickedupanelectriccharge.Henoticedthatthefrogslegjumped.

  • 8/10/2019 Redox and Electrochemistry.pdf

    42/95

    CountAlessandroGiuseppeAntonioAnastasio

    Volta

    (1745

    1827)

    developed

    the

    first

    electric

    cell,calledaVoltaicPile,in1800.

    Avoltaicpileconsistofalternatinglayersoftwo

    dissimilarmetals,separatedbypiecesof

    cardboard

    soaked

    in

    a

    sodium

    chloride

    solution

    orsulfuricacid.

    Voltadeterminedthat

    thebestcombinationof

    metalswaszincand

    silver

    Voltaselectricpile(right)

    AVoltaicpileatthe

    SmithsonianInstitution,(far

    right)

  • 8/10/2019 Redox and Electrochemistry.pdf

    43/95

    In1800,EnglishchemistWilliamNicholson

    (17531815)andsurgeonAnthonyCarlisle

    (17681840)separatedwaterintohydrogen

    andoxygenbyelectrolysis.

    JohannWilhelmRitter(17761810)repeated

    Nicholsonsseparationofwaterintohydrogen

    andoxygenbyelectrolysis. Soonthereafter,

    Ritterdiscoveredtheprocessof

    electroplating. Healsoobservedthatthe

    amountofmetaldepositedandtheamount

    ofoxygenproducedduringanelectrolytic

    processdependedonthedistancebetween

    theelectrodes

    HumphreyDavy(17781829)utilizedthe

    voltaic

    pile,

    in

    1807,

    to

    isolate

    elemental

    potassiumbyelectrolysiswhichwassoon

    followedbysodium,barium,calcium,

    strontium,magnesium.

    WilliamNicholson

    JohannWilhelm

    Ritter

    HumphreyDavy

  • 8/10/2019 Redox and Electrochemistry.pdf

    44/95

    MichaelFaraday(17911867)beganhiscareerin1813asDavy's

    LaboratoryAssistant.

    In1834,Faradaydevelopedthetwolawsofelectrochemistry:

    TheFirstLawofElectrochemistry

    Theamountofasubstancedepositedoneachelectrodeofan

    electrolyticcellisdirectlyproportionaltotheamountofelectricity

    passingthroughthecell.

    TheSecondLawofElectrochemistry

    Thequantitiesofdifferentelementsdepositedbyagivenamountof

    electricityareintheratiooftheirchemicalequivalentweights.

  • 8/10/2019 Redox and Electrochemistry.pdf

    45/95

    Faradayalsodefinedanumberofterms:

    Theanodeisthereforethatsurfaceatwhichtheelectriccurrent,accordingto

    ourpresentexpression,enters:itisthenegativeextremityofthedecomposingbody;iswhereoxygen,chlorine,acids,etc.,areevolved;andisagainstoroppositethepositiveelectrode.

    Thecathodeisthatsurfaceatwhichthecurrentleavesthedecomposingbody,andisitspositiveextremity;thecombustiblebodies,metals,alkalies,andbasesareevolvedthere,anditisincontactwiththenegativeelectrode.

    Manybodiesaredecomposeddirectlybytheelectriccurrent,theirelementsbeingsetfree;theseIproposetocallelectrolytes....

    Finally,Irequireatermtoexpressthosebodieswhichcanpasstotheelectrodes,or,astheyareusuallycalled,thepoles.Substancesarefrequentlyspokenofasbeingelectronegativeorelectropositive,accordingastheygounderthesupposedinfluenceofadirectattractiontothepositiveornegativepole...Iproposetodistinguishsuchbodiesbycallingthoseanionswhichgototheanodeofthedecomposingbody;andthosepassingtothecathode,

    cations;andwhenIhaveoccasiontospeakofthesetogether,Ishallcallthemions.

    thechlorideofleadisanelectrolyte,andwhenelectrolyzedevolvesthetwoions,chlorineandlead,theformerbeingananion,andthelatteracation.

  • 8/10/2019 Redox and Electrochemistry.pdf

    46/95

    JohnFredericDaniell(17901845),professorofchemistryatKing's

    College,London.

    Daniell'sresearchintodevelopmentofconstantcurrentcellstook

    placeatthesametime(late1830s)thatcommercialtelegraph

    systemsbegantoappear.Daniell'scopperbattery(1836)became

    thestandardforBritishandAmericantelegraphsystems.

    In1839,Daniellexperimentedonthefusionofmetalswitha70

    cellbattery.Heproducedanelectricarcsorichinultravioletrays

    thatitresultedinaninstant,artificialsunburn.Theseexperiments

    causedseriousinjurytoDaniell'seyesaswellastheeyesof

    spectators.

    Ultimately,Daniellshowedthattheionofthemetal,ratherthan

    itsoxide,carriesanelectricchargewhenametalsaltsolutionis

    electrolyzed.

    Left:AnearlyDaniellCell

    Right:Daniellcellsused

    bySirWilliamRobert

    Grove,1839.

  • 8/10/2019 Redox and Electrochemistry.pdf

    47/95

    VoltaicCells

    Inspontaneous

    oxidation

    reduction(redox)

    reactions,

    electronsare

    transferredand

    energyis

    released.

  • 8/10/2019 Redox and Electrochemistry.pdf

    48/95

    VoltaicCells

    Ifthereactionisseparatedintotwoparts,wecanusethatenergytodoworkbymaking

    the

    electrons

    flow

    throughanexternaldevice.

    Thistypeofsetup

    iscalledavoltaiccell.

  • 8/10/2019 Redox and Electrochemistry.pdf

    49/95

    VoltaicCells

    Thisisatypicalvoltaiccell

    Astripofzincmetalis

    immersed

    in

    a

    solution

    ofZn(NO3)2 Astripofcoppermetal

    isimmersedinasolutionofCu(NO3)2

    ThetwosolutionsareconnectedbyasaltbridgecontainingNaNO3

    Theoxidationoccursat

    theanode(Zn) Thereductionoccursat

    thecathode(Cu)

  • 8/10/2019 Redox and Electrochemistry.pdf

    50/95

    VoltaicCells

    Thesaltbridgeisusedto

    preventelectronsflowing

    directlyfromthezinctothe

    copper ThesaltbridgeconsistsofaU

    shapedtubethatcontainsa

    saltsolution,sealedwith

    porousplugs,oranagargel

    solutionofthesalt Thesaltbridgekeepsthe

    chargesbalancedandforces

    theelectrontomovethrough

    the

    wire

    Cationsmovetowardthe

    cathode.

    Anionsmovetowardthe

    anode.

  • 8/10/2019 Redox and Electrochemistry.pdf

    51/95

    VoltaicCells

    Inthecell,electronsleavetheanodeand

    flow

    through

    the

    wiretothecathode.

    Astheelectronsleavetheanode,the

    cations

    formed

    dissolveintothesolutionintheanodecompartment.

    Eventually,

    if

    the

    cell

    isusedforalongtime,theanode(zinc)willdissolve

    l i ll

  • 8/10/2019 Redox and Electrochemistry.pdf

    52/95

    VoltaicCells

    Astheelectronsreachthecathode,cationsin

    the

    cathode

    are

    attractedtothenownegativecathode.

    Theelectronsaretaken

    by

    the

    cation,

    and

    the

    neutralmetalisdepositedonthecathode.

    Eventually,

    if

    the

    cell

    is

    usedforalongtime,allthecopperionswillplateontothecopper

    cathode

    El t ti F ( f)

  • 8/10/2019 Redox and Electrochemistry.pdf

    53/95

    ElectromotiveForce(emf)

    Wateronly

    spontaneously

    flowsonewayinawaterfall.

    Likewise,electrons

    onlyspontaneouslyflowonewayina

    redoxreaction

    from

    higher

    to

    lowerpotential

    energy.

  • 8/10/2019 Redox and Electrochemistry.pdf

    54/95

    Electromotive

    Force

    (emf) Thepotentialdifferencebetweentheanode

    and

    cathode

    in

    a

    cell

    is

    called

    the

    electromotiveforce(emf).

    Itisalsocalledthecellpotential,andis

    designatedEcell.

  • 8/10/2019 Redox and Electrochemistry.pdf

    55/95

    Cell

    Potential

    Cell

    potential

    is

    measured

    in

    volts

    (V).

    1V=1J

    C

    Where J=Joules

    C=Coulombs

    Recallthat1electronhasachargeof1.6x1019 C

    Standard Reduction Potentials

  • 8/10/2019 Redox and Electrochemistry.pdf

    56/95

    StandardReductionPotentials

    Thecellpotentialisthedifferencebetweentwo

    electrodepotentials.

    Byconvention,electrodepotentialsare

    written

    as

    reductions

    Reductionpotentialsformostcommonelectrodesaretabulatedasstandardreductionpotentials.

    Standard Hydrogen Electrode

  • 8/10/2019 Redox and Electrochemistry.pdf

    57/95

    StandardHydrogenElectrode

    Electrodepotentialsarereferencedtoastandard

    hydrogenelectrode(SHE).

    Bydefinition,thereductionpotentialfor

    hydrogenis0V:

    2H+ (aq,1M)+2e

    H2 (g,1atm)

  • 8/10/2019 Redox and Electrochemistry.pdf

    58/95

    Standard

    Cell

    PotentialsThecellpotentialatstandardconditionsis

    calculated

    Ecell =Ered(cathode) Ered(anode)

    Becausecellpotentialisbasedonthe

    potential

    energy

    per

    unit

    of

    charge,

    it

    is

    anintensiveproperty.

    Substancereduced Substanceoxidized

    Cell Potentials

  • 8/10/2019 Redox and Electrochemistry.pdf

    59/95

    CellPotentials

    Oxidation: Ered = -0.76 V Reduction: Ered = +0.34 V

    ll i l

  • 8/10/2019 Redox and Electrochemistry.pdf

    60/95

    CellPotentials

    Ecell = Ered (cathode) Ered (anode)

    =+0.34V (0.76V)

    =+1.10V

    Generally, most of the common cells used, on the average,

    generate approximately 1.5 V

    Oxidizing and Reducing Agents

  • 8/10/2019 Redox and Electrochemistry.pdf

    61/95

    OxidizingandReducingAgents

    Thestrongestoxidizershavethe

    mostpositivereductionpotentials.

    Thestrongestreducershavethemostnegativereductionpotentials.

    O idi i d R d i A t

  • 8/10/2019 Redox and Electrochemistry.pdf

    62/95

    OxidizingandReducingAgents

    Thegreaterthe

    differencebetweenthe

    two,thegreaterthe

    voltageofthecell.

    Free Energy

  • 8/10/2019 Redox and Electrochemistry.pdf

    63/95

    FreeEnergy

    Gforaredoxreactioncanbefoundby

    usingtheequation

    G= nFE

    where:

    nis

    the

    number

    of

    moles

    of

    electrons

    transferredFisaconstant,theFaraday.

    1F=96,485C/mol=96,485J/Vmol

    E=ThestandardcellpotentialinV

    Understandardconditions,

    G = nFE

    Nernst Equation

  • 8/10/2019 Redox and Electrochemistry.pdf

    64/95

    NernstEquation

    Rememberthat

    G= G +RTlnQ

    Thismeans

    nFE= nFE +RTlnQ

    Dividing

    both

    sides

    by nF,

    we

    get

    the

    Nernst

    equation:

    or,usingbase10logarithms,

    E=E RT

    nF lnQ

    E=E 2.303RT

    nF logQ

    Nernst Equation

  • 8/10/2019 Redox and Electrochemistry.pdf

    65/95

    NernstEquation

    Atroomtemperature(298K),and

    R=8.314J/molK

    F=96,485J/Vmol

    ThefinalformoftheNernstEquationbecomes

    E=E 0.0592n

    logQ

    2.303RT

    F =0.0592V

    Walther Hermann Nernst (1864 1941)

  • 8/10/2019 Redox and Electrochemistry.pdf

    66/95

    WaltherHermannNernst(1864 1941)

    Nernst'searlystudiesinelectrochemistrywereinspiredbyArrhenius'dissociationtheoryofionsinsolution.

    In1889heelucidatedthetheoryofgalvaniccellsby

    assumingan"electrolyticpressureofdissolution"which

    forcesionsfromelectrodesintosolutionandwhichwas

    opposedtotheosmoticpressureofthedissolvedions.

    Also,in1889,heshowedhowthecharacteristicsofthe

    currentproducedcouldbeusedtocalculatethefree

    energychangeinthechemicalreactionproducingthe

    current. Thisequation,knownastheNernstEquation,

    relatesthevoltageofacelltoitsproperties.

    IndependentlyofThomson,heexplainedwhy

    compoundsionizeeasilyinwater.Theexplanation,

    calledtheNernstThomsonrule,holdsthatitisdifficult

    forchargedionstoattracteachotherthroughinsulating

    watermolecules,sotheydissociate.

    Concentration Cells

  • 8/10/2019 Redox and Electrochemistry.pdf

    67/95

    ConcentrationCells

    NoticethattheNernstequationimpliesthatacellcouldbe

    createdthathasthesamesubstanceatbothelectrodes.

    Forsuchacell,Ecell wouldbe0,butQwouldnot.

    Therefore,aslongastheconcentrationsaredifferent,

    Ewillnotbe0.

  • 8/10/2019 Redox and Electrochemistry.pdf

    68/95

    ApplicationsofOxidationReductionReactions

    Why Study Electrochemistry?Why Study Electrochemistry?

  • 8/10/2019 Redox and Electrochemistry.pdf

    69/95

    y y yy y y

    Batteries

    Corrosion

    Industrial productionof chemicals suchas Cl2, NaOH, F2

    and Al Biological redox

    reactions

    The heme group

    BATTERIES

  • 8/10/2019 Redox and Electrochemistry.pdf

    70/95

    BATTERIESPrimary, Secondary, and Fuel Cells

    Batteries

  • 8/10/2019 Redox and Electrochemistry.pdf

    71/95

    BatteriesMost commercial batteries produce 1.5 V. To get a higher

    voltage, batteries are joined together.

    Dry Cell Battery

  • 8/10/2019 Redox and Electrochemistry.pdf

    72/95

    Dry Cell Battery

    Anode (-)

    Zn Zn2+ + 2e-

    Cathode (+)

    2 NH4+ + 2e-2 NH3 + H2

    Primarybattery usesredoxreactions

    thatcannotberestoredbyrecharge.

    Alkaline Battery

  • 8/10/2019 Redox and Electrochemistry.pdf

    73/95

    Nearly same reactions as in common dry

    cell, but under basic conditions.

    Alkaline Battery

    Anode(): Zn+2OH ZnO +H2O+ 2e

    Cathode(+):2MnO2+H2O + 2e Mn2O3+2OH

    Alkaline Batteries

  • 8/10/2019 Redox and Electrochemistry.pdf

    74/95

    AlkalineBatteries

    Lead Storage Battery

  • 8/10/2019 Redox and Electrochemistry.pdf

    75/95

    Secondary

    battery

    Usesredoxreactionsthat

    canbereversed.

    Canberestoredbyrecharging

    Lead Storage Battery

  • 8/10/2019 Redox and Electrochemistry.pdf

    76/95

    Anode (-) Eo = +0.36 V

    Pb + HSO4- PbSO4 + H

    + + 2e-

    Cathode (+) Eo

    = +1.68 VPbO2 + HSO4

    - + 3 H+ + 2e- PbSO4 + 2 H2O

    Ni-Cad Battery

  • 8/10/2019 Redox and Electrochemistry.pdf

    77/95

    yAnode (-)

    Cd + 2 OH- Cd(OH)2 + 2e-

    Cathode (+)

    NiO(OH) + H2O + e- Ni(OH)2 + OH-

  • 8/10/2019 Redox and Electrochemistry.pdf

    78/95

    Fuel Cells: H2 as a FuelFuelcell reactantsare

    suppliedcontinuouslyfrom

    anexternalsource.

    Carscanuseelectricity

    generatedbyH2/O2fuel

    cells.

    H2carriedintanksor

    generatedfrom

    hydrocarbons.

    HydrogenAir Fuel Cell

  • 8/10/2019 Redox and Electrochemistry.pdf

    79/95

    HydrogenFuelCells

  • 8/10/2019 Redox and Electrochemistry.pdf

    80/95

    y g

    H as a Fuel

  • 8/10/2019 Redox and Electrochemistry.pdf

    81/95

    2

    Comparisonofthevolumesofsubstancesrequired

    tostore4kgofhydrogenrelativetocarsize.

  • 8/10/2019 Redox and Electrochemistry.pdf

    82/95

    Storing H2 as a Fuel

    OnewaytostoreH2istoadsorbthegasontoa

    metalormetalalloy.

    Electrolysis

  • 8/10/2019 Redox and Electrochemistry.pdf

    83/95

    Usingelectricalenergytoproducechemicalchange.

    Sn2+(aq)+2Cl

    (aq) Sn(s) + Cl2(g)

    Electrolysis of Aqueous NaOH

  • 8/10/2019 Redox and Electrochemistry.pdf

    84/95

    Anode (+)

    4 OH- O2(g) + 2 H2O + 4e-

    Cathode (-)

    4 H2

    O + 4e- 2 H2

    + 4 OH-

    Eo for cell = -1.23 V

    ElectricEnergyfChemicalChange

    Anode Cathode

    Electrolysis

  • 8/10/2019 Redox and Electrochemistry.pdf

    85/95

    ElectricEnergy

    fChemicalChange

    BATTERY

    +

    Na+

    Cl-

    Anode Cathode

    electrons

    BATTERY

    +

    Na+

    Cl-

    Anode Cathode

    electrons Electrolysisofmolten

    NaCl. Hereabattery

    pumpselectrons

    fromCl toNa+.

    NOTE:Polarityof

    electrodes

    is

    reversed

    frombatteries.

    Electrolysis of Molten NaCl

  • 8/10/2019 Redox and Electrochemistry.pdf

    86/95

    SeeFigure20.18

    Electrolysis of Molten NaCl

  • 8/10/2019 Redox and Electrochemistry.pdf

    87/95

    Anode (+)

    2 Cl- Cl2(g) + 2e-

    Cathode (-)

    Na+ + e- Na

    BATTERY

    +

    Na+Cl-

    Anode Cathode

    electrons

    BATTERY

    +

    Na+Cl-

    Anode Cathode

    electrons

    Eo forcell(inwater)=Ec Ea

    = 2.71V (+1.36V)

    = 4.07V(inwater)

    ExternalenergyneededbecauseEo is().

    Electrolysis of Aqueous NaCll t

    l t

  • 8/10/2019 Redox and Electrochemistry.pdf

    88/95

    Anode (+)2 Cl- Cl2(g) + 2e-

    Cathode (-)2 H2O + 2e- H2 + 2 OH

    -

    Eo for cell = -2.19 V

    Note that H2O is more

    easily reduced than

    Na+.

    BATTERY

    +

    Na+Cl-

    Anode Cathode

    H2O

    electrons

    BATTERY

    +

    Na+Cl-

    Anode Cathode

    H2O

    electrons

    Also,Cl

    isoxidizedinpreferencetoH2O

    becauseofkinetics.Also,Cl

    isoxidizedinpreferencetoH2O

    becauseofkinetics.

    Electrolysis of Aqueous NaCl

  • 8/10/2019 Redox and Electrochemistry.pdf

    89/95

    Cells like these are the source of NaOH and Cl2.

    In 1995: 25.1 x 109 lb Cl2 and 26.1 x 109 lb NaOH

    AlsothesourceofNaOClforuseinbleach.

    Electrolysis of Aqueous NaI

  • 8/10/2019 Redox and Electrochemistry.pdf

    90/95

    Anode (+): 2 I- I2(g) + 2e-

    Cathode (-): 2 H2O + 2e- H2 + 2 OH-

    Eo

    for cell = -1.36 V

    Electrolysis of Aqueous CuCl2

  • 8/10/2019 Redox and Electrochemistry.pdf

    91/95

    Anode (+)

    2 Cl- Cl2(g) + 2e-

    Cathode (-)

    Cu2+ + 2e- Cu

    Eo for cell = -1.02 V

    Note that Cu is more

    easily reduced thaneither H2O or Na

    +.

    BATTERY

    +

    Cu2+Cl-

    Anode Cathode

    electrons

    H2O

    BATTERY

    +

    Cu2+Cl-

    Anode Cathode

    electrons

    H2O

    Electrolytic Refining of Copper

  • 8/10/2019 Redox and Electrochemistry.pdf

    92/95

    ImpurecopperisoxidizedtoCu2+ attheanode.Theaqueous

    Cu2+ ionsarereducedtoCumetalatthecathode.

    Thecopperatthecathodeisover99%pure

    Producing Aluminumf

  • 8/10/2019 Redox and Electrochemistry.pdf

    93/95

    2Al2O3 + 3Cf4Al + 3CO2

    CharlesHall(18631914)developedelectrolysisprocess.

    FoundedAlcoa.

    Corrosionand

  • 8/10/2019 Redox and Electrochemistry.pdf

    94/95

    CorrosionPrevention

  • 8/10/2019 Redox and Electrochemistry.pdf

    95/95