rectilinear polygon exchange transformations via cut-and ... · (tabachnikov, bedaride &...

99
1/39 Rectilinear Polygon Exchange Transformations via Cut-and-Project Methods Ren Yi (joint work with Ian Alevy and Richard Kenyon) Zero Entropy System, CIRM

Upload: others

Post on 31-Aug-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

1/39

Rectilinear Polygon Exchange Transformations

via

Cut-and-Project Methods

Ren Yi

(joint work with Ian Alevy and Richard Kenyon)

Zero Entropy System, CIRM

Page 2: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

2/39

Outline

1. Polygon Exchange Transformations (PETs)

2. Cut-and-Project Sets

3. (1) + (2) ⇒ Rectilinear PETs (RETs)

(Renormalization)

4. Multi-Stage RETs

5. Parameter Space of Multi-Stage RETs

Page 3: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

2/39

Outline

1. Polygon Exchange Transformations (PETs)

2. Cut-and-Project Sets

3. (1) + (2) ⇒ Rectilinear PETs (RETs)

(Renormalization)

4. Multi-Stage RETs

5. Parameter Space of Multi-Stage RETs

Page 4: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

2/39

Outline

1. Polygon Exchange Transformations (PETs)

2. Cut-and-Project Sets

3. (1) + (2) ⇒ Rectilinear PETs (RETs)

(Renormalization)

4. Multi-Stage RETs

5. Parameter Space of Multi-Stage RETs

Page 5: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

3/39

What is a PET?

(Polygon Exchange Transformation)

Page 6: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

4/39

What is a PET?

I Let X be a polygon.

I Let A = {Ak}Nk=0 and B = {Bk}Nk=0 be two partitions of X

into polygons such that

Bk = Ak + vk, ∀k = 0, · · · , N.

For each k, the polygons Ak and Bk are translation

equivalent.

I A polygon exchange transformation (PET) is a dynamical

system on X. The map T : X → X is defined by

x 7→ x + vk, ∀x ∈ Int(Ak).

Page 7: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

4/39

What is a PET?

I Let X be a polygon.

I Let A = {Ak}Nk=0 and B = {Bk}Nk=0 be two partitions of X

into polygons such that

Bk = Ak + vk, ∀k = 0, · · · , N.

For each k, the polygons Ak and Bk are translation

equivalent.

I A polygon exchange transformation (PET) is a dynamical

system on X. The map T : X → X is defined by

x 7→ x + vk, ∀x ∈ Int(Ak).

Page 8: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

4/39

What is a PET?

I Let X be a polygon.

I Let A = {Ak}Nk=0 and B = {Bk}Nk=0 be two partitions of X

into polygons such that

Bk = Ak + vk, ∀k = 0, · · · , N.

For each k, the polygons Ak and Bk are translation

equivalent.

I A polygon exchange transformation (PET) is a dynamical

system on X. The map T : X → X is defined by

x 7→ x + vk, ∀x ∈ Int(Ak).

Page 9: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

5/39

What is a PET?

Figure: 1-dim example (interval exchange transformation)

Figure: An example of PETs

Page 10: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

5/39

What is a PET?

Figure: 1-dim example (interval exchange transformation)

Figure: An example of PETs

Page 11: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

6/39

What is a PET?

Page 12: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

6/39

What is a PET?

Page 13: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

6/39

What is a PET?

Page 14: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

6/39

What is a PET?

Page 15: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

7/39

How to construct a PET?

Page 16: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

8/39

How to construct a PET?

I Products of IETs

I Covering maps of some piecewise isometries (Goetz, Akiyama,

Lowenstein, N. Bedaride, · · · )(studied by most of the participants!)

I Outer billiards on regular n-gons for n = 5, 7, 8, 12

(Tabachnikov, Bedaride & Cassaigne); outer billiards on kites

(Schwartz)

I Multigraph PETs (R. Schwartz and R. Yi)

Page 17: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

8/39

How to construct a PET?

I Products of IETs

I Covering maps of some piecewise isometries (Goetz, Akiyama,

Lowenstein, N. Bedaride, · · · )

(studied by most of the participants!)

I Outer billiards on regular n-gons for n = 5, 7, 8, 12

(Tabachnikov, Bedaride & Cassaigne); outer billiards on kites

(Schwartz)

I Multigraph PETs (R. Schwartz and R. Yi)

Page 18: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

8/39

How to construct a PET?

I Products of IETs

I Covering maps of some piecewise isometries (Goetz, Akiyama,

Lowenstein, N. Bedaride, · · · )(studied by most of the participants!)

I Outer billiards on regular n-gons for n = 5, 7, 8, 12

(Tabachnikov, Bedaride & Cassaigne); outer billiards on kites

(Schwartz)

I Multigraph PETs (R. Schwartz and R. Yi)

Page 19: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

8/39

How to construct a PET?

I Products of IETs

I Covering maps of some piecewise isometries (Goetz, Akiyama,

Lowenstein, N. Bedaride, · · · )(studied by most of the participants!)

I Outer billiards on regular n-gons for n = 5, 7, 8, 12

(Tabachnikov, Bedaride & Cassaigne); outer billiards on kites

(Schwartz)

I Multigraph PETs (R. Schwartz and R. Yi)

Page 20: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

8/39

How to construct a PET?

I Products of IETs

I Covering maps of some piecewise isometries (Goetz, Akiyama,

Lowenstein, N. Bedaride, · · · )(studied by most of the participants!)

I Outer billiards on regular n-gons for n = 5, 7, 8, 12

(Tabachnikov, Bedaride & Cassaigne); outer billiards on kites

(Schwartz)

I Multigraph PETs (R. Schwartz and R. Yi)

Page 21: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

9/39

Rectilinear PETs (RETs)

We consider the case when all Ak ∈ A and Bk ∈ B in the

partitions are rectilinear polygons.

Figure: An example of rectilinear PETs

Page 22: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

10/39

Renormalization: An approach to study PETs

Page 23: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

11/39

Renormalization

Renormalization is a tool to zoom the space and accelerate the

orbits of points along time.

I Let T : X → X be a PET and Y be a subset of X. The first

return map T |Y : Y → Y is given by

T |Y (p) = Tn(p), where n = min{T k(p) ∈ Y | k > 0}.

Definition (Renormalization)

A PET T : X → X is renormalizable if there exists a subset

Y ⊂ X such that T |Y is conjugate to T by a affine map.

Page 24: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

11/39

Renormalization

Renormalization is a tool to zoom the space and accelerate the

orbits of points along time.

I Let T : X → X be a PET and Y be a subset of X. The first

return map T |Y : Y → Y is given by

T |Y (p) = Tn(p), where n = min{T k(p) ∈ Y | k > 0}.

Definition (Renormalization)

A PET T : X → X is renormalizable if there exists a subset

Y ⊂ X such that T |Y is conjugate to T by a affine map.

Page 25: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

11/39

Renormalization

Renormalization is a tool to zoom the space and accelerate the

orbits of points along time.

I Let T : X → X be a PET and Y be a subset of X. The first

return map T |Y : Y → Y is given by

T |Y (p) = Tn(p), where n = min{T k(p) ∈ Y | k > 0}.

Definition (Renormalization)

A PET T : X → X is renormalizable if there exists a subset

Y ⊂ X such that T |Y is conjugate to T by a affine map.

Page 26: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

12/39

Renormalization

An example of piecewise isometric maps and its renormalization

(A. Goetz).

Page 27: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

12/39

Renormalization

An example of piecewise isometric maps and its renormalization

(A. Goetz).

Page 28: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

13/39

Cut-and-Project Method

Page 29: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

14/39

Cut-and-Project Method

For n ≥ 6, let Mn be the matrix

Mn =

0 1 0

0 0 1

1 −n n+ 1

.

I Characteristic polynomial:

q(x) = x3 − (n+ 1)x2 + nx− 1

I Eigenvalues: 0 < λ1 < λ2 < 1 < λ3

⇒ The dominant eigenvalue λ3 is a Pisot number.

I Eigenvectors (corresponding to λi):

ξi = (1, λi, λ2i ).

Page 30: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

14/39

Cut-and-Project Method

For n ≥ 6, let Mn be the matrix

Mn =

0 1 0

0 0 1

1 −n n+ 1

.I Characteristic polynomial:

q(x) = x3 − (n+ 1)x2 + nx− 1

I Eigenvalues: 0 < λ1 < λ2 < 1 < λ3

⇒ The dominant eigenvalue λ3 is a Pisot number.

I Eigenvectors (corresponding to λi):

ξi = (1, λi, λ2i ).

Page 31: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

14/39

Cut-and-Project Method

For n ≥ 6, let Mn be the matrix

Mn =

0 1 0

0 0 1

1 −n n+ 1

.I Characteristic polynomial:

q(x) = x3 − (n+ 1)x2 + nx− 1

I Eigenvalues: 0 < λ1 < λ2 < 1 < λ3

⇒ The dominant eigenvalue λ3 is a Pisot number.

I Eigenvectors (corresponding to λi):

ξi = (1, λi, λ2i ).

Page 32: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

14/39

Cut-and-Project Method

For n ≥ 6, let Mn be the matrix

Mn =

0 1 0

0 0 1

1 −n n+ 1

.I Characteristic polynomial:

q(x) = x3 − (n+ 1)x2 + nx− 1

I Eigenvalues: 0 < λ1 < λ2 < 1 < λ3

⇒ The dominant eigenvalue λ3 is a Pisot number.

I Eigenvectors (corresponding to λi):

ξi = (1, λi, λ2i ).

Page 33: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

14/39

Cut-and-Project Method

For n ≥ 6, let Mn be the matrix

Mn =

0 1 0

0 0 1

1 −n n+ 1

.I Characteristic polynomial:

q(x) = x3 − (n+ 1)x2 + nx− 1

I Eigenvalues: 0 < λ1 < λ2 < 1 < λ3

⇒ The dominant eigenvalue λ3 is a Pisot number.

I Eigenvectors (corresponding to λi):

ξi = (1, λi, λ2i ).

Page 34: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

15/39

Cut-and-Project Method

For each matrix Mn,

I He := the expanding line

I Hc := the contracting hyperplane

I πe := the projection of R3 onto He

along Hc

πe : x 7→ x · ξ3

I πc := the projection of R3 onto Hc

along He

πc : x 7→ (x · ξ1,x · ξ2)

Page 35: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

15/39

Cut-and-Project Method

For each matrix Mn,

I He := the expanding line

I Hc := the contracting hyperplane

I πe := the projection of R3 onto He

along Hc

πe : x 7→ x · ξ3

I πc := the projection of R3 onto Hc

along He

πc : x 7→ (x · ξ1,x · ξ2)

Page 36: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

15/39

Cut-and-Project Method

For each matrix Mn,

I He := the expanding line

I Hc := the contracting hyperplane

I πe := the projection of R3 onto He

along Hc

πe : x 7→ x · ξ3

I πc := the projection of R3 onto Hc

along He

πc : x 7→ (x · ξ1,x · ξ2)

Page 37: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

15/39

Cut-and-Project Method

For each matrix Mn,

I He := the expanding line

I Hc := the contracting hyperplane

I πe := the projection of R3 onto He

along Hc

πe : x 7→ x · ξ3

I πc := the projection of R3 onto Hc

along He

πc : x 7→ (x · ξ1,x · ξ2)

Page 38: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

15/39

Cut-and-Project Method

For each matrix Mn,

I He := the expanding line

I Hc := the contracting hyperplane

I πe := the projection of R3 onto He

along Hc

πe : x 7→ x · ξ3

I πc := the projection of R3 onto Hc

along He

πc : x 7→ (x · ξ1,x · ξ2)

Page 39: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

16/39

Cut-and-Project Method

I Let X be the unit square in R2

centered at (12 ,12).

I Define

ΛX = {x ∈ Z3 : πc(x) ∈ X)}.

I For p ∈ ΛX , define wp ∈ ΛX to bethe point such that

πe(wp)−πe(p) = minw∈ΛX

{πe(w)−πe(p) > 0}

I Let E = {wp − p| p ∈ ΛX}.|E| = N <∞

Page 40: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

16/39

Cut-and-Project Method

I Let X be the unit square in R2

centered at (12 ,12).

I Define

ΛX = {x ∈ Z3 : πc(x) ∈ X)}.

I For p ∈ ΛX , define wp ∈ ΛX to bethe point such that

πe(wp)−πe(p) = minw∈ΛX

{πe(w)−πe(p) > 0}

I Let E = {wp − p| p ∈ ΛX}.|E| = N <∞

Page 41: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

16/39

Cut-and-Project Method

I Let X be the unit square in R2

centered at (12 ,12).

I Define

ΛX = {x ∈ Z3 : πc(x) ∈ X)}.

I For p ∈ ΛX , define wp ∈ ΛX to bethe point such that

πe(wp)−πe(p) = minw∈ΛX

{πe(w)−πe(p) > 0}

I Let E = {wp − p| p ∈ ΛX}.|E| = N <∞

Page 42: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

16/39

Cut-and-Project Method

I Let X be the unit square in R2

centered at (12 ,12).

I Define

ΛX = {x ∈ Z3 : πc(x) ∈ X)}.

I For p ∈ ΛX , define wp ∈ ΛX to bethe point such that

πe(wp)−πe(p) = minw∈ΛX

{πe(w)−πe(p) > 0}

I Let E = {wp − p| p ∈ ΛX}.

|E| = N <∞

Page 43: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

16/39

Cut-and-Project Method

I Let X be the unit square in R2

centered at (12 ,12).

I Define

ΛX = {x ∈ Z3 : πc(x) ∈ X)}.

I For p ∈ ΛX , define wp ∈ ΛX to bethe point such that

πe(wp)−πe(p) = minw∈ΛX

{πe(w)−πe(p) > 0}

I Let E = {wp − p| p ∈ ΛX}.|E| = N <∞

Page 44: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

17/39

Rectilinear PET

via

Cut-and-Project Methods

Page 45: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

18/39

Construction

I Recall that X is a unit square

centered at (12 ,12).

Translation vectors on X:

V = πc(E)

I We define an order on the elements

in E by

ηi < ηj if πe(ηi) < πe(ηj).

Page 46: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

18/39

Construction

I Recall that X is a unit square

centered at (12 ,12).

Translation vectors on X:

V = πc(E)

I We define an order on the elements

in E by

ηi < ηj if πe(ηi) < πe(ηj).

Page 47: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

19/39

Construction

The partition A = {Ak}N−1k=0 of X as follows:

I Let fv be the map of translation by v, i.e. fv : x 7→ x+ v.

I A0 = f−1v0 (X) ∩X .

I Ak = (f−1vk

(X) ∩X) \ (⋃k−1

i=0 Ai).

Page 48: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

19/39

Construction

The partition A = {Ak}N−1k=0 of X as follows:

I Let fv be the map of translation by v, i.e. fv : x 7→ x+ v.

I A0 = f−1v0 (X) ∩X .

I Ak = (f−1vk

(X) ∩X) \ (⋃k−1

i=0 Ai).

Page 49: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

19/39

Construction

The partition A = {Ak}N−1k=0 of X as follows:

I Let fv be the map of translation by v, i.e. fv : x 7→ x+ v.

I A0 = f−1v0 (X) ∩X .

I Ak = (f−1vk

(X) ∩X) \ (⋃k−1

i=0 Ai).

Page 50: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

19/39

Construction

The partition A = {Ak}N−1k=0 of X as follows:

I Let fv be the map of translation by v, i.e. fv : x 7→ x+ v.

I A0 = f−1v0 (X) ∩X .

I Ak = (f−1vk

(X) ∩X) \ (⋃k−1

i=0 Ai).

Page 51: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

19/39

Construction

The partition A = {Ak}N−1k=0 of X as follows:

I Let fv be the map of translation by v, i.e. fv : x 7→ x+ v.

I A0 = f−1v0 (X) ∩X .

I Ak = (f−1vk

(X) ∩X) \ (⋃k−1

i=0 Ai).

Page 52: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

19/39

Construction

The partition A = {Ak}N−1k=0 of X as follows:

I Let fv be the map of translation by v, i.e. fv : x 7→ x+ v.

I A0 = f−1v0 (X) ∩X .

I Ak = (f−1vk

(X) ∩X) \ (⋃k−1

i=0 Ai).

Page 53: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

20/39

Construction

I An example of the rectilinear PET Tn : X → X constructed

from cut-and-project method via matrix

Mn =

0 1 0

0 0 1

1 −n n+ 1

for n = 6.

I Each orbit of point x ∈ X corresponds to a lattice walk.

Page 54: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

20/39

Construction

I An example of the rectilinear PET Tn : X → X constructed

from cut-and-project method via matrix

Mn =

0 1 0

0 0 1

1 −n n+ 1

for n = 6.

I Each orbit of point x ∈ X corresponds to a lattice walk.

Page 55: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

21/39

Renormalization

Theorem

Let Y ⊂ X be the rectangle with top right vertex (1, 1) with

width λ1 and height λ2 where 0 < λ1 < λ2 < 1 are two

eigenvalues of Mn.

Let Tn : X → X be a rectilinear PET

arisen from cut-and-project method via Mn. Then

Tn|Y = ψ−1 ◦ Tn ◦ ψ

where ψ : X → X is defined by

ψ : (x, y) 7→ (x+ λ1 − 1

λ1,y + λ2 − 1

λ2).

Page 56: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

21/39

Renormalization

Theorem

Let Y ⊂ X be the rectangle with top right vertex (1, 1) with

width λ1 and height λ2 where 0 < λ1 < λ2 < 1 are two

eigenvalues of Mn. Let Tn : X → X be a rectilinear PET

arisen from cut-and-project method via Mn. Then

Tn|Y = ψ−1 ◦ Tn ◦ ψ

where ψ : X → X is defined by

ψ : (x, y) 7→ (x+ λ1 − 1

λ1,y + λ2 − 1

λ2).

Page 57: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

21/39

Renormalization

Theorem

Let Y ⊂ X be the rectangle with top right vertex (1, 1) with

width λ1 and height λ2 where 0 < λ1 < λ2 < 1 are two

eigenvalues of Mn. Let Tn : X → X be a rectilinear PET

arisen from cut-and-project method via Mn. Then

Tn|Y = ψ−1 ◦ Tn ◦ ψ

where ψ : X → X is defined by

ψ : (x, y) 7→ (x+ λ1 − 1

λ1,y + λ2 − 1

λ2).

Page 58: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

22/39

Renormalization

Figure: An illustration of renormalization.

Page 59: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

22/39

Renormalization

Figure: An illustration of renormalization.

Page 60: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

23/39

Renormalization

Proof Sketch:

I Define ΛY = {(a, b, c) ∈ Z3| πc(a, b, c) ∈ Y }.Note the fact that ΛY ⊂ ΛX .

I Define Ψ : ΛX → ΛX to be the acceleration map defined by

Ψ :

abc

7→0 0 1

1 0 −n0 1 n+ 1

abc

+

1

−1

0

We show that Ψ : ΛY → ΛY corresponds to T |Y : Y → Y .

Page 61: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

23/39

Renormalization

Proof Sketch:

I Define ΛY = {(a, b, c) ∈ Z3| πc(a, b, c) ∈ Y }.Note the fact that ΛY ⊂ ΛX .

I Define Ψ : ΛX → ΛX to be the acceleration map defined by

Ψ :

abc

7→0 0 1

1 0 −n0 1 n+ 1

abc

+

1

−1

0

We show that Ψ : ΛY → ΛY corresponds to T |Y : Y → Y .

Page 62: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

23/39

Renormalization

Proof Sketch:

I Define ΛY = {(a, b, c) ∈ Z3| πc(a, b, c) ∈ Y }.Note the fact that ΛY ⊂ ΛX .

I Define Ψ : ΛX → ΛX to be the acceleration map defined by

Ψ :

abc

7→0 0 1

1 0 −n0 1 n+ 1

abc

+

1

−1

0

We show that Ψ : ΛY → ΛY corresponds to T |Y : Y → Y .

Page 63: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

24/39

Renormalization

Proof Sketch:

I Return

πc

abc

= (x, y) ⇒ πc ◦Ψ

abc

= (λ1x, λ2y)

where 0 < λ1 < λ2 < 1 are eigenvalues of Mn.

I First return

The map Ψ preserves the order of the lattice walk

{ω1, ω2, · · · }, i.e.

πe(ωi) < πe(ωj) ⇒ πe ◦Ψ(ωi) < πe ◦Ψ(ωj).

Page 64: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

24/39

Renormalization

Proof Sketch:

I Return

πc

abc

= (x, y) ⇒ πc ◦Ψ

abc

= (λ1x, λ2y)

where 0 < λ1 < λ2 < 1 are eigenvalues of Mn.

I First return

The map Ψ preserves the order of the lattice walk

{ω1, ω2, · · · }, i.e.

πe(ωi) < πe(ωj) ⇒ πe ◦Ψ(ωi) < πe ◦Ψ(ωj).

Page 65: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

25/39

Renormalization

Underlying substitution symbolic dynamics:

I Set a = v0, b = v1 and c = v3.

I substitution of Pisot type

a 7→ abc, b 7→ abcb, and

c 7→ (abc)n−3bc for n ≥ 6

I Incidence matrix:

Wn =

1 1 n− 3

1 2 n− 2

1 1 n− 2

I Wn ∼Mn

Page 66: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

25/39

Renormalization

Underlying substitution symbolic dynamics:

I Set a = v0, b = v1 and c = v3.

I substitution of Pisot type

a 7→ abc, b 7→ abcb, and

c 7→ (abc)n−3bc for n ≥ 6

I Incidence matrix:

Wn =

1 1 n− 3

1 2 n− 2

1 1 n− 2

I Wn ∼Mn

Page 67: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

25/39

Renormalization

Underlying substitution symbolic dynamics:

I Set a = v0, b = v1 and c = v3.

I substitution of Pisot type

a 7→ abc, b 7→ abcb, and

c 7→ (abc)n−3bc for n ≥ 6

I Incidence matrix:

Wn =

1 1 n− 3

1 2 n− 2

1 1 n− 2

I Wn ∼Mn

Page 68: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

25/39

Renormalization

Underlying substitution symbolic dynamics:

I Set a = v0, b = v1 and c = v3.

I substitution of Pisot type

a 7→ abc, b 7→ abcb, and

c 7→ (abc)n−3bc for n ≥ 6

I Incidence matrix:

Wn =

1 1 n− 3

1 2 n− 2

1 1 n− 2

I Wn ∼Mn

Page 69: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

25/39

Renormalization

Underlying substitution symbolic dynamics:

I Set a = v0, b = v1 and c = v3.

I substitution of Pisot type

a 7→ abc, b 7→ abcb, and

c 7→ (abc)n−3bc for n ≥ 6

I Incidence matrix:

Wn =

1 1 n− 3

1 2 n− 2

1 1 n− 2

I Wn ∼Mn

Page 70: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

25/39

Renormalization

Underlying substitution symbolic dynamics:

I Set a = v0, b = v1 and c = v3.

I substitution of Pisot type

a 7→ abc, b 7→ abcb, and

c 7→ (abc)n−3bc for n ≥ 6

I Incidence matrix:

Wn =

1 1 n− 3

1 2 n− 2

1 1 n− 2

I Wn ∼Mn

Page 71: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

26/39

Multi-Stage Rectilinear PETs

Page 72: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

27/39

Multi-Stage Rectilinear PETs

Let Pn be the matrix of translation. Consider matrix products

P0 = Pn1 · · ·Pnkand Pi = Pn1 · · ·Pni for i ≥ 1.

For each stage i ≥ 0, we want to construct a RET Si by via Pi

such that

I each Si has the same combinatorics as T6.

I each Si is renormalizable, i.e.

Si|Yi = ψ−1i ◦ Si+1 ◦ ψi.

Page 73: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

27/39

Multi-Stage Rectilinear PETs

Let Pn be the matrix of translation. Consider matrix products

P0 = Pn1 · · ·Pnkand Pi = Pn1 · · ·Pni for i ≥ 1.

For each stage i ≥ 0, we want to construct a RET Si by via Pi

such that

I each Si has the same combinatorics as T6.

I each Si is renormalizable, i.e.

Si|Yi = ψ−1i ◦ Si+1 ◦ ψi.

Page 74: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

27/39

Multi-Stage Rectilinear PETs

Let Pn be the matrix of translation. Consider matrix products

P0 = Pn1 · · ·Pnkand Pi = Pn1 · · ·Pni for i ≥ 1.

For each stage i ≥ 0, we want to construct a RET Si by via Pi

such that

I each Si has the same combinatorics as T6.

I each Si is renormalizable, i.e.

Si|Yi = ψ−1i ◦ Si+1 ◦ ψi.

Page 75: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

28/39

Multi-Stage Rectilinear PETs

The matrix of translation

Pn =

1 1 1 1 1 1 1

0 2 1 1 2 2 1

0 0 1 0 0 1 2

0 1 1 1 2 2 2

0 0 0 0 0 0 0

1 0 1 1 0 1 2

0 0 0 n− 4 n− 3 n− 4 n− 4

The matrix Pn can be reduced to the incidence matrix Wn.

Page 76: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

28/39

Multi-Stage Rectilinear PETs

The matrix of translation

Pn =

1 1 1 1 1 1 1

0 2 1 1 2 2 1

0 0 1 0 0 1 2

0 1 1 1 2 2 2

0 0 0 0 0 0 0

1 0 1 1 0 1 2

0 0 0 n− 4 n− 3 n− 4 n− 4

The matrix Pn can be reduced to the incidence matrix Wn.

Page 77: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

29/39

Multi-Stage RETs (Construction)

Figure: An illustration of renormalization.

Page 78: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

30/39

Multi-Stage RETs (Construction)

Construction:

I Let P = Pn1 · · ·Pnk.

Non-zero eigenvalues: 0 < λ1 < λ2 < 1 < λ3.

Eigenvectors: ζ1 = (x0, x1, · · · , x6) for x1 − x0 = 1.

ζ2 = (y0, y1, · · · , y6) for y1 − y0 = 1

I Let V = {v0, · · · , v6} be the set of vectors given by

vj = (xj , yj).

There is a RET S : X → X with the set of translation vectors

V = {vj}6j=0 if vj ∈ (−1, 1)× (−1, 1).

Page 79: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

30/39

Multi-Stage RETs (Construction)

Construction:

I Let P = Pn1 · · ·Pnk.

Non-zero eigenvalues: 0 < λ1 < λ2 < 1 < λ3.

Eigenvectors: ζ1 = (x0, x1, · · · , x6) for x1 − x0 = 1.

ζ2 = (y0, y1, · · · , y6) for y1 − y0 = 1

I Let V = {v0, · · · , v6} be the set of vectors given by

vj = (xj , yj).

There is a RET S : X → X with the set of translation vectors

V = {vj}6j=0 if vj ∈ (−1, 1)× (−1, 1).

Page 80: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

30/39

Multi-Stage RETs (Construction)

Construction:

I Let P = Pn1 · · ·Pnk.

Non-zero eigenvalues: 0 < λ1 < λ2 < 1 < λ3.

Eigenvectors: ζ1 = (x0, x1, · · · , x6) for x1 − x0 = 1.

ζ2 = (y0, y1, · · · , y6) for y1 − y0 = 1

I Let V = {v0, · · · , v6} be the set of vectors given by

vj = (xj , yj).

There is a RET S : X → X with the set of translation vectors

V = {vj}6j=0 if vj ∈ (−1, 1)× (−1, 1).

Page 81: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

30/39

Multi-Stage RETs (Construction)

Construction:

I Let P = Pn1 · · ·Pnk.

Non-zero eigenvalues: 0 < λ1 < λ2 < 1 < λ3.

Eigenvectors: ζ1 = (x0, x1, · · · , x6) for x1 − x0 = 1.

ζ2 = (y0, y1, · · · , y6) for y1 − y0 = 1

I Let V = {v0, · · · , v6} be the set of vectors given by

vj = (xj , yj).

There is a RET S : X → X with the set of translation vectors

V = {vj}6j=0 if vj ∈ (−1, 1)× (−1, 1).

Page 82: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

30/39

Multi-Stage RETs (Construction)

Construction:

I Let P = Pn1 · · ·Pnk.

Non-zero eigenvalues: 0 < λ1 < λ2 < 1 < λ3.

Eigenvectors: ζ1 = (x0, x1, · · · , x6) for x1 − x0 = 1.

ζ2 = (y0, y1, · · · , y6) for y1 − y0 = 1

I Let V = {v0, · · · , v6} be the set of vectors given by

vj = (xj , yj).

There is a RET S : X → X with the set of translation vectors

V = {vj}6j=0 if vj ∈ (−1, 1)× (−1, 1).

Page 83: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

31/39

Multi-Stage RETs (Construction)

I P = Pn1 · · ·Pnkand Pi = Pn1 · · ·Pni .

I Piζ1 = (xi0, · · · , xi6) and Piζ2 = (yi0, · · · , yi6).

Rescale ⇒ −xi0 + xi1 = 1 and −yi0 + yi1 = 1.

I Translation vector for ith stage:

vi0 = (xi0, yi0), · · · , vi6 = (xi6, y

i6).

There is a multi-stage RET S : X → X if at each stage i,

all translation vectors vij ∈ (−1, 1)× (−1, 1).

A product P is called admissible if there is a multi-stage

RET.

Page 84: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

31/39

Multi-Stage RETs (Construction)

I P = Pn1 · · ·Pnkand Pi = Pn1 · · ·Pni .

I Piζ1 = (xi0, · · · , xi6) and Piζ2 = (yi0, · · · , yi6).

Rescale ⇒ −xi0 + xi1 = 1 and −yi0 + yi1 = 1.

I Translation vector for ith stage:

vi0 = (xi0, yi0), · · · , vi6 = (xi6, y

i6).

There is a multi-stage RET S : X → X if at each stage i,

all translation vectors vij ∈ (−1, 1)× (−1, 1).

A product P is called admissible if there is a multi-stage

RET.

Page 85: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

31/39

Multi-Stage RETs (Construction)

I P = Pn1 · · ·Pnkand Pi = Pn1 · · ·Pni .

I Piζ1 = (xi0, · · · , xi6) and Piζ2 = (yi0, · · · , yi6).

Rescale ⇒ −xi0 + xi1 = 1 and −yi0 + yi1 = 1.

I Translation vector for ith stage:

vi0 = (xi0, yi0), · · · , vi6 = (xi6, y

i6).

There is a multi-stage RET S : X → X if at each stage i,

all translation vectors vij ∈ (−1, 1)× (−1, 1).

A product P is called admissible if there is a multi-stage

RET.

Page 86: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

31/39

Multi-Stage RETs (Construction)

I P = Pn1 · · ·Pnkand Pi = Pn1 · · ·Pni .

I Piζ1 = (xi0, · · · , xi6) and Piζ2 = (yi0, · · · , yi6).

Rescale ⇒ −xi0 + xi1 = 1 and −yi0 + yi1 = 1.

I Translation vector for ith stage:

vi0 = (xi0, yi0), · · · , vi6 = (xi6, y

i6).

There is a multi-stage RET S : X → X if at each stage i,

all translation vectors vij ∈ (−1, 1)× (−1, 1).

A product P is called admissible if there is a multi-stage

RET.

Page 87: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

31/39

Multi-Stage RETs (Construction)

I P = Pn1 · · ·Pnkand Pi = Pn1 · · ·Pni .

I Piζ1 = (xi0, · · · , xi6) and Piζ2 = (yi0, · · · , yi6).

Rescale ⇒ −xi0 + xi1 = 1 and −yi0 + yi1 = 1.

I Translation vector for ith stage:

vi0 = (xi0, yi0), · · · , vi6 = (xi6, y

i6).

There is a multi-stage RET S : X → X if at each stage i,

all translation vectors vij ∈ (−1, 1)× (−1, 1).

A product P is called admissible if there is a multi-stage

RET.

Page 88: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

32/39

Multi-Stage RETs (Construction)

Figure: The multi-stage rectilinear PETs for P = P7P8P6P7.

Page 89: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

33/39

Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let P = Pn1 · · ·Pnkbe an admissible matrix product. Let

S : X → X be a a multi-stage RET determined by P . Then

1.

S|Y0 = ψ−10 ◦ S1 ◦ ψ0

for the affine map ψ0 : Y0 7→ X.

2.

Si|Yi = ψ−1i ◦ Si+1 ◦ ψi

for the affine map ψi : Yi 7→ X

Page 90: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

33/39

Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let P = Pn1 · · ·Pnkbe an admissible matrix product. Let

S : X → X be a a multi-stage RET determined by P . Then

1.

S|Y0 = ψ−10 ◦ S1 ◦ ψ0

for the affine map ψ0 : Y0 7→ X.

2.

Si|Yi = ψ−1i ◦ Si+1 ◦ ψi

for the affine map ψi : Yi 7→ X

Page 91: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

33/39

Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let P = Pn1 · · ·Pnkbe an admissible matrix product. Let

S : X → X be a a multi-stage RET determined by P . Then

1.

S|Y0 = ψ−10 ◦ S1 ◦ ψ0

for the affine map ψ0 : Y0 7→ X.

2.

Si|Yi = ψ−1i ◦ Si+1 ◦ ψi

for the affine map ψi : Yi 7→ X

Page 92: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

34/39

The Parameter Space of Multi-Stage RETs

Figure: The parameter space of admissible rectilinear PETs in R4

Theorem (in process)

The parameter space M of admissible rectilinear PETs

is a Cantor set in R4.

Page 93: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

34/39

The Parameter Space of Multi-Stage RETs

Figure: The parameter space of admissible rectilinear PETs in R4

Theorem (in process)

The parameter space M of admissible rectilinear PETs

is a Cantor set in R4.

Page 94: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

35/39

The Parameter Space of Multi-Stage RETs

Figure: PnM and P−1n M

Page 95: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

36/39

The Parameter Space of Multi-Stage RETs

We expect the dynamics on the parameter space to be a ’discrete

horseshoe map’

0.70 0.80 0.85 0.90 0.95 1.00

0.50

0.60

0.65

0.70

0.75

0.80

0.70 0.80 0.85 0.90 0.95 1.00

0.50

0.60

0.65

0.70

0.75

0.80

Page 96: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

37/39

Domain Exchange Transformation

We can construct domain exchange transformation on more

general domains by the cut-and-project method.

Figure: An example of circle exchange transformation by the

cut-and-project method

(Conjecture) The domain exchange transformations on convex

domains via cut-and-project methods are renormalizable.

Page 97: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

37/39

Domain Exchange Transformation

We can construct domain exchange transformation on more

general domains by the cut-and-project method.

Figure: An example of circle exchange transformation by the

cut-and-project method

(Conjecture) The domain exchange transformations on convex

domains via cut-and-project methods are renormalizable.

Page 98: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

38/39

Future Directions

I PETs on general domains and their renormalizations

I Piecewise isometries arisen from cut-and-project methods

associated to quartic polynomials

I Generalizations of the Three Gap Theorem

I Self-similar tilings from RETs?

I Generalizations of Rauzy inductions in PETs

I Complexity of the PETs

Page 99: Rectilinear Polygon Exchange Transformations via Cut-and ... · (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz) I Multigraph PETs (R. Schwartz and R. Yi)

39/39

Thank you