reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

26
Reconstruction (of micro-objects) based on focus-sets using blind deconvolution Reconstruction (of micro-objects) based on focus-sets using blind deconvolution Jan Wedekind November 19th, 2001 [email protected] http://www.uni-karlsruhe.de/ ~ unoh University of Karlsruhe (TH) -1- Sheffield Hallam University

Upload: jan-wedekind

Post on 24-Jun-2015

490 views

Category:

Technology


4 download

TRANSCRIPT

Page 1: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

Reconstruction (of micro-objects) based onfocus-sets using blind deconvolution

Jan Wedekind

November 19th, 2001

[email protected]

http://www.uni-karlsruhe.de/~unoh

University of Karlsruhe (TH) - 1 - Sheffield Hallam University

Page 2: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

MINIMAN-project

Esprit Project No. 33915

Miniaturised Robot for Micro Manipulation

http://www.miniman-project.com/

Miniman III

University of Karlsruhe (TH) - 2 - Sheffield Hallam University

Page 3: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

people: SHU staff

Sheffield Hallam University

microsystems & machine vision lab

http://www.shu.ac.uk/mmvl/

Prof. J. Travis B. Amavasai F. Caparrelli

no picture

A. Selvan

University of Karlsruhe (TH) - 3 - Sheffield Hallam University

Page 4: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

people: UKA staff

Universitat Karlsruhe (TH)

Institute fur Prozeßrechentechnik,

Automation und Robotik

http://wwwipr.ira.uka.de/microrobots/

J. Wedekind

University of Karlsruhe (TH) - 4 - Sheffield Hallam University

Page 5: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

overview: environment

• Leica DM RXA microscope

– 2 channel illumination

– motorized z-table

(piezo-driven 0.1 µm)

– filter-module

• motorized xy-table

• Dual Pentium III with 1GHz

processors

– Linux OS

– C++ and KDE/QT

• CCD camera 768× 576

⇒ resolution up to 0.74 µmpixel

Leica DM RXA microscope

University of Karlsruhe (TH) - 5 - Sheffield Hallam University

Page 6: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

overview: objective

• reconstruct from focus-set:

– surface

– luminosity and coloring

• identify model-parameters and quality of assembly

University of Karlsruhe (TH) - 6 - Sheffield Hallam University

Page 7: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

basics: discrete fourier transform

• 1D DFT

definition Fk :=

N−1∑x=0

fx e−

2πxki

N where i2 = −1

⇔ fx =1

N

N−1∑k=0

Fk e+

2πxki

N

• 2D DFT

analogous Fkl :=N−1∑x,y=0

fxy e−

2πxki

N e−

2πyli

N , i2 = −1

⇔ fxy =1

N2

N−1∑k,l=0

Fkl e+

2πxki

N e+

2πyli

N

University of Karlsruhe (TH) - 7 - Sheffield Hallam University

Page 8: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

basics: 1D discrete fourier transform

x x x* =

ω x ω=

image domain

frequency domain

∀x ∈ R : f(x) =

∫ ∞−∞

f(x)∞∑

n=−∞δ(x− Tn) dx

⇔ ∀ω ∈ C : F (ω) = (F ⊗ λω.[2πT

∞∑n=−∞

δ(ω − n2π

T)])(ω)

University of Karlsruhe (TH) - 8 - Sheffield Hallam University

Page 9: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

basics: 1D discrete fourier transform

x x x* =

ω ω=

image domain

frequency domain

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8w

sinc(x)

∀x ∈ R : f(x) = f(x) rect(t

2T)

⇔ ∀ω ∈ C : F (ω) = (F ⊗ λω.[2T

sin(ωT )

ωT

])(ω)

University of Karlsruhe (TH) - 9 - Sheffield Hallam University

Page 10: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

sparse matrices and vectors: images

conservative: x =

x00 · · · x0(N−1)

.... . .

...

x(N−1)0 · · · x(N−1)(N−1)

∈ RN×N

vector repr.: ~x =

~x0

~x1

...

~xN−1

=

x00

x01

...

x10

...

x(N−1)(N−1)

∈ RNN

University of Karlsruhe (TH) - 10 - Sheffield Hallam University

Page 11: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

sparse matrices and vectors: convolution (i)

matrix repr. of convolution with a 1D-LSI-filters

g0

g1

...

gK+N−1

︸ ︷︷ ︸∈R(K+N−1)

=

h0 0 · · · 0

h1 h0. . .

......

. . .. . . 0

hK−1 h0

0. . . h1

.... . .

...

︸ ︷︷ ︸

∈R(K+N−1)×N

f0

f1

...

fN−1

︸ ︷︷ ︸∈RN

• vectors of different size ⇒ not feasible

• matrix is clumsy and baffles mathematical approaches

University of Karlsruhe (TH) - 11 - Sheffield Hallam University

Page 12: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

sparse matrices and vectors: circulant matrices

A =

a(0) a(N − 1) · · · a(1)

a(1). . .

. . ....

.... . . a(N − 1)

a(N − 1) · · · a(1) a(0)

without

proof:• eigenvalues of A: λ(k) =

N−1∑j=0

a(j) e−

2πkji

N

• A = FQAF−1 with

– QA = diag(λ1, λ2, . . . , λN ) and

– fourier-kernel F−1

University of Karlsruhe (TH) - 12 - Sheffield Hallam University

Page 13: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

sparse matrices and vectors: fourier kernel

definition of fourier-kernel: F−1 :=(e

2πukli

N)

with U :=

0 0 0 · · ·0 1 2 · · ·0 2 4 · · ·...

......

. . .

and i2 = −1

note: • X = DFT{x} = X = F−1~x

• x = DFT−1{X} = ~x = FX where F = 1N (F−1)∗

• F = F>

University of Karlsruhe (TH) - 13 - Sheffield Hallam University

Page 14: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

sparse matrices and vectors: convolution (ii)

approximated 1D convolutiong0

g1

...

gN−1

︸ ︷︷ ︸=:~g∈RN

h0 hN−1 · · · h1

h1. . .

. . ....

.... . . hN−1

hN−1 · · · h1 h0

︸ ︷︷ ︸

=:H∈RN×N

f0

f1

...

fN−1

︸ ︷︷ ︸=:~f∈RN

~g = H~f

University of Karlsruhe (TH) - 14 - Sheffield Hallam University

Page 15: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

sparse matrices and vectors: convolution (iii)

~gk =N−1∑l=0

H(k−l)modN ~fl~g0

~g1

...

~gN−1

︸ ︷︷ ︸=:~~g∈RN2

H0 HN−1 · · · H1

H1. . .

. . ....

.... . . HN−1

HN−1 · · · H1 H0

︸ ︷︷ ︸

=:H∈RN2×N2

~f0

~f1

...

~fN−1

︸ ︷︷ ︸=:~f∈RN2

⇒ ~g = H ~f is 2D convolution!

⇒ H is (block) circulant

University of Karlsruhe (TH) - 15 - Sheffield Hallam University

Page 16: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

EM-algorithm: description

given:

• “incomplete” data-set y

• many-to-one transform

y = g(z1, z2, . . . , zM ) = g(z)

• pdf pz(z; θ) and cond. pdf p(z|y; θ)

EM-algorithm:

1. expectation: Determine expected

log-likelihood of complete data

U(θ, θp) :=Ez{ln pz(z; θ)|y; θp}

=

∫ln pz(z; θ) p(z|y; θp)dz

2. maximisation: Maximize

θp+1 = argmaxθ

U(θ, θp)

3. goto step 1 until θ converges

University of Karlsruhe (TH) - 16 - Sheffield Hallam University

Page 17: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

EM-algorithm: overview of representations

meaning conversative sparse matrices

real fourier real fourier

sets RN×N CN×N RN2,N2×N2

CN2,N2×N2

image x X ~x X

PSF h ∆ D QD

cov. image Cx Sx Λx Qx

cov. noise σ2vI (σ2

v) Λv Qv

convolution x⊗ h X ~ ∆ D~x QDX

DFT - DFT{x} - F−1~x

inv. DFT DFT−1{X} - FX -

University of Karlsruhe (TH) - 17 - Sheffield Hallam University

Page 18: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

EM-Algorithm: derivation (i)

• incomplete/complete data-set: ~y ∈ RN / (~x>, ~y>)> ∈ R2N

• many-to-one transform: ~y =: g(

~x~y

)∀~y

• pdf of ~z is zero-mean normal distr.: pz(~z, θ = {D,Λx,Λv}) =

1√√√√√(2π)2N2

∣∣∣∣∣∣ Λx ΛxD>

DΛx DΛxD> + Λv

∣∣∣∣∣∣e

−1

2

~x~y

>

−1 Λx ΛxD>

DΛx DΛxD> + Λv

︸ ︷︷ ︸

=:C

~x~y

University of Karlsruhe (TH) - 18 - Sheffield Hallam University

Page 19: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

EM-Algorithm: derivation (ii)

• conditional pdf p(~z|~y, θ) = p(~x|~y, θ) is (conditional) normal distr.:

– with mean Mx|y = ΛxD>(DΛxD

> + Λv)−1~y and

– covariance Sx|y = Λx − ΛxD>(DΛxD

> + Λv)−1DΛx

derivation of

ln pz(z; θ) = −N2 ln(2π)−1

2ln |C| −

1

2(~x>, ~y>)C−1

~x~y

:

∣∣∣∣∣∣ Λx ΛxD>

DΛx DΛxD> + Λv

∣∣∣∣∣∣= det(Λx(DΛxD> + Λv)−DΛxΛxD

>)

= det(ΛxΛv) = |Λx||Λv|, because Λx and Λv

are symmetric and positive definite.

University of Karlsruhe (TH) - 19 - Sheffield Hallam University

Page 20: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

EM-Algorithm: derivation (iii)

• observe that |Λv| = (σ2v)N

2

.

• |Λx| = |FQxF−1| = |Qx| =∏kl

Sx(k, l)

using A =

A11 A12

A21 A22

= (A11 −A12A−122 A21)−1 A−1

11 A12(A21A−111 A12 −A22)−1

(A21A−111 A12 −A22)−1A21A−1

11 (A22 −A21A−111 A12)−1

we get C−1 =

Λx ΛxD>

DΛx DΛxD> + Λv

−1

=

University of Karlsruhe (TH) - 20 - Sheffield Hallam University

Page 21: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

EM-Algorithm: derivation (iv)

C−1 =

(I −D>(DΛxD> + Λv)

−1DΛx)−1Λ−1x −D>Λ−1

v

−Λ−1v D Λ−1

v

.

With ~u>A~v= ~u∗FQAF−1~v = (F∗~u)∗QAF−1~v

= (1

N2F−1~u)∗QAF−1~v =

1

N2U∗QAV we obtain

ln pz(z; θ) =−N2ln(2π)−N2

2ln(σ2

v)−1

2

∑kl

lnSkl −1

2N2Y ∗Q−1

v Y

+1

N2Re{Y ∗QDQ−1

v X} −1

2

∑kl

Qx(QDQ∗DQ−1v +Q−1

x )

−1

2N2X∗(QDQ

∗DQ−1v +Q−1

x )X

University of Karlsruhe (TH) - 21 - Sheffield Hallam University

Page 22: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

EM-Algorithm: derivation (v)

Replacing the remaining diagonal matrices with DFT-arrays yields:

ln pz(z; θ) =−N2ln(2π)−N2

2ln(σ2

v)−1

2

∑kl

lnSkl −1

2N2Y∗Y(σ2

v)−1

+1

N2Re{Y∗∆(σ2

v)−1X} −1

2Sx(∆∆∗(σ2

v)−1 + S−1x )

−1

2N2X∗(∆∆∗(σ2

v)−1 + S−1x )X

The last steps are:

• substitute X and X∗ ~ . . .~ X with their expected values.

⇒ U(θ, θk)

• determine argmaxθ

by setting derivativeδU(θ, θk)

δθto zero.

University of Karlsruhe (TH) - 22 - Sheffield Hallam University

Page 23: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

EM-Algorithm: implementation

The resulting iteration step:

• S(p+1)x (k, l) = S

(p)x|y(k, l) +

1

N2|Mx|y(k, l)|2

• ∆(p+1)(k, l) =1

N2

Y (k, l)M∗x|y(k, l)

S(p)x|y(k, l) +

1

N2|Mx|y(k, l)|2

• σ2v =

1

N2

∑kl

{|∆(p+1)(k, l)|2

(S

(p)x|y(k, l) +

1

N2|Mx|y(k, l)|2

)+

1

N2

(|Y (k, l)|2 − 2Re

[Y ∗(k, l)∆(p+1)(k, l)Mx|y(k, l)

])}

University of Karlsruhe (TH) - 23 - Sheffield Hallam University

Page 24: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

results: deblur picture

conditional mean after 10. iteration

University of Karlsruhe (TH) - 24 - Sheffield Hallam University

Page 25: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

results: statistic and psf

log-DFT

University of Karlsruhe (TH) - 25 - Sheffield Hallam University

Page 26: Reconstruction (of micro-objects) based on focus-sets using blind deconvolution (2001)

Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

result: comparison

Jan Wedekind

address: . . . . . . . . . . . . . . . . . . . . . . . . . .Scheffelstr. 65, D-76135 Karlsruhe

email: . . . . . . . . . . . . . . . . . . . . . . . . . . [email protected]

www: . . . . . . . . . . . . . . . . . . . . . . .http://www.uni-karlsruhe.de/~unoh

pgp: . . . . . . . . . . . . . . . . . EE FA AF 15 D8 ED 11 4A 5A 76 35 5F 2D 20 C4 E8

University of Karlsruhe (TH) - 26 - Sheffield Hallam University