recent$results$on$op?cal$access$networks$ · pdf file1. unbundlingopons ... • upstream:...

34
Rete O&ca di Accesso a Divisione di frequenza e/o di lunghezza d’onda per soluzioni Next Genera?on Network Recent Results on Op?cal Access Networks from the PRIN Project ROADNGN Presenter: Roberto Gaudino Politecnico di Torino, Op0cal Communica0on group (OPTCOM www.optcom.polito.it) Corso Duca degli Abruzzi 24, 10129 Torino, Italy, Email: [email protected] Riunione Gruppo Re?, Cavalese, 2015 January 14 th

Upload: dangphuc

Post on 05-Mar-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

Rete  O&ca  di  Accesso  a  Divisione  di  frequenza  e/o  di  lunghezza  d’onda  per  soluzioni  Next  Genera?on  Network  

 Recent  Results  on  Op?cal  Access  Networks  from  the  PRIN  Project  ROAD-­‐NGN    

Presenter:  Roberto  Gaudino  Politecnico  di  Torino,    Op0cal  Communica0on  group    

 (OPTCOM  www.optcom.polito.it)  Corso  Duca  degli  Abruzzi  24,  10129  Torino,  Italy,  E-­‐mail:  [email protected]  

Riunione  Gruppo  Re?,  Cavalese,  2015  January  14th      

2 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Project  dura0on:  February  2013-­‐January  2016  

ROAD-­‐NGN      

Gabriella  Cinco&,  Coordinator  Julian  Hoxha  Luca  Caldaroni  

Pierpaolo  Boffi  Mario  Mar?nelli,  Achille  PaWavina  Guido  Maier  Lucia  Marazzi,  Paola  Parolari  

 Marco  Santagius?na  

Antonio  Mecozzi  Cris?an  Antonelli  Francesco  Matera  (FUB)  

Francesco  Vatalaro  Marco  Petracca  Romeo  Giuliano  Paolo  Mancuso    

Ernesto  Ciaramella  Fabio  BoWoni  Marco  Presi  Luca  Valcarenghi  Piero  Castoldi    

Roberto  Gaudino  Valter  Ferrero  Roberto  Cigliu&    

Francesco  Matera    

3 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Scenario:  Passive  Op0cal  Networks  (PON)  for  FTTH  solu0ons  

§  Project  focus:  improvements  compared  to  current  PON  standards  in  terms  of:  

1.  unbundling  op0ons  •  See  my  presenta0on  last  year  for  the  2014  

Cor0na  Mee0ng  2.  Increase  in  bit  rate  per  wavelength  3.  Cost  effec0ve  solu0ons  to  handle  mul0ple  

wavelengths      

ROAD-­‐NGN  project  in  a  glance      

4 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Introducing  the  scenario:  Passive  Op0cal  Network  (PON)  access  architectures  • The  most  recent  ITU-­‐T  standard  for  PON:  NG-­‐PON2  

§  The  ROAD-­‐NGN  research  goals:  beyond  NG-­‐PON2  

§  Proposed  architectures  for  upstream  and  downstream  transmission  • Experimental  results  

               

Outline  of  the  presenta?on  

5 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Introducing  the  scenario:  Passive  Op0cal  Network  (PON)  access  architectures  • The  most  recent  ITU-­‐T  standard  for  PON:  NG-­‐PON2  

§  The  ROAD-­‐NGN  research  goals:  beyond  NG-­‐PON2  

§  Proposed  architectures  for  upstream  and  downstream  transmission  • Experimental  results  

               

Outline  of  the  presenta?on  

6 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

Today  mostly  deployed  standard:  GPON  (ITU-­‐T  G.984):  §  Number  of  user  per  PON  tree:  up  to  64  §  Mul0plexing  technique:    

•  TDM  in  downstream  at  2.5  Gbps,  TDMA  in  upstream  at  1.25  Gbps  

Passive  Op?cal  Network”  (PON)  architecture  

Central Office

Passive Optical Splitters O/E

O/E

O/E

OLT (Optical Line Terminal)

ONU (Optical Network Unit)

ODN (Optical Distribution Network)

7

ITU-T most recent standard: NG-PON2 (TWDM-PON)

•  Defined by FSAN and ITU-T in the Recommendation G.989.1 “40-Gigabit-capable passive optical networks (NG-PON2)”

•  TWDM-PON: time and wavelength division multiplexed PON

Backward  compa,ble  with  previous  PON  standards    (GPON,  XGPON  and  RF-­‐Video)  

h"p://www.itu.int/rec/T-­‐REC-­‐G.989.1-­‐201303-­‐I/en  

NG-­‐PON2:    4  new  wavelengths  (per  direc,on)  

8

NG-PON2 features •  4 wavelengths per direction, 100 GHz spacing

•  Upgradeable to 8 wavelengths (50 GHz)

•  TDMA on each of the 4 wavelengths •  Each wavelength is treated as an independent XG-PON

•  Downstream: 10 Gbps •  Upstream: 2.5 Gbps

•  Traditional Splitter-based PON •  Backward compatibility with ODN loss classes

Nominal  1  (N1  class)  

Nominal  2  (N2  class)  

Extended  1  (E1  class)  

Extended  2  (E2  class)  

Minimum  loss   14  dB   16  dB   18  dB   20  dB  

Maximum  loss   29  dB   31  dB   33  dB   35  dB  

9 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Introducing  the  scenario:  Passive  Op0cal  Network  (PON)  access  architectures  • The  most  recent  ITU-­‐T  standard  for  PON:  NG-­‐PON2  

§  The  ROAD-­‐NGN  research  goals:  beyond  NG-­‐PON2  

§  Proposed  architectures  for  upstream  and  downstream  transmission  • Experimental  results  

               

Outline  of  the  presenta?on  

10 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  …  besides  physical  layer  unbundling  presented  last  year  in  Cor0na  

§  Target  #1:  Increase  the  bit  rate  per  wavelength  in  both  direc0ons  • Toward  30-­‐40  Gbps  in  both  direc0ons  (as  symmetrically  as  possible)  

§  Target  #2:  Simplify  wavelength  handling  for  the  upstream,  trying  to  solve  one  of  the  most  cri0cal  issues  to  be  solved  in  TWDM-­‐PON  

ROAD-­‐NGN  targets  

11 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Introducing  the  scenario:  Passive  Op0cal  Network  (PON)  access  architectures  • The  most  recent  ITU-­‐T  standard  for  PON:  NG-­‐PON2  

§  The  ROAD-­‐NGN  research  goals:  beyond  NG-­‐PON2  

§  Proposed  architectures  for  upstream  and  downstream  transmission  • Experimental  results  

               

Outline  of  the  presenta?on  

12 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Target  #1:  higher  bit  rate  per  wavelength  §  Introduce  more  sophis0cated  modula0on  formats  and  mul0plexing  techniques  •  Frequency  division  mul0plexing  (FDMA)  

→   In  both  direc0ons  (UA  and  DS)  →   Implemented  at  the  electrical  level  on  top  of  each  wavelength  

• M-­‐QAM  on  each  electrical  subcarrier  in  the  FDMA  comb  

§  As  a  result:  digital  signal  processing  (DSP)  required  at  both  the  ONU  and  OLT  •  Constraint:  low  DSP  rate  at  the  ONU  to  keep  cost  and  power  consump0on  at  reasonable  levels  

The  recipes  to  achieve  these  targets  

13 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

Downstream FDM signal spectrum at ONU receiver

§  We  propose  to  use  32  electrical  subcarrier,  each  carrying  16-­‐QAM  a  1  Gbps  net  data  rate  •  These  FDM  spectrum  totally  fill  the  available  downstream  electrical  bandwidth  over  a  typical  direct-­‐detec0on  op0cal  link    → (7-­‐8  GHz  3dB  bandwidth)  

FDM  in  downstream  

Each spectral slice is dedicate to a given ONU (i.e. FTTH user)

14 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

Experimental  setup  

Passive  fiber  plant    ODN  emulated  on  a  real  metropolitan  fiber  testbed    Realis,c  ODN  losses  as  requested  by  ITU-­‐T  

OLT  transmiWer  DSP  emula,on  through  a  Tektronix  20  Gsample/s  arbitrary  waveform  generator  

ONU  receiver  Complete  optoelectronic  receiver  Offline  DSP  emula,on  in  Matlab  aVer  ADC  using  a  50  Gsample/s  real  ,me  oscilloscope  

15 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Aher  a  careful  op0miza0on  of  many  system  parameters  we  obtained  32  Gbps  downstream  at  FEC  threshold  for  the  required  ODN  losses  

Experimental  results  Laun

ched  op,

cal  

power  at  O

LT   BER  contour  

plot  

FEC  threshold  BER=2·10-3 (as required by G.795.1–I.4).  

16 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

DSP  Complexity  at  OLT  

§  The  DSP  required  at  the  central  office  is  for  sure  significantly  more  complex  than  the  current  NG-­‐PON2  (TWDM-­‐PON)  • Mostly  because  it  must  run  at  about  20  Gsample/s  (and  thus  also  requires  extremely  fast  DAC)  

§  But  the  achieved  capacity  per  wavelength  is  3  0mes  bigger  than  NG-­‐PON2  

§ Moreover,  in  most  op0cal  transmission  sectors  it  is  today  widely  recognized  that  DSP  is  required  to  beat  the  “10  Gbps  per  wavelength”  barrier  

FP7-ICT-2011-8 Challenge 3.5 – STREP project n. 318704 – FABULOUS

FDMA Access By Using Low-cost Optical Network Units in Silicon photonics

n  At the ONU RX and after photo detection, electrical RF down-conversion is applied so that DSP can be at baseband and only on the spectral slice dedicated to each specific ONU

n  The required baseband processing for our proposal can be done using DAC and ADC working in the 500 Msample/s range

n  Low-cost chipsets are already available today to implement this electronic architecture l  UWB chipsets (for instance from Alereon)

ONU complexity (from EU STREP “FABULOUS”)

17

RFjf

Baseband digital signal processing

on I/Q components DS data out

18 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Target  #2:  simplify  wavelength  handling  for  upstream  

§  In  the  ITU-­‐T  NG-­‐PON2  standards  each  ONU  should  generate  its  upstream  wavelength  with  very  high  accuracy  (100  GHz  grid)  by  a  tunable  laser  •  This  is  the  key  technological  obstacle  to  be  solved  today  •  No  tunable  lasers  exist  today  with  a  price  compa0ble  with  ONU    

§ We  propose  a  reflec0ve  approach  for  the  upstream  that  completely  solve  this  issue  

Target  #2:  wavelength  handling  

19 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  Generate  also  the  upstream  wavelength  at  the  central  office  by  a  comb  of  CW  lasers  

§  Modulate  them  back  in  reflec0on  at  the  ONU  

Proposed  reflec?ve  solu?on  for  US  

20

•  Key idea: upstream wavelengths are generated at the OLT, and modulated in reflection

Reflective PON with OLT centralized wavelength generation

AWG  

…  

OLT

RX  TOF  

Upstream  signal  

Reflec0ve  TX  

AWG  

RX  array  

ONUi

TX  DS  array  

…  

…  

TX  US  array  

•  We studied in the ROAD-NGN project several variants of this architeture

•  Key point: the ONU does not need tunable lasers

ODN

Bank  of  CW  laser,  Not  modulated  

TOF  

TOF:  Tunable  Op,cal  Filter  

21 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015   21

Reflective Semiconductor Optical Amplifiers

•  The Politecnico di Milano group inside ROAD-NGN experimentally implemented this goal using reflective semiconductor optical amplifiers

•  R-SOA: Combination of a SOA and an optical mirror

•  SOA are semiconductor optical amplifier with the following characteristics •  Low cost (at least potentially, if they have mass production) •  Medium gain (10-20 dB peak gain) •  Medium-high noise figure (7-8 dB) •  Some residual polarization dependence •  The gain can be modulated by changing the injected optical current

•  Modulation speed is 1-2 GHz maximum

SOA    Input  fiber  Op0cal    Mirror  

I(t) SOA gain changes with driving current

22 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§ POLIMI,  using  high-­‐performance  RSOA  developed  in  the  EU-­‐Project  • FDMA  in  the  upstream  • Top  performance:  Up  to  16  users  per  wavelength,  each  at  1  Gbps  for  a  total  upstream  capacity  of  16  Gbps  per  wavelength  

• Flexible  solu0on  to  achieve  higher  number  of  users  per  wavelength    

               

POLIMI  Experimental  results  

http://ermes-project.eu/

23 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§ POLITO,  using  Silicon-­‐Photonics  high  speed  R-­‐MZM  developed  in  the  EU-­‐Project  FABULOUS  • FDMA  in  the  upstream  • Top  performance:  Up  to  32  users  per  wavelength,  each  at  1  Gbps  for  a  total  upstream  capacity  of  32  Gbps  per  wavelength  

               

POLITO  Experimental  results  

http://www.fabulous-project.eu/

24 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  If  you  work  in  op0cal  networks,  please  consider  the  FOTONICA  2015  Italian  Na0onal  Conference  

               

Just  a  liWle  of  self-­‐adver?sement…  

§  SAVE  THE  DATES:  

25 Riunione  Gruppo  Re?,  Cavalese,  14  gennaio  2015  

§  In  ROAD-­‐NGN  we  have  demonstrated  solu0ons  that  can  be  of  interest  for  the  next  genera0on  of  ITU-­‐T  PON  standards  • NG-­‐PON3  ??  

§ Will  all  this  capacity  be  required  in  fixed  access?  • A  candidate  applica0on:  using  NG-­‐PON3  to  support  front-­‐hauling  in  Cloud  Radio  Access  Networks  (C-­‐RAN)  for  5G  mobile  networks  → CPRI  higher  data  rate  per  remote  radio  unit:  10  Gbps  

               

Conclusions  

Rete  O&ca  di  Accesso  a  Divisione  di  frequenza  e/o  di  lunghezza  d’onda  per  soluzioni  Next  Genera?on  Network  

 Recent  Results  on    Op?cal  Access  Networks  

   

from  the  PRIN  Project  ROAD-­‐NGN    

Presenter:  Roberto  Gaudino  Politecnico  di  Torino,    Op0cal  Communica0on  group    

 (OPTCOM  www.optcom.polito.it)  Corso  Duca  degli  Abruzzi  24,  10129  Torino,  Italy,  E-­‐mail:  [email protected]  

Thank  you  for  your  aWen?on!  

Rete  O&ca  di  Accesso  a  Divisione  di  frequenza  e/o  di  lunghezza  d’onda  per  soluzioni  Next  Genera?on  Network  

 Recent  Results  on    Op?cal  Access  Networks  

   

from  the  PRIN  Project  ROAD-­‐NGN    

Presenter:  Roberto  Gaudino  Politecnico  di  Torino,    Op0cal  Communica0on  group    

 (OPTCOM  www.optcom.polito.it)  Corso  Duca  degli  Abruzzi  24,  10129  Torino,  Italy,  E-­‐mail:  [email protected]  

 

BACK-­‐UP  slides  

Front-haul and CRAN

explained

(one of today) mobile backhaul architecture

29

Antenna

RF TX

RF RX

Physical Layer Digital Signal Processing (LTE, LTE-Advanced, 5G)

Network layer interface

Gigabit Ethernet optical cards

Central office Optical fiber link

Antenna site hardware (base station)

Zooming on the physical layer

30

Antenna

I/Q

modulator

Physical Layer DSP

I Q

DAC DAC

I/Q

demod

I Q

ADC ADC

Very high speed rate at this interface

Network layer interface

This layer is very computationally intensive in recent mobile standards, and it will become more and more sophisticated in the near future

RF local

oscillators

 Example  Wireless RF bandwidth: 20 MHz  Sampling frequency: >20 Msamples/s  Bit per sample: 16 bit/sample  Resulting rate for one component: 320 Mbit/s  x2 I/Q streams: 640 Mbit/s  x3 antennas for each radio site  xN due to MIMO  xM due to multi-carrier

 Future trends:

DAC and ADC required bit rate

31

The new vision: front-hauling approach

32

Antenna

I/Q

modulator

Very thin framing protocol (such as CPRI)

I Q

DAC DAC

I/Q

demod

I Q

ADC ADC

Central office

Optical fiber link (P2P or PON)

CPRI transceiver

Physical Layer DSP

Network layer interface

Bit rates in the Gbps range at this interface

RF local

oscillators

 CPRI current data rates

Common Public Radio Interface (CPRI)

33

 CRAN Cloud Radio Access Networks Advantages: •  All functions are centralized and virtualized •  Much easier “software” reconfiguration •  Physical layer coordination of many antenna sites

Coordinated Multipoint (CoMP):  Joint processing possible if all

antennas are centrally controlled    It allows:

 coordinated scheduling  Beamforming  Crosstalk cancellation

 Distributed MIMO among antennas  

Concept of CoMP in LTE Advanced

34

Central office Coordinated transmission

control