recent developments in pseudo-riemannian holonomy theory · recent developments in...

136
Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential Geometry Joint Meeting of the DMV and GDM Berlin, March 26–30, 2007 Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 1 / 24

Upload: others

Post on 28-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Recent developments in pseudo-Riemannianholonomy theory

Thomas Leistner

Humboldt University Berlin

Minisymposium Differential GeometryJoint Meeting of the DMV and GDM

Berlin, March 26–30, 2007

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 1 / 24

Page 2: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Outline

1 HolonomyThe holonomy group of a linear connectionClassification problem and Berger algebrasHolonomy and geometric structureRiemannian holonomy

2 Lorentzian holonomyPreliminariesClassificationProof of the ClassificationApplications

3 Other signaturesSignature (2, n + 2)Neutral signature (n, n)Signature (2, 2)

4 Open problems

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 2 / 24

Page 3: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy The holonomy group of a linear connection

Holonomy group of a linear connection

Let (M,∇) be an affine manifold, i.e. ∇ a linear connection

Pγ : Tγ(0)M∼→ Tγ(1)M parallel displacement along γ : [0, 1]→ M

For p ∈ Mn we define the

(Connected)

Holonomy group

Hol

0

p (M,∇) :=Pγ|γ(0) = γ(1) = p,

γ ∼ p

holonomy representation

Gl(n,R) '

Gl(TpM)

(fixing a basis)

and its Lie algebra holp(M,∇).

For p, q ∈ M :conjugated in Gl(n,R)

↓Holp(M,∇) ∼ Holq(M,∇)

Example

∇ flat ⇒ Holp(M,∇) = Π1(M) and holp(M,∇) = 0.

Sn the round sphere: Holp(Sn) = SO(n).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 3 / 24

Page 4: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy The holonomy group of a linear connection

Holonomy group of a linear connection

Let (M,∇) be an affine manifold, i.e. ∇ a linear connectionPγ : Tγ(0)M

∼→ Tγ(1)M parallel displacement along γ : [0, 1]→ M

For p ∈ Mn we define the

(Connected)

Holonomy group

Hol

0

p (M,∇) :=Pγ|γ(0) = γ(1) = p,

γ ∼ p

holonomy representation

Gl(n,R) '

Gl(TpM)

(fixing a basis)

and its Lie algebra holp(M,∇).

For p, q ∈ M :conjugated in Gl(n,R)

↓Holp(M,∇) ∼ Holq(M,∇)

Example

∇ flat ⇒ Holp(M,∇) = Π1(M) and holp(M,∇) = 0.

Sn the round sphere: Holp(Sn) = SO(n).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 3 / 24

Page 5: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy The holonomy group of a linear connection

Holonomy group of a linear connection

Let (M,∇) be an affine manifold, i.e. ∇ a linear connectionPγ : Tγ(0)M

∼→ Tγ(1)M parallel displacement along γ : [0, 1]→ M

For p ∈ Mn we define the

(Connected)

Holonomy group

Hol

0

p (M,∇) :=Pγ|γ(0) = γ(1) = p,

γ ∼ p

holonomy representation

Gl(n,R) '

Gl(TpM)

(fixing a basis)

and its Lie algebra holp(M,∇).

For p, q ∈ M :conjugated in Gl(n,R)

↓Holp(M,∇) ∼ Holq(M,∇)

Example

∇ flat ⇒ Holp(M,∇) = Π1(M) and holp(M,∇) = 0.

Sn the round sphere: Holp(Sn) = SO(n).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 3 / 24

Page 6: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy The holonomy group of a linear connection

Holonomy group of a linear connection

Let (M,∇) be an affine manifold, i.e. ∇ a linear connectionPγ : Tγ(0)M

∼→ Tγ(1)M parallel displacement along γ : [0, 1]→ M

For p ∈ Mn we define the (Connected) Holonomy group

Hol 0p (M,∇) :=

Pγ|γ(0) = γ(1) = p, γ ∼ p

holonomy representation

Gl(n,R) '

Gl(TpM)

(fixing a basis)

and its Lie algebra holp(M,∇).

For p, q ∈ M :conjugated in Gl(n,R)

↓Holp(M,∇) ∼ Holq(M,∇)

Example

∇ flat ⇒ Holp(M,∇) = Π1(M) and holp(M,∇) = 0.

Sn the round sphere: Holp(Sn) = SO(n).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 3 / 24

Page 7: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy The holonomy group of a linear connection

Holonomy group of a linear connection

Let (M,∇) be an affine manifold, i.e. ∇ a linear connectionPγ : Tγ(0)M

∼→ Tγ(1)M parallel displacement along γ : [0, 1]→ M

For p ∈ Mn we define the (Connected) Holonomy group

Hol 0p (M,∇) :=

Pγ|γ(0) = γ(1) = p, γ ∼ p

holonomy representation ∩

Gl(n,R) ' Gl(TpM) (fixing a basis)

and its Lie algebra holp(M,∇).

For p, q ∈ M :conjugated in Gl(n,R)

↓Holp(M,∇) ∼ Holq(M,∇)

Example

∇ flat ⇒ Holp(M,∇) = Π1(M) and holp(M,∇) = 0.

Sn the round sphere: Holp(Sn) = SO(n).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 3 / 24

Page 8: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy The holonomy group of a linear connection

Holonomy group of a linear connection

Let (M,∇) be an affine manifold, i.e. ∇ a linear connectionPγ : Tγ(0)M

∼→ Tγ(1)M parallel displacement along γ : [0, 1]→ M

For p ∈ Mn we define the (Connected) Holonomy group

Hol 0p (M,∇) :=

Pγ|γ(0) = γ(1) = p, γ ∼ p

holonomy representation ∩

Gl(n,R) ' Gl(TpM) (fixing a basis)

and its Lie algebra holp(M,∇).

For p, q ∈ M :conjugated in Gl(n,R)

↓Holp(M,∇) ∼ Holq(M,∇)

Example

∇ flat ⇒ Holp(M,∇) = Π1(M) and holp(M,∇) = 0.

Sn the round sphere: Holp(Sn) = SO(n).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 3 / 24

Page 9: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy The holonomy group of a linear connection

Holonomy group of a linear connection

Let (M,∇) be an affine manifold, i.e. ∇ a linear connectionPγ : Tγ(0)M

∼→ Tγ(1)M parallel displacement along γ : [0, 1]→ M

For p ∈ Mn we define the (Connected) Holonomy group

Hol 0p (M,∇) :=

Pγ|γ(0) = γ(1) = p, γ ∼ p

holonomy representation ∩

Gl(n,R) ' Gl(TpM) (fixing a basis)

and its Lie algebra holp(M,∇).

For p, q ∈ M :conjugated in Gl(n,R)

↓Holp(M,∇) ∼ Holq(M,∇)

Example

∇ flat ⇒ Holp(M,∇) = Π1(M) and holp(M,∇) = 0.

Sn the round sphere: Holp(Sn) = SO(n).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 3 / 24

Page 10: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Classification problem

Which groups may occur as holonomy groups?

Hano/Ozeki ’56: Any closed G ⊂ Gl(n,R)! But ∇ might have torsion.

Conditions on the torsion T∇, e.g. T∇ = 0 or T∇ ∈ Λ3TM algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

M connected =⇒ holp(M,∇) is spanned byP−1γ R(X ,Y) Pγ︸ ︷︷ ︸

satisifies Bianchi identity if T∇ = 0=⇒ holp(M,∇) is a Berger algebra.

∣∣∣∣γ(0) = p and X ,Y ∈ Tγ(1)M

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 4 / 24

Page 11: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Classification problem

Which groups may occur as holonomy groups?

Hano/Ozeki ’56: Any closed G ⊂ Gl(n,R)! But ∇ might have torsion.

Conditions on the torsion T∇, e.g. T∇ = 0 or T∇ ∈ Λ3TM algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

M connected =⇒ holp(M,∇) is spanned byP−1γ R(X ,Y) Pγ︸ ︷︷ ︸

satisifies Bianchi identity if T∇ = 0=⇒ holp(M,∇) is a Berger algebra.

∣∣∣∣γ(0) = p and X ,Y ∈ Tγ(1)M

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 4 / 24

Page 12: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Classification problem

Which groups may occur as holonomy groups?

Hano/Ozeki ’56: Any closed G ⊂ Gl(n,R)! But ∇ might have torsion.

Conditions on the torsion T∇, e.g. T∇ = 0 or T∇ ∈ Λ3TM

algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

M connected =⇒ holp(M,∇) is spanned byP−1γ R(X ,Y) Pγ︸ ︷︷ ︸

satisifies Bianchi identity if T∇ = 0=⇒ holp(M,∇) is a Berger algebra.

∣∣∣∣γ(0) = p and X ,Y ∈ Tγ(1)M

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 4 / 24

Page 13: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Classification problem

Which groups may occur as holonomy groups?

Hano/Ozeki ’56: Any closed G ⊂ Gl(n,R)! But ∇ might have torsion.

Conditions on the torsion T∇, e.g. T∇ = 0 or T∇ ∈ Λ3TM algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

M connected =⇒ holp(M,∇) is spanned byP−1γ R(X ,Y) Pγ︸ ︷︷ ︸

satisifies Bianchi identity if T∇ = 0=⇒ holp(M,∇) is a Berger algebra.

∣∣∣∣γ(0) = p and X ,Y ∈ Tγ(1)M

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 4 / 24

Page 14: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Classification problem

Which groups may occur as holonomy groups?

Hano/Ozeki ’56: Any closed G ⊂ Gl(n,R)! But ∇ might have torsion.

Conditions on the torsion T∇, e.g. T∇ = 0 or T∇ ∈ Λ3TM algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

M connected =⇒ holp(M,∇) is spanned byP−1γ R(X ,Y) Pγ︸ ︷︷ ︸

satisifies Bianchi identity if T∇ = 0=⇒ holp(M,∇) is a Berger algebra.

∣∣∣∣γ(0) = p and X ,Y ∈ Tγ(1)M

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 4 / 24

Page 15: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Classification problem

Which groups may occur as holonomy groups?

Hano/Ozeki ’56: Any closed G ⊂ Gl(n,R)! But ∇ might have torsion.

Conditions on the torsion T∇, e.g. T∇ = 0 or T∇ ∈ Λ3TM algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

M connected =⇒ holp(M,∇) is spanned byP−1γ R(X ,Y) Pγ︸ ︷︷ ︸

satisifies Bianchi identity if T∇ = 0

=⇒ holp(M,∇) is a Berger algebra.

∣∣∣∣γ(0) = p and X ,Y ∈ Tγ(1)M

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 4 / 24

Page 16: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Classification problem

Which groups may occur as holonomy groups?

Hano/Ozeki ’56: Any closed G ⊂ Gl(n,R)! But ∇ might have torsion.

Conditions on the torsion T∇, e.g. T∇ = 0 or T∇ ∈ Λ3TM algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

M connected =⇒ holp(M,∇) is spanned byP−1γ R(X ,Y) Pγ︸ ︷︷ ︸

satisifies Bianchi identity if T∇ = 0=⇒ holp(M,∇) is a Berger algebra.

∣∣∣∣γ(0) = p and X ,Y ∈ Tγ(1)M

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 4 / 24

Page 17: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Berger algebras

Let g ⊂ gl(n,R) be a subalgebra.

The g-module of formal curvature endomorphisms is defined as

K(g) :=R ∈ Λ2Rn∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0

g is a Berger algebra

def .⇐⇒ g =

⟨R(x, y)

∣∣∣R ∈ K(g), x, y ∈ Rn⟩

T∇ = 0: Ambrose-Singer =⇒ holp(M,∇) is a Berger algebra.

Classification of

irreducible

Berger algebras:

Berger ’55: g ⊂ so(p, q),

Schwachhofer/Merkulov ’99: g ⊂ gl(n,R).

Classification of

irreducible

holonomy algebras of torsion freeconnections.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 5 / 24

Page 18: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Berger algebras

Let g ⊂ gl(n,R) be a subalgebra.The g-module of formal curvature endomorphisms is defined as

K(g) :=R ∈ Λ2Rn∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0

g is a Berger algebradef .⇐⇒ g =

⟨R(x, y)

∣∣∣R ∈ K(g), x, y ∈ Rn⟩

T∇ = 0: Ambrose-Singer =⇒ holp(M,∇) is a Berger algebra.

Classification of

irreducible

Berger algebras:

Berger ’55: g ⊂ so(p, q),

Schwachhofer/Merkulov ’99: g ⊂ gl(n,R).

Classification of

irreducible

holonomy algebras of torsion freeconnections.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 5 / 24

Page 19: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Berger algebras

Let g ⊂ gl(n,R) be a subalgebra.The g-module of formal curvature endomorphisms is defined as

K(g) :=R ∈ Λ2Rn∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0

g is a Berger algebra

def .⇐⇒ g =

⟨R(x, y)

∣∣∣R ∈ K(g), x, y ∈ Rn⟩

T∇ = 0: Ambrose-Singer =⇒ holp(M,∇) is a Berger algebra.

Classification of

irreducible

Berger algebras:

Berger ’55: g ⊂ so(p, q),

Schwachhofer/Merkulov ’99: g ⊂ gl(n,R).

Classification of

irreducible

holonomy algebras of torsion freeconnections.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 5 / 24

Page 20: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Berger algebras

Let g ⊂ gl(n,R) be a subalgebra.The g-module of formal curvature endomorphisms is defined as

K(g) :=R ∈ Λ2Rn∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0

g is a Berger algebra

def .⇐⇒ g =

⟨R(x, y)

∣∣∣R ∈ K(g), x, y ∈ Rn⟩

T∇ = 0: Ambrose-Singer =⇒ holp(M,∇) is a Berger algebra.

Classification of

irreducible

Berger algebras:

Berger ’55: g ⊂ so(p, q),

Schwachhofer/Merkulov ’99: g ⊂ gl(n,R).

Classification of

irreducible

holonomy algebras of torsion freeconnections.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 5 / 24

Page 21: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Berger algebras

Let g ⊂ gl(n,R) be a subalgebra.The g-module of formal curvature endomorphisms is defined as

K(g) :=R ∈ Λ2Rn∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0

g is a Berger algebra

def .⇐⇒ g =

⟨R(x, y)

∣∣∣R ∈ K(g), x, y ∈ Rn⟩

T∇ = 0: Ambrose-Singer =⇒ holp(M,∇) is a Berger algebra.

Classification of

irreducible

Berger algebras:

Berger ’55: g ⊂ so(p, q),

Schwachhofer/Merkulov ’99: g ⊂ gl(n,R).

Classification of

irreducible

holonomy algebras of torsion freeconnections.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 5 / 24

Page 22: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Berger algebras

Let g ⊂ gl(n,R) be a subalgebra.The g-module of formal curvature endomorphisms is defined as

K(g) :=R ∈ Λ2Rn∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0

g is a Berger algebra

def .⇐⇒ g =

⟨R(x, y)

∣∣∣R ∈ K(g), x, y ∈ Rn⟩

T∇ = 0: Ambrose-Singer =⇒ holp(M,∇) is a Berger algebra.

Classification of irreducible Berger algebras:

Berger ’55: g ⊂ so(p, q),

Schwachhofer/Merkulov ’99: g ⊂ gl(n,R).

Classification of irreducible holonomy algebras of torsion freeconnections.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 5 / 24

Page 23: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Classification problem and Berger algebras

Berger algebras

Let g ⊂ gl(n,R) be a subalgebra.The g-module of formal curvature endomorphisms is defined as

K(g) :=R ∈ Λ2Rn∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0

g is a Berger algebra

def .⇐⇒ g =

⟨R(x, y)

∣∣∣R ∈ K(g), x, y ∈ Rn⟩

T∇ = 0: Ambrose-Singer =⇒ holp(M,∇) is a Berger algebra.

Classification of irreducible Berger algebras:

Berger ’55: g ⊂ so(p, q),

Schwachhofer/Merkulov ’99: g ⊂ gl(n,R).

Classification of irreducible holonomy algebras of torsion freeconnections.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 5 / 24

Page 24: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Holonomy and geometric structure

F ∈ ⊗r

sTpM := ⊗rTpM ⊗ ⊗sT∗pMHolp(M,∇) · F = F

Pγ'

ϕ ∈ Γ(⊗r

sTM) :∇ϕ = 0

• Holp(M,∇) ⊂Sl(n,R)⇔ ω ∈ ΩnM: ∇ω = 0.

• Holp(M2k ,∇) ⊂Gl(k ,C)⇔ J ∈ End(TM) with J2 = −id: ∇J = 0.

• Holp(M,∇) ⊂ O(p, q)⇔ metric g∈ Γ(2TM): ∇g = 0.Assume also T∇ = 0, then ∇ = ∇g Levi-Civita connnection and set

Holp(M, g) := Holp(M,∇g)

V ⊂ TpM :Holp(M,∇) · V ⊂ V

Pγ'

distributionV ⊂ TMPγ(V) ⊂ V

Pγ(V) ⊂ V ⇐⇒ ∇X : V → V, in particularV is integrable.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 6 / 24

Page 25: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Holonomy and geometric structure

F ∈ ⊗r

sTpM := ⊗rTpM ⊗ ⊗sT∗pMHolp(M,∇) · F = F

Pγ'

ϕ ∈ Γ(⊗r

sTM) :∇ϕ = 0

• Holp(M,∇) ⊂Sl(n,R)⇔ ω ∈ ΩnM: ∇ω = 0.

• Holp(M2k ,∇) ⊂Gl(k ,C)⇔ J ∈ End(TM) with J2 = −id: ∇J = 0.

• Holp(M,∇) ⊂ O(p, q)⇔ metric g∈ Γ(2TM): ∇g = 0.Assume also T∇ = 0, then ∇ = ∇g Levi-Civita connnection and set

Holp(M, g) := Holp(M,∇g)

V ⊂ TpM :Holp(M,∇) · V ⊂ V

Pγ'

distributionV ⊂ TMPγ(V) ⊂ V

Pγ(V) ⊂ V ⇐⇒ ∇X : V → V, in particularV is integrable.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 6 / 24

Page 26: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Holonomy and geometric structure

F ∈ ⊗r

sTpM := ⊗rTpM ⊗ ⊗sT∗pMHolp(M,∇) · F = F

Pγ'

ϕ ∈ Γ(⊗r

sTM) :∇ϕ = 0

• Holp(M,∇) ⊂Sl(n,R)⇔ ω ∈ ΩnM: ∇ω = 0.

• Holp(M2k ,∇) ⊂Gl(k ,C)⇔ J ∈ End(TM) with J2 = −id: ∇J = 0.

• Holp(M,∇) ⊂ O(p, q)⇔ metric g∈ Γ(2TM): ∇g = 0.Assume also T∇ = 0, then ∇ = ∇g Levi-Civita connnection and set

Holp(M, g) := Holp(M,∇g)

V ⊂ TpM :Holp(M,∇) · V ⊂ V

Pγ'

distributionV ⊂ TMPγ(V) ⊂ V

Pγ(V) ⊂ V ⇐⇒ ∇X : V → V, in particularV is integrable.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 6 / 24

Page 27: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Holonomy and geometric structure

F ∈ ⊗r

sTpM := ⊗rTpM ⊗ ⊗sT∗pMHolp(M,∇) · F = F

Pγ'

ϕ ∈ Γ(⊗r

sTM) :∇ϕ = 0

• Holp(M,∇) ⊂Sl(n,R)⇔ ω ∈ ΩnM: ∇ω = 0.

• Holp(M2k ,∇) ⊂Gl(k ,C)⇔ J ∈ End(TM) with J2 = −id: ∇J = 0.

• Holp(M,∇) ⊂ O(p, q)⇔ metric g∈ Γ(2TM): ∇g = 0.Assume also T∇ = 0, then ∇ = ∇g Levi-Civita connnection and set

Holp(M, g) := Holp(M,∇g)

V ⊂ TpM :Holp(M,∇) · V ⊂ V

Pγ'

distributionV ⊂ TMPγ(V) ⊂ V

Pγ(V) ⊂ V ⇐⇒ ∇X : V → V, in particularV is integrable.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 6 / 24

Page 28: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Holonomy and geometric structure

F ∈ ⊗r

sTpM := ⊗rTpM ⊗ ⊗sT∗pMHolp(M,∇) · F = F

Pγ'

ϕ ∈ Γ(⊗r

sTM) :∇ϕ = 0

• Holp(M,∇) ⊂Sl(n,R)⇔ ω ∈ ΩnM: ∇ω = 0.

• Holp(M2k ,∇) ⊂Gl(k ,C)⇔ J ∈ End(TM) with J2 = −id: ∇J = 0.

• Holp(M,∇) ⊂ O(p, q)⇔ metric g∈ Γ(2TM): ∇g = 0.

Assume also T∇ = 0, then ∇ = ∇g Levi-Civita connnection and set

Holp(M, g) := Holp(M,∇g)

V ⊂ TpM :Holp(M,∇) · V ⊂ V

Pγ'

distributionV ⊂ TMPγ(V) ⊂ V

Pγ(V) ⊂ V ⇐⇒ ∇X : V → V, in particularV is integrable.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 6 / 24

Page 29: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Holonomy and geometric structure

F ∈ ⊗r

sTpM := ⊗rTpM ⊗ ⊗sT∗pMHolp(M,∇) · F = F

Pγ'

ϕ ∈ Γ(⊗r

sTM) :∇ϕ = 0

• Holp(M,∇) ⊂Sl(n,R)⇔ ω ∈ ΩnM: ∇ω = 0.

• Holp(M2k ,∇) ⊂Gl(k ,C)⇔ J ∈ End(TM) with J2 = −id: ∇J = 0.

• Holp(M,∇) ⊂ O(p, q)⇔ metric g∈ Γ(2TM): ∇g = 0.Assume also T∇ = 0, then ∇ = ∇g Levi-Civita connnection and set

Holp(M, g) := Holp(M,∇g)

V ⊂ TpM :Holp(M,∇) · V ⊂ V

Pγ'

distributionV ⊂ TMPγ(V) ⊂ V

Pγ(V) ⊂ V ⇐⇒ ∇X : V → V, in particularV is integrable.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 6 / 24

Page 30: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Holonomy and geometric structure

F ∈ ⊗r

sTpM := ⊗rTpM ⊗ ⊗sT∗pMHolp(M,∇) · F = F

Pγ'

ϕ ∈ Γ(⊗r

sTM) :∇ϕ = 0

• Holp(M,∇) ⊂Sl(n,R)⇔ ω ∈ ΩnM: ∇ω = 0.

• Holp(M2k ,∇) ⊂Gl(k ,C)⇔ J ∈ End(TM) with J2 = −id: ∇J = 0.

• Holp(M,∇) ⊂ O(p, q)⇔ metric g∈ Γ(2TM): ∇g = 0.Assume also T∇ = 0, then ∇ = ∇g Levi-Civita connnection and set

Holp(M, g) := Holp(M,∇g)

V ⊂ TpM :Holp(M,∇) · V ⊂ V

Pγ'

distributionV ⊂ TMPγ(V) ⊂ V

Pγ(V) ⊂ V ⇐⇒ ∇X : V → V, in particularV is integrable.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 6 / 24

Page 31: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Decomposition of a semi-Riemannian manifold (M, g)

If V ⊂ TpM hol-invariant, non-degenerate, i.e. TpM = V ⊕ V⊥ hol-invariant

=⇒(M, g)locally' (N, h) × (N⊥, h⊥)

with V (⊥) ' TpN(⊥) as Holp(M, g)–module.

Decompose TpM completely into Holp(M, g)–modules:

TpM = ⊕ki=0Vk , with V0 trivial and Vi indecomposable︸ ︷︷ ︸

non-degenerate and only degenerate inv. subspaces

for i > 0

Theorem (de Rham ’52, Wu ’64)Let (M, g) be semi-Riemannian, complete and 1-connected.

Then there is a k > 0: (M, g)

globally

' (M1, g1) × . . . × (Mk , gk ) with

(Mi , gi) complete and 1-connected,

(Mi , gi) flat or with indecomposable holonomy representation,

Holp(M, g) ' Holp1(M1, g1) × . . . × Holpk (Mk , gk ).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 7 / 24

Page 32: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Decomposition of a semi-Riemannian manifold (M, g)

If V ⊂ TpM hol-invariant, non-degenerate, i.e. TpM = V ⊕ V⊥ hol-invariant

=⇒(M, g)locally' (N, h) × (N⊥, h⊥)

with V (⊥) ' TpN(⊥) as Holp(M, g)–module.

Decompose TpM completely into Holp(M, g)–modules:

TpM = ⊕ki=0Vk , with V0 trivial and Vi indecomposable︸ ︷︷ ︸

non-degenerate and only degenerate inv. subspaces

for i > 0

Theorem (de Rham ’52, Wu ’64)Let (M, g) be semi-Riemannian, complete and 1-connected.

Then there is a k > 0: (M, g)

globally

' (M1, g1) × . . . × (Mk , gk ) with

(Mi , gi) complete and 1-connected,

(Mi , gi) flat or with indecomposable holonomy representation,

Holp(M, g) ' Holp1(M1, g1) × . . . × Holpk (Mk , gk ).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 7 / 24

Page 33: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Decomposition of a semi-Riemannian manifold (M, g)

If V ⊂ TpM hol-invariant, non-degenerate, i.e. TpM = V ⊕ V⊥ hol-invariant

=⇒(M, g)locally' (N, h) × (N⊥, h⊥)

with V (⊥) ' TpN(⊥) as Holp(M, g)–module.

Decompose TpM completely into Holp(M, g)–modules:

TpM = ⊕ki=0Vk , with V0 trivial and Vi indecomposable︸ ︷︷ ︸

non-degenerate and only degenerate inv. subspaces

for i > 0

Theorem (de Rham ’52, Wu ’64)Let (M, g) be semi-Riemannian, complete and 1-connected.

Then

there is a k > 0:

(M, g)

globally

' (M1, g1) × . . . × (Mk , gk )

with

(Mi , gi) complete and 1-connected,

(Mi , gi) flat or with indecomposable holonomy representation,

Holp(M, g) ' Holp1(M1, g1) × . . . × Holpk (Mk , gk ).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 7 / 24

Page 34: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Decomposition of a semi-Riemannian manifold (M, g)

If V ⊂ TpM hol-invariant, non-degenerate, i.e. TpM = V ⊕ V⊥ hol-invariant

=⇒(M, g)locally' (N, h) × (N⊥, h⊥)

with V (⊥) ' TpN(⊥) as Holp(M, g)–module.

Decompose TpM completely into Holp(M, g)–modules:

TpM = ⊕ki=0Vk , with V0 trivial and Vi indecomposable︸ ︷︷ ︸

non-degenerate and only degenerate inv. subspaces

for i > 0

Theorem (de Rham ’52, Wu ’64)Let (M, g) be semi-Riemannian, complete and 1-connected.

Then there is a k > 0: (M, g)globally' (M1, g1) × . . . × (Mk , gk )

with

(Mi , gi) complete and 1-connected,

(Mi , gi) flat or with indecomposable holonomy representation,

Holp(M, g) ' Holp1(M1, g1) × . . . × Holpk (Mk , gk ).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 7 / 24

Page 35: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Decomposition of a semi-Riemannian manifold (M, g)

If V ⊂ TpM hol-invariant, non-degenerate, i.e. TpM = V ⊕ V⊥ hol-invariant

=⇒(M, g)locally' (N, h) × (N⊥, h⊥)

with V (⊥) ' TpN(⊥) as Holp(M, g)–module.

Decompose TpM completely into Holp(M, g)–modules:

TpM = ⊕ki=0Vk , with V0 trivial and Vi indecomposable︸ ︷︷ ︸

non-degenerate and only degenerate inv. subspaces

for i > 0

Theorem (de Rham ’52, Wu ’64)Let (M, g) be semi-Riemannian, complete and 1-connected.

Then there is a k > 0: (M, g)globally' (M1, g1) × . . . × (Mk , gk ) with

(Mi , gi) complete and 1-connected,

(Mi , gi) flat or with indecomposable holonomy representation,

Holp(M, g) ' Holp1(M1, g1) × . . . × Holpk (Mk , gk ).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 7 / 24

Page 36: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Decomposition of a semi-Riemannian manifold (M, g)

If V ⊂ TpM hol-invariant, non-degenerate, i.e. TpM = V ⊕ V⊥ hol-invariant

=⇒(M, g)locally' (N, h) × (N⊥, h⊥)

with V (⊥) ' TpN(⊥) as Holp(M, g)–module.

Decompose TpM completely into Holp(M, g)–modules:

TpM = ⊕ki=0Vk , with V0 trivial and Vi indecomposable︸ ︷︷ ︸

non-degenerate and only degenerate inv. subspaces

for i > 0

Theorem (de Rham ’52, Wu ’64)Let (M, g) be semi-Riemannian, complete and 1-connected.

Then there is a k > 0: (M, g)globally' (M1, g1) × . . . × (Mk , gk ) with

(Mi , gi) complete and 1-connected,

(Mi , gi) flat or with indecomposable holonomy representation,

Holp(M, g) ' Holp1(M1, g1) × . . . × Holpk (Mk , gk ).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 7 / 24

Page 37: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Holonomy and geometric structure

Decomposition of a semi-Riemannian manifold (M, g)

If V ⊂ TpM hol-invariant, non-degenerate, i.e. TpM = V ⊕ V⊥ hol-invariant

=⇒(M, g)locally' (N, h) × (N⊥, h⊥)

with V (⊥) ' TpN(⊥) as Holp(M, g)–module.

Decompose TpM completely into Holp(M, g)–modules:

TpM = ⊕ki=0Vk , with V0 trivial and Vi indecomposable︸ ︷︷ ︸

non-degenerate and only degenerate inv. subspaces

for i > 0

Theorem (de Rham ’52, Wu ’64)Let (M, g) be semi-Riemannian, complete and 1-connected.

Then there is a k > 0: (M, g)globally' (M1, g1) × . . . × (Mk , gk ) with

(Mi , gi) complete and 1-connected,

(Mi , gi) flat or with indecomposable holonomy representation,

Holp(M, g) ' Holp1(M1, g1) × . . . × Holpk (Mk , gk ).

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 7 / 24

Page 38: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Riemannian holonomy

Holonomy of Riemannian manifolds (M, g)

Positive definite metric =⇒ indecomposable = irreducible=⇒ Holp(M, g) ' product of irreducible holonomy groups.

Berger’s list (’55)Let (M, g) be 1-connected, irreducible, non locally symmetric. Then

Holp(M, g)O(n)∼

SO(n) U( n2 ) SU( n

2 ) Sp( n4 ) Sp(1) · Sp( n

4 ) G2 Spin(7)generic Kahler hyper Kahler quat. Kahler

par. field — J J1, J2, J3 〈J1, J2, J3〉 ω3 ω4

Ric — , 0 0 0 c · g 0 0dim∇ϕ = 0

par .spinor0 0 2 q+1 0 1 1

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 8 / 24

Page 39: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Riemannian holonomy

Holonomy of Riemannian manifolds (M, g)

Positive definite metric =⇒ indecomposable = irreducible=⇒ Holp(M, g) ' product of irreducible holonomy groups.

Berger’s list (’55)Let (M, g) be 1-connected, irreducible, non locally symmetric. Then

Holp(M, g)O(n)∼

SO(n) U( n2 ) SU( n

2 ) Sp( n4 ) Sp(1) · Sp( n

4 ) G2 Spin(7)

generic Kahler hyper Kahler quat. Kahlerpar. field — J J1, J2, J3 〈J1, J2, J3〉 ω3 ω4

Ric — , 0 0 0 c · g 0 0dim∇ϕ = 0

par .spinor0 0 2 q+1 0 1 1

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 8 / 24

Page 40: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Riemannian holonomy

Holonomy of Riemannian manifolds (M, g)

Positive definite metric =⇒ indecomposable = irreducible=⇒ Holp(M, g) ' product of irreducible holonomy groups.

Berger’s list (’55)Let (M, g) be 1-connected, irreducible, non locally symmetric. Then

Holp(M, g)O(n)∼

SO(n) U( n2 ) SU( n

2 ) Sp( n4 ) Sp(1) · Sp( n

4 ) G2 Spin(7)generic Kahler hyper Kahler quat. Kahler

par. field — J J1, J2, J3 〈J1, J2, J3〉 ω3 ω4

Ric — , 0 0 0 c · g 0 0dim∇ϕ = 0

par .spinor0 0 2 q+1 0 1 1

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 8 / 24

Page 41: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Riemannian holonomy

Holonomy of Riemannian manifolds (M, g)

Positive definite metric =⇒ indecomposable = irreducible=⇒ Holp(M, g) ' product of irreducible holonomy groups.

Berger’s list (’55)Let (M, g) be 1-connected, irreducible, non locally symmetric. Then

Holp(M, g)O(n)∼

SO(n) U( n2 ) SU( n

2 ) Sp( n4 ) Sp(1) · Sp( n

4 ) G2 Spin(7)generic Kahler hyper Kahler quat. Kahler

par. field — J J1, J2, J3 〈J1, J2, J3〉 ω3 ω4

Ric — , 0 0 0 c · g 0 0dim∇ϕ = 0

par .spinor0 0 2 q+1 0 1 1

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 8 / 24

Page 42: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Riemannian holonomy

Holonomy of Riemannian manifolds (M, g)

Positive definite metric =⇒ indecomposable = irreducible=⇒ Holp(M, g) ' product of irreducible holonomy groups.

Berger’s list (’55)Let (M, g) be 1-connected, irreducible, non locally symmetric. Then

Holp(M, g)O(n)∼

SO(n) U( n2 ) SU( n

2 ) Sp( n4 ) Sp(1) · Sp( n

4 ) G2 Spin(7)generic Kahler hyper Kahler quat. Kahler

par. field — J J1, J2, J3 〈J1, J2, J3〉 ω3 ω4

Ric — , 0 0 0 c · g 0 0

dim∇ϕ = 0↑

par .spinor0 0 2 q+1 0 1 1

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 8 / 24

Page 43: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Holonomy Riemannian holonomy

Holonomy of Riemannian manifolds (M, g)

Positive definite metric =⇒ indecomposable = irreducible=⇒ Holp(M, g) ' product of irreducible holonomy groups.

Berger’s list (’55)Let (M, g) be 1-connected, irreducible, non locally symmetric. Then

Holp(M, g)O(n)∼

SO(n) U( n2 ) SU( n

2 ) Sp( n4 ) Sp(1) · Sp( n

4 ) G2 Spin(7)generic Kahler hyper Kahler quat. Kahler

par. field — J J1, J2, J3 〈J1, J2, J3〉 ω3 ω4

Ric — , 0 0 0 c · g 0 0dim∇ϕ = 0

par .spinor0 0 2 q+1 0 1 1

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 8 / 24

Page 44: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Wu–Decomposition for a Lorentz manifold (M, g)

Let (M, g) be a complete, 1-connected Lorentzian manifold.

(M, g) ' (M, g) × (N1, g1) × . . . × (Nk , gk )︸ ︷︷ ︸

Riemannian, irreducible or flat↑

Lorentzian manifold

which is either

1 (R,−dt2), or2 irreducible, i.e. Holp(M, g) = SO0(1, n)

[Olmos/Di Scala ’00], or3 indecomposbable, non-irreducible

Classify holonomy for these!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 9 / 24

Page 45: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Wu–Decomposition for a Lorentz manifold (M, g)

Let (M, g) be a complete, 1-connected Lorentzian manifold.

(M, g) ' (M, g) × (N1, g1) × . . . × (Nk , gk )︸ ︷︷ ︸Riemannian, irreducible or flat

Lorentzian manifold

which is either

1 (R,−dt2), or2 irreducible, i.e. Holp(M, g) = SO0(1, n)

[Olmos/Di Scala ’00], or3 indecomposbable, non-irreducible

Classify holonomy for these!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 9 / 24

Page 46: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Wu–Decomposition for a Lorentz manifold (M, g)

Let (M, g) be a complete, 1-connected Lorentzian manifold.

(M, g) ' (M, g) × (N1, g1) × . . . × (Nk , gk )︸ ︷︷ ︸Riemannian, irreducible or flat↑

Lorentzian manifold

which is either1 (R,−dt2), or2 irreducible, i.e. Holp(M, g) = SO0(1, n)

[Olmos/Di Scala ’00], or3 indecomposbable, non-irreducible

Classify holonomy for these!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 9 / 24

Page 47: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Wu–Decomposition for a Lorentz manifold (M, g)

Let (M, g) be a complete, 1-connected Lorentzian manifold.

(M, g) ' (M, g) × (N1, g1) × . . . × (Nk , gk )︸ ︷︷ ︸Riemannian, irreducible or flat↑

Lorentzian manifold which is either1 (R,−dt2), or

2 irreducible, i.e. Holp(M, g) = SO0(1, n)[Olmos/Di Scala ’00], or

3 indecomposbable, non-irreducible↑

Classify holonomy for these!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 9 / 24

Page 48: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Wu–Decomposition for a Lorentz manifold (M, g)

Let (M, g) be a complete, 1-connected Lorentzian manifold.

(M, g) ' (M, g) × (N1, g1) × . . . × (Nk , gk )︸ ︷︷ ︸Riemannian, irreducible or flat↑

Lorentzian manifold which is either1 (R,−dt2), or2 irreducible, i.e. Holp(M, g) = SO0(1, n)

[Olmos/Di Scala ’00], or

3 indecomposbable, non-irreducible↑

Classify holonomy for these!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 9 / 24

Page 49: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Wu–Decomposition for a Lorentz manifold (M, g)

Let (M, g) be a complete, 1-connected Lorentzian manifold.

(M, g) ' (M, g) × (N1, g1) × . . . × (Nk , gk )︸ ︷︷ ︸Riemannian, irreducible or flat↑

Lorentzian manifold which is either1 (R,−dt2), or2 irreducible, i.e. Holp(M, g) = SO0(1, n)

[Olmos/Di Scala ’00], or3 indecomposbable, non-irreducible

Classify holonomy for these!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 9 / 24

Page 50: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Wu–Decomposition for a Lorentz manifold (M, g)

Let (M, g) be a complete, 1-connected Lorentzian manifold.

(M, g) ' (M, g) × (N1, g1) × . . . × (Nk , gk )︸ ︷︷ ︸Riemannian, irreducible or flat↑

Lorentzian manifold which is either1 (R,−dt2), or2 irreducible, i.e. Holp(M, g) = SO0(1, n)

[Olmos/Di Scala ’00], or3 indecomposbable, non-irreducible

Classify holonomy for these!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 9 / 24

Page 51: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Algebraic preliminaries

We have to consider H ⊂ SO0(1, n + 1) indecomposable, non-irreducible,i.e. ∃ V ⊂ Rn+2 : H · V ⊂ V such that

L :=V ∩ V⊥ , 0

is H-invariant, totally light-like,

L = R · X .

⇒ H ⊂ SO0(1, n + 1)L = (R+ × SO(n)) n Rn

i.e. h ⊂ so(1, n + 1)L =

a v t 0

0 A −v0 0t −a

∣∣∣∣∣∣∣∣∣

a ∈ R,v ∈ Rn,

A ∈ so(n)

The orthogonal part is reductive:

g := prso(n)h = z︸︷︷︸centre

⊕ g′︸︷︷︸

= [g, g] semisimple

(Levi − decomposition)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 10 / 24

Page 52: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Algebraic preliminaries

We have to consider H ⊂ SO0(1, n + 1) indecomposable, non-irreducible,i.e. ∃ V ⊂ Rn+2 : H · V ⊂ V such that

L :=

V ∩ V⊥ , 0

is H-invariant, totally light-like,

L = R · X .

⇒ H ⊂ SO0(1, n + 1)L = (R+ × SO(n)) n Rn

i.e. h ⊂ so(1, n + 1)L =

a v t 0

0 A −v0 0t −a

∣∣∣∣∣∣∣∣∣

a ∈ R,v ∈ Rn,

A ∈ so(n)

The orthogonal part is reductive:

g := prso(n)h = z︸︷︷︸centre

⊕ g′︸︷︷︸

= [g, g] semisimple

(Levi − decomposition)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 10 / 24

Page 53: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Algebraic preliminaries

We have to consider H ⊂ SO0(1, n + 1) indecomposable, non-irreducible,i.e. ∃ V ⊂ Rn+2 : H · V ⊂ V such that

L :=

V ∩ V⊥ , 0 is H-invariant, totally light-like,

L = R · X .

⇒ H ⊂ SO0(1, n + 1)L = (R+ × SO(n)) n Rn

i.e. h ⊂ so(1, n + 1)L =

a v t 0

0 A −v0 0t −a

∣∣∣∣∣∣∣∣∣

a ∈ R,v ∈ Rn,

A ∈ so(n)

The orthogonal part is reductive:

g := prso(n)h = z︸︷︷︸centre

⊕ g′︸︷︷︸

= [g, g] semisimple

(Levi − decomposition)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 10 / 24

Page 54: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Algebraic preliminaries

We have to consider H ⊂ SO0(1, n + 1) indecomposable, non-irreducible,i.e. ∃ V ⊂ Rn+2 : H · V ⊂ V such that

L :=V ∩ V⊥ , 0 is H-invariant, totally light-like, L = R · X .

⇒ H ⊂ SO0(1, n + 1)L = (R+ × SO(n)) n Rn

i.e. h ⊂ so(1, n + 1)L =

a v t 0

0 A −v0 0t −a

∣∣∣∣∣∣∣∣∣

a ∈ R,v ∈ Rn,

A ∈ so(n)

The orthogonal part is reductive:

g := prso(n)h = z︸︷︷︸centre

⊕ g′︸︷︷︸

= [g, g] semisimple

(Levi − decomposition)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 10 / 24

Page 55: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Algebraic preliminaries

We have to consider H ⊂ SO0(1, n + 1) indecomposable, non-irreducible,i.e. ∃ V ⊂ Rn+2 : H · V ⊂ V such that

L :=V ∩ V⊥ , 0 is H-invariant, totally light-like, L = R · X .

⇒ H ⊂ SO0(1, n + 1)L = (R+ × SO(n)) n Rn

i.e. h ⊂ so(1, n + 1)L =

a v t 0

0 A −v0 0t −a

∣∣∣∣∣∣∣∣∣

a ∈ R,v ∈ Rn,

A ∈ so(n)

The orthogonal part is reductive:

g := prso(n)h = z︸︷︷︸centre

⊕ g′︸︷︷︸

= [g, g] semisimple

(Levi − decomposition)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 10 / 24

Page 56: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Algebraic preliminaries

We have to consider H ⊂ SO0(1, n + 1) indecomposable, non-irreducible,i.e. ∃ V ⊂ Rn+2 : H · V ⊂ V such that

L :=V ∩ V⊥ , 0 is H-invariant, totally light-like, L = R · X .

⇒ H ⊂ SO0(1, n + 1)L = (R+ × SO(n)) n Rn

i.e. h ⊂ so(1, n + 1)L =

a v t 0

0 A −v0 0t −a

∣∣∣∣∣∣∣∣∣

a ∈ R,v ∈ Rn,

A ∈ so(n)

The orthogonal part is reductive:

g := prso(n)h = z︸︷︷︸centre

⊕ g′︸︷︷︸

= [g, g] semisimple

(Levi − decomposition)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 10 / 24

Page 57: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Preliminaries

Algebraic preliminaries

We have to consider H ⊂ SO0(1, n + 1) indecomposable, non-irreducible,i.e. ∃ V ⊂ Rn+2 : H · V ⊂ V such that

L :=V ∩ V⊥ , 0 is H-invariant, totally light-like, L = R · X .

⇒ H ⊂ SO0(1, n + 1)L = (R+ × SO(n)) n Rn

i.e. h ⊂ so(1, n + 1)L =

a v t 0

0 A −v0 0t −a

∣∣∣∣∣∣∣∣∣

a ∈ R,v ∈ Rn,

A ∈ so(n)

The orthogonal part is reductive:

g := prso(n)h = z︸︷︷︸centre

⊕ g′︸︷︷︸

= [g, g] semisimple

(Levi − decomposition)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 10 / 24

Page 58: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification I: h ⊂ so(1, n + 1)L indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h there are the following cases:

Rn ⊂ h – Type I: h = (R ⊕ g) n Rn.Type II: h = g n Rn.

Type III: ∃ ϕ : z R:

h =

ϕ(A) v t 0

0 A + B −v0 0 −ϕ(A)

∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn

Rn 1 h – Type IV: ∃ ϕ : z Rk , for 0 < k < n:

h =

0 ψ(A)t v t 00 0 0 −ψ(A)0 0 A + B −v0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn−k

Note: ∃ holonomy groups of uncoupled type III and IV which arenon-closed, first examples in Berard-Bergery/Ikemakhen ’96

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 11 / 24

Page 59: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification I: h ⊂ so(1, n + 1)L indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h there are the following cases:

Rn ⊂ h –

Type I: h = (R ⊕ g) n Rn.Type II: h = g n Rn.

Type III: ∃ ϕ : z R:

h =

ϕ(A) v t 0

0 A + B −v0 0 −ϕ(A)

∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn

Rn 1 h –

Type IV: ∃ ϕ : z Rk , for 0 < k < n:

h =

0 ψ(A)t v t 00 0 0 −ψ(A)0 0 A + B −v0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn−k

Note: ∃ holonomy groups of uncoupled type III and IV which arenon-closed, first examples in Berard-Bergery/Ikemakhen ’96

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 11 / 24

Page 60: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification I: h ⊂ so(1, n + 1)L indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h there are the following cases:

Rn ⊂ h – Type I: h = (R ⊕ g) n Rn.

Type II: h = g n Rn.

Type III: ∃ ϕ : z R:

h =

ϕ(A) v t 0

0 A + B −v0 0 −ϕ(A)

∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn

Rn 1 h –

Type IV: ∃ ϕ : z Rk , for 0 < k < n:

h =

0 ψ(A)t v t 00 0 0 −ψ(A)0 0 A + B −v0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn−k

Note: ∃ holonomy groups of uncoupled type III and IV which arenon-closed, first examples in Berard-Bergery/Ikemakhen ’96

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 11 / 24

Page 61: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification I: h ⊂ so(1, n + 1)L indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h there are the following cases:

Rn ⊂ h – Type I: h = (R ⊕ g) n Rn.Type II: h = g n Rn.

Type III: ∃ ϕ : z R:

h =

ϕ(A) v t 0

0 A + B −v0 0 −ϕ(A)

∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn

Rn 1 h –

Type IV: ∃ ϕ : z Rk , for 0 < k < n:

h =

0 ψ(A)t v t 00 0 0 −ψ(A)0 0 A + B −v0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn−k

Note: ∃ holonomy groups of uncoupled type III and IV which arenon-closed, first examples in Berard-Bergery/Ikemakhen ’96

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 11 / 24

Page 62: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification I: h ⊂ so(1, n + 1)L indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h there are the following cases:

Rn ⊂ h – Type I: h = (R ⊕ g) n Rn.Type II: h = g n Rn.

Type III: ∃ ϕ : z R:

h =

ϕ(A) v t 0

0 A + B −v0 0 −ϕ(A)

∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn

Rn 1 h –

Type IV: ∃ ϕ : z Rk , for 0 < k < n:

h =

0 ψ(A)t v t 00 0 0 −ψ(A)0 0 A + B −v0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn−k

Note: ∃ holonomy groups of uncoupled type III and IV which arenon-closed, first examples in Berard-Bergery/Ikemakhen ’96

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 11 / 24

Page 63: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification I: h ⊂ so(1, n + 1)L indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h there are the following cases:

Rn ⊂ h – Type I: h = (R ⊕ g) n Rn.Type II: h = g n Rn.

Type III: ∃ ϕ : z R: h =

ϕ(A) v t 0

0 A + B −v0 0 −ϕ(A)

∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn

Rn 1 h –

Type IV: ∃ ϕ : z Rk , for 0 < k < n:

h =

0 ψ(A)t v t 00 0 0 −ψ(A)0 0 A + B −v0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn−k

Note: ∃ holonomy groups of uncoupled type III and IV which arenon-closed, first examples in Berard-Bergery/Ikemakhen ’96

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 11 / 24

Page 64: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification I: h ⊂ so(1, n + 1)L indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h there are the following cases:

Rn ⊂ h – Type I: h = (R ⊕ g) n Rn.Type II: h = g n Rn.

Type III: ∃ ϕ : z R: h =

ϕ(A) v t 0

0 A + B −v0 0 −ϕ(A)

∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn

Rn 1 h – Type IV: ∃ ϕ : z Rk , for 0 < k < n:

h =

0 ψ(A)t v t 00 0 0 −ψ(A)0 0 A + B −v0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn−k

Note: ∃ holonomy groups of uncoupled type III and IV which arenon-closed, first examples in Berard-Bergery/Ikemakhen ’96

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 11 / 24

Page 65: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification I: h ⊂ so(1, n + 1)L indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h there are the following cases:

Rn ⊂ h – Type I: h = (R ⊕ g) n Rn.Type II: h = g n Rn.

Type III: ∃ ϕ : z R: h =

ϕ(A) v t 0

0 A + B −v0 0 −ϕ(A)

∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn

Rn 1 h – Type IV: ∃ ϕ : z Rk , for 0 < k < n:

h =

0 ψ(A)t v t 00 0 0 −ψ(A)0 0 A + B −v0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn−k

Note: ∃ holonomy groups of uncoupled type III and IV which arenon-closed, first examples in Berard-Bergery/Ikemakhen ’96

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 11 / 24

Page 66: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification I: h ⊂ so(1, n + 1)L indecomposable

Theorem (Berard-Bergery/Ikemakhen ’96)

For h there are the following cases:

Rn ⊂ h – Type I: h = (R ⊕ g) n Rn.Type II: h = g n Rn.

Type III: ∃ ϕ : z R: h =

ϕ(A) v t 0

0 A + B −v0 0 −ϕ(A)

∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn

Rn 1 h – Type IV: ∃ ϕ : z Rk , for 0 < k < n:

h =

0 ψ(A)t v t 00 0 0 −ψ(A)0 0 A + B −v0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

A ∈ zB ∈ g′

v ∈ Rn−k

Note: ∃ holonomy groups of uncoupled type III and IV which arenon-closed, first examples in Berard-Bergery/Ikemakhen ’96

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 11 / 24

Page 67: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification II: Holonomy algebras in h ⊂ so(1, n + 1)L

An indecomposable subalgebra h ⊂ so(1, n + 1)L is characterised by:g = prso(n)(h), prR(h), and possibly by ϕ : z(g)→ R, or ψ : z(g)→ Rk .

1.) Restriction on g:

Theorem ( — ’03)

If h is a Berger algebra (e.g. a Lorentzian holonomy algebra), theng := projso(n)h is a Riemannian holonomy algebra.

The proof uses notion of weak Berger algebras and their classification.

2.) No further restrictions:

Theorem (B-B/I ’96, Boubel ’00, — ’03, Galaev ’05)

If g := projso(n)h is a Riemannian holonomy algebra, then there is aLorentzian metric h with holp(h) = h.

In fact, there are polynomial metrics for any possible holonomy algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 12 / 24

Page 68: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification II: Holonomy algebras in h ⊂ so(1, n + 1)L

An indecomposable subalgebra h ⊂ so(1, n + 1)L is characterised by:g = prso(n)(h), prR(h), and possibly by ϕ : z(g)→ R, or ψ : z(g)→ Rk .

1.) Restriction on g:

Theorem ( — ’03)

If h is a Berger algebra (e.g. a Lorentzian holonomy algebra), theng := projso(n)h is a Riemannian holonomy algebra.

The proof uses notion of weak Berger algebras and their classification.

2.) No further restrictions:

Theorem (B-B/I ’96, Boubel ’00, — ’03, Galaev ’05)

If g := projso(n)h is a Riemannian holonomy algebra, then there is aLorentzian metric h with holp(h) = h.

In fact, there are polynomial metrics for any possible holonomy algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 12 / 24

Page 69: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification II: Holonomy algebras in h ⊂ so(1, n + 1)L

An indecomposable subalgebra h ⊂ so(1, n + 1)L is characterised by:g = prso(n)(h), prR(h), and possibly by ϕ : z(g)→ R, or ψ : z(g)→ Rk .

1.) Restriction on g:

Theorem ( — ’03)

If h is a Berger algebra (e.g. a Lorentzian holonomy algebra), theng := projso(n)h is a Riemannian holonomy algebra.

The proof uses notion of weak Berger algebras and their classification.

2.) No further restrictions:

Theorem (B-B/I ’96, Boubel ’00, — ’03, Galaev ’05)

If g := projso(n)h is a Riemannian holonomy algebra, then there is aLorentzian metric h with holp(h) = h.

In fact, there are polynomial metrics for any possible holonomy algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 12 / 24

Page 70: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification II: Holonomy algebras in h ⊂ so(1, n + 1)L

An indecomposable subalgebra h ⊂ so(1, n + 1)L is characterised by:g = prso(n)(h), prR(h), and possibly by ϕ : z(g)→ R, or ψ : z(g)→ Rk .

1.) Restriction on g:

Theorem ( — ’03)

If h is a Berger algebra (e.g. a Lorentzian holonomy algebra), theng := projso(n)h is a Riemannian holonomy algebra.

The proof uses notion of weak Berger algebras and their classification.

2.) No further restrictions:

Theorem (B-B/I ’96, Boubel ’00, — ’03, Galaev ’05)

If g := projso(n)h is a Riemannian holonomy algebra, then there is aLorentzian metric h with holp(h) = h.

In fact, there are polynomial metrics for any possible holonomy algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 12 / 24

Page 71: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Classification

Classification II: Holonomy algebras in h ⊂ so(1, n + 1)L

An indecomposable subalgebra h ⊂ so(1, n + 1)L is characterised by:g = prso(n)(h), prR(h), and possibly by ϕ : z(g)→ R, or ψ : z(g)→ Rk .

1.) Restriction on g:

Theorem ( — ’03)

If h is a Berger algebra (e.g. a Lorentzian holonomy algebra), theng := projso(n)h is a Riemannian holonomy algebra.

The proof uses notion of weak Berger algebras and their classification.

2.) No further restrictions:

Theorem (B-B/I ’96, Boubel ’00, — ’03, Galaev ’05)

If g := projso(n)h is a Riemannian holonomy algebra, then there is aLorentzian metric h with holp(h) = h.

In fact, there are polynomial metrics for any possible holonomy algebra.Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 12 / 24

Page 72: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Proof of the first Theorem — weak Berger algebras I

TpM = L⊥ ⊕ R · Z = L ⊕ L⊥ ∩ Z⊥︸ ︷︷ ︸:=E

⊕ R · Z , for the invariant line L .

⇒ g ⊂ so(E, gp) = so(n) is generated the curvature endomorphisms

R |E ∈ K(g) but also R(Z , .)|E ∈ Hom(E, g) for R ∈ K(h)X weak Berger algebras

B(g) :=Q ∈ Hom(Rn, g)

∣∣∣〈Q(x)y, z〉+ 〈Q(y)z, x〉+ 〈Q(z)x, y〉 = 0.

g is a weak Berger algebradef .⇐⇒ g =

⟨Q(x)

∣∣∣Q ∈ B(g), x ∈ Rn⟩

Theorem ( — ’02)

If h ⊂ so(n)(1, n + 1)L is an indecomposable Berger algebra, theng := projso(n)(h) is a weak-Berger algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 13 / 24

Page 73: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Proof of the first Theorem — weak Berger algebras I

TpM = L⊥ ⊕ R · Z = L ⊕ L⊥ ∩ Z⊥︸ ︷︷ ︸:=E

⊕ R · Z , for the invariant line L .

⇒ g ⊂ so(E, gp) = so(n) is generated the curvature endomorphisms

R |E ∈ K(g)

but also R(Z , .)|E ∈ Hom(E, g)

for R ∈ K(h)X

weak Berger algebras

B(g) :=Q ∈ Hom(Rn, g)

∣∣∣〈Q(x)y, z〉+ 〈Q(y)z, x〉+ 〈Q(z)x, y〉 = 0.

g is a weak Berger algebradef .⇐⇒ g =

⟨Q(x)

∣∣∣Q ∈ B(g), x ∈ Rn⟩

Theorem ( — ’02)

If h ⊂ so(n)(1, n + 1)L is an indecomposable Berger algebra, theng := projso(n)(h) is a weak-Berger algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 13 / 24

Page 74: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Proof of the first Theorem — weak Berger algebras I

TpM = L⊥ ⊕ R · Z = L ⊕ L⊥ ∩ Z⊥︸ ︷︷ ︸:=E

⊕ R · Z , for the invariant line L .

⇒ g ⊂ so(E, gp) = so(n) is generated the curvature endomorphisms

R |E ∈ K(g) but also R(Z , .)|E ∈ Hom(E, g) for R ∈ K(h)X weak Berger algebras

B(g) :=Q ∈ Hom(Rn, g)

∣∣∣〈Q(x)y, z〉+ 〈Q(y)z, x〉+ 〈Q(z)x, y〉 = 0.

g is a weak Berger algebradef .⇐⇒ g =

⟨Q(x)

∣∣∣Q ∈ B(g), x ∈ Rn⟩

Theorem ( — ’02)

If h ⊂ so(n)(1, n + 1)L is an indecomposable Berger algebra, theng := projso(n)(h) is a weak-Berger algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 13 / 24

Page 75: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Proof of the first Theorem — weak Berger algebras I

TpM = L⊥ ⊕ R · Z = L ⊕ L⊥ ∩ Z⊥︸ ︷︷ ︸:=E

⊕ R · Z , for the invariant line L .

⇒ g ⊂ so(E, gp) = so(n) is generated the curvature endomorphisms

R |E ∈ K(g) but also R(Z , .)|E ∈ Hom(E, g) for R ∈ K(h)X weak Berger algebras

B(g) :=Q ∈ Hom(Rn, g)

∣∣∣〈Q(x)y, z〉+ 〈Q(y)z, x〉+ 〈Q(z)x, y〉 = 0.

g is a weak Berger algebradef .⇐⇒ g =

⟨Q(x)

∣∣∣Q ∈ B(g), x ∈ Rn⟩

Theorem ( — ’02)

If h ⊂ so(n)(1, n + 1)L is an indecomposable Berger algebra, theng := projso(n)(h) is a weak-Berger algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 13 / 24

Page 76: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Proof of the first Theorem — weak Berger algebras I

TpM = L⊥ ⊕ R · Z = L ⊕ L⊥ ∩ Z⊥︸ ︷︷ ︸:=E

⊕ R · Z , for the invariant line L .

⇒ g ⊂ so(E, gp) = so(n) is generated the curvature endomorphisms

R |E ∈ K(g) but also R(Z , .)|E ∈ Hom(E, g) for R ∈ K(h)X weak Berger algebras

B(g) :=Q ∈ Hom(Rn, g)

∣∣∣〈Q(x)y, z〉+ 〈Q(y)z, x〉+ 〈Q(z)x, y〉 = 0.

g is a weak Berger algebradef .⇐⇒ g =

⟨Q(x)

∣∣∣Q ∈ B(g), x ∈ Rn⟩

Theorem ( — ’02)

If h ⊂ so(n)(1, n + 1)L is an indecomposable Berger algebra, theng := projso(n)(h) is a weak-Berger algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 13 / 24

Page 77: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Proof of the first Theorem — weak Berger algebras I

TpM = L⊥ ⊕ R · Z = L ⊕ L⊥ ∩ Z⊥︸ ︷︷ ︸:=E

⊕ R · Z , for the invariant line L .

⇒ g ⊂ so(E, gp) = so(n) is generated the curvature endomorphisms

R |E ∈ K(g) but also R(Z , .)|E ∈ Hom(E, g) for R ∈ K(h)X weak Berger algebras

B(g) :=Q ∈ Hom(Rn, g)

∣∣∣〈Q(x)y, z〉+ 〈Q(y)z, x〉+ 〈Q(z)x, y〉 = 0.

g is a weak Berger algebradef .⇐⇒ g =

⟨Q(x)

∣∣∣Q ∈ B(g), x ∈ Rn⟩

Theorem ( — ’02)

If h ⊂ so(n)(1, n + 1)L is an indecomposable Berger algebra, theng := projso(n)(h) is a weak-Berger algebra.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 13 / 24

Page 78: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Weak Berger algebras II

Decomposition Property for (weak) Berger algebras

Let g ⊂ so(n) be a (weak) Berger algebra, and Rn decomposed as follows:

Rn = E0 ⊕ E1 ⊕ . . .⊕ Ek , E0 trivial, Ei irreducible.Then g = g1 ⊕ . . .⊕ gk , gi ideals, such that

gi acts irreducibly on Ei and trivial on Ej , and is a (weak) Berger algebra.

Corollary

Lorentzian holonomy groups of uncoupled type I and II are closed.

=⇒ in order to classify g = prso(n)hol(M, h) we need to classify irreducibleweak Berger algebras.Method: Representation theory for (complex) semisimple Lie algebras.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 14 / 24

Page 79: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Weak Berger algebras II

Decomposition Property for (weak) Berger algebras

Let g ⊂ so(n) be a (weak) Berger algebra, and Rn decomposed as follows:

Rn = E0 ⊕ E1 ⊕ . . .⊕ Ek , E0 trivial, Ei irreducible.Then g = g1 ⊕ . . .⊕ gk , gi ideals, such that

gi acts irreducibly on Ei and trivial on Ej , and is a (weak) Berger algebra.

Corollary

Lorentzian holonomy groups of uncoupled type I and II are closed.

=⇒ in order to classify g = prso(n)hol(M, h) we need to classify irreducibleweak Berger algebras.

Method: Representation theory for (complex) semisimple Lie algebras.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 14 / 24

Page 80: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Weak Berger algebras II

Decomposition Property for (weak) Berger algebras

Let g ⊂ so(n) be a (weak) Berger algebra, and Rn decomposed as follows:

Rn = E0 ⊕ E1 ⊕ . . .⊕ Ek , E0 trivial, Ei irreducible.Then g = g1 ⊕ . . .⊕ gk , gi ideals, such that

gi acts irreducibly on Ei and trivial on Ej , and is a (weak) Berger algebra.

Corollary

Lorentzian holonomy groups of uncoupled type I and II are closed.

=⇒ in order to classify g = prso(n)hol(M, h) we need to classify irreducibleweak Berger algebras.Method: Representation theory for (complex) semisimple Lie algebras.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 14 / 24

Page 81: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Proof of the Classification

Weak Berger algebras II

Decomposition Property for (weak) Berger algebras

Let g ⊂ so(n) be a (weak) Berger algebra, and Rn decomposed as follows:

Rn = E0 ⊕ E1 ⊕ . . .⊕ Ek , E0 trivial, Ei irreducible.Then g = g1 ⊕ . . .⊕ gk , gi ideals, such that

gi acts irreducibly on Ei and trivial on Ej , and is a (weak) Berger algebra.

Corollary

Lorentzian holonomy groups of uncoupled type I and II are closed.

=⇒ in order to classify g = prso(n)hol(M, h) we need to classify irreducibleweak Berger algebras.Method: Representation theory for (complex) semisimple Lie algebras.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 14 / 24

Page 82: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Applications

Parallel spinors on a Lorentzian spin manifold (M, g)

Let(Σ,∇Σ

)be the spinor bundle over (M, g).

Assume: ∃ϕ ∈ Γ(Σ) with ∇Σϕ = 0 a parallel spinor field.

=⇒ ∃ causal vector field Xϕ ∈ Γ(TM) : ∇Xϕ = 0. Two cases:

g(Xϕ,Xϕ) < 0 : (M, g) = (R,−dt2)

g(Xϕ,Xϕ) = 0 : (M, g) = (M, g)×

Riemannian mf.with parallel spinor

↑indecomposable with parallel spinor

Theorem ( — ’03)

(Mn+2, g) indecomposable Lorentzian spin with parallel spinor. ThenHolp(M, g) = G n Rn where G is a product of the following groups:

1, SU(p), Sp(q), G2, Spin(7)

dim∇ϕ = 0 : 2[k/2] 2 q + 1 1 1

This generalizes the result for n ≤ 9 in [Bryant ’99].

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 15 / 24

Page 83: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Applications

Parallel spinors on a Lorentzian spin manifold (M, g)

Let(Σ,∇Σ

)be the spinor bundle over (M, g).

Assume: ∃ϕ ∈ Γ(Σ) with ∇Σϕ = 0 a parallel spinor field.=⇒ ∃ causal vector field Xϕ ∈ Γ(TM) : ∇Xϕ = 0.

Two cases:

g(Xϕ,Xϕ) < 0 : (M, g) = (R,−dt2)

g(Xϕ,Xϕ) = 0 : (M, g) = (M, g)×

Riemannian mf.with parallel spinor

↑indecomposable with parallel spinor

Theorem ( — ’03)

(Mn+2, g) indecomposable Lorentzian spin with parallel spinor. ThenHolp(M, g) = G n Rn where G is a product of the following groups:

1, SU(p), Sp(q), G2, Spin(7)

dim∇ϕ = 0 : 2[k/2] 2 q + 1 1 1

This generalizes the result for n ≤ 9 in [Bryant ’99].

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 15 / 24

Page 84: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Applications

Parallel spinors on a Lorentzian spin manifold (M, g)

Let(Σ,∇Σ

)be the spinor bundle over (M, g).

Assume: ∃ϕ ∈ Γ(Σ) with ∇Σϕ = 0 a parallel spinor field.=⇒ ∃ causal vector field Xϕ ∈ Γ(TM) : ∇Xϕ = 0. Two cases:

g(Xϕ,Xϕ) < 0 : (M, g) = (R,−dt2)

g(Xϕ,Xϕ) = 0 : (M, g) = (M, g)×

Riemannian mf.with parallel spinor

↑indecomposable with parallel spinor

Theorem ( — ’03)

(Mn+2, g) indecomposable Lorentzian spin with parallel spinor. ThenHolp(M, g) = G n Rn where G is a product of the following groups:

1, SU(p), Sp(q), G2, Spin(7)

dim∇ϕ = 0 : 2[k/2] 2 q + 1 1 1

This generalizes the result for n ≤ 9 in [Bryant ’99].

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 15 / 24

Page 85: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Applications

Parallel spinors on a Lorentzian spin manifold (M, g)

Let(Σ,∇Σ

)be the spinor bundle over (M, g).

Assume: ∃ϕ ∈ Γ(Σ) with ∇Σϕ = 0 a parallel spinor field.=⇒ ∃ causal vector field Xϕ ∈ Γ(TM) : ∇Xϕ = 0. Two cases:

g(Xϕ,Xϕ) < 0 : (M, g) = (R,−dt2)

g(Xϕ,Xϕ) = 0 : (M, g) = (M, g)×

Riemannian mf.with parallel spinor

↑indecomposable with parallel spinor

Theorem ( — ’03)

(Mn+2, g) indecomposable Lorentzian spin with parallel spinor. ThenHolp(M, g) = G n Rn where G is a product of the following groups:

1, SU(p), Sp(q), G2, Spin(7)

dim∇ϕ = 0 : 2[k/2] 2 q + 1 1 1

This generalizes the result for n ≤ 9 in [Bryant ’99].

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 15 / 24

Page 86: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Applications

Parallel spinors on a Lorentzian spin manifold (M, g)

Let(Σ,∇Σ

)be the spinor bundle over (M, g).

Assume: ∃ϕ ∈ Γ(Σ) with ∇Σϕ = 0 a parallel spinor field.=⇒ ∃ causal vector field Xϕ ∈ Γ(TM) : ∇Xϕ = 0. Two cases:

g(Xϕ,Xϕ) < 0 : (M, g) = (R,−dt2)

g(Xϕ,Xϕ) = 0 : (M, g) = (M, g)×

Riemannian mf.with parallel spinor

↑indecomposable with parallel spinor

Theorem ( — ’03)

(Mn+2, g) indecomposable Lorentzian spin with parallel spinor. ThenHolp(M, g) = G n Rn where G is a product of the following groups:

1, SU(p), Sp(q), G2, Spin(7)

dim∇ϕ = 0 : 2[k/2] 2 q + 1 1 1

This generalizes the result for n ≤ 9 in [Bryant ’99].

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 15 / 24

Page 87: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Applications

Parallel spinors on a Lorentzian spin manifold (M, g)

Let(Σ,∇Σ

)be the spinor bundle over (M, g).

Assume: ∃ϕ ∈ Γ(Σ) with ∇Σϕ = 0 a parallel spinor field.=⇒ ∃ causal vector field Xϕ ∈ Γ(TM) : ∇Xϕ = 0. Two cases:

g(Xϕ,Xϕ) < 0 : (M, g) = (R,−dt2)

g(Xϕ,Xϕ) = 0 : (M, g) = (M, g)×

Riemannian mf.with parallel spinor

↑indecomposable with parallel spinor

Theorem ( — ’03)

(Mn+2, g) indecomposable Lorentzian spin with parallel spinor. ThenHolp(M, g) = G n Rn where G is a product of the following groups:

1, SU(p), Sp(q), G2, Spin(7)

dim∇ϕ = 0 : 2[k/2] 2 q + 1 1 1

This generalizes the result for n ≤ 9 in [Bryant ’99].Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 15 / 24

Page 88: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Applications

Lorentzian Einstein manifolds

Theorem (Galaev/— ’07)

The holonomy of an indecomposable non-irreducible Lorentzian Einsteinmanifold is uncoupled, i.e.

Hol0p(M, g) =

(R+ × G) n Rn, orG n Rn

with a Riemannian holonomy group G. In the 2nd case the manifold isRicci flat.

In the second case G is a product of 1, SU(p), Sp(q), G2, Spin(7),(or the holonomy of a non-Kahlerian Riemannian symmetric space )

.

Corollary

A Lorentzian Einstein manifold with parallel light-like vector field isRicci-flat.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 16 / 24

Page 89: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Applications

Lorentzian Einstein manifolds

Theorem (Galaev/— ’07)

The holonomy of an indecomposable non-irreducible Lorentzian Einsteinmanifold is uncoupled, i.e.

Hol0p(M, g) =

(R+ × G) n Rn, orG n Rn

with a Riemannian holonomy group G. In the 2nd case the manifold isRicci flat.

In the second case G is a product of 1, SU(p), Sp(q), G2, Spin(7),(or the holonomy of a non-Kahlerian Riemannian symmetric space ).

Corollary

A Lorentzian Einstein manifold with parallel light-like vector field isRicci-flat.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 16 / 24

Page 90: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Lorentzian holonomy Applications

Lorentzian Einstein manifolds

Theorem (Galaev/— ’07)

The holonomy of an indecomposable non-irreducible Lorentzian Einsteinmanifold is uncoupled, i.e.

Hol0p(M, g) =

(R+ × G) n Rn, orG n Rn

with a Riemannian holonomy group G. In the 2nd case the manifold isRicci flat.

In the second case G is a product of 1, SU(p), Sp(q), G2, Spin(7),(or the holonomy of a non-Kahlerian Riemannian symmetric space ).

Corollary

A Lorentzian Einstein manifold with parallel light-like vector field isRicci-flat.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 16 / 24

Page 91: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Holonomy in signature signature (2, n + 2)

h ⊂ so(2, n + 2) indecomposable, non-irreducible

=⇒V ⊂ R2,n+2 degenerate and h-invariant.=⇒ I := V ∩V⊥ ⊂ R2,n+2 totally isotropic, h-invariant, dimI ≤ 2.Two cases:

(1) h preserves an isotropic plane I;

(2) h preserves an isotropic line but no isotropic plane;

Consider case (1):

h ⊂ so(2, n + 2)I =

B

X t

Y t0 −cc 0

0 0 A −X −Y0 00 0

00

−B t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣B ∈ gl(2,R),

A ∈ so(n)X ,Y ∈ Rn

c ∈ R

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 17 / 24

Page 92: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Holonomy in signature signature (2, n + 2)

h ⊂ so(2, n + 2) indecomposable, non-irreducible=⇒V ⊂ R2,n+2 degenerate and h-invariant.

=⇒ I := V ∩V⊥ ⊂ R2,n+2 totally isotropic, h-invariant, dimI ≤ 2.Two cases:

(1) h preserves an isotropic plane I;

(2) h preserves an isotropic line but no isotropic plane;

Consider case (1):

h ⊂ so(2, n + 2)I =

B

X t

Y t0 −cc 0

0 0 A −X −Y0 00 0

00

−B t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣B ∈ gl(2,R),

A ∈ so(n)X ,Y ∈ Rn

c ∈ R

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 17 / 24

Page 93: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Holonomy in signature signature (2, n + 2)

h ⊂ so(2, n + 2) indecomposable, non-irreducible=⇒V ⊂ R2,n+2 degenerate and h-invariant.=⇒ I := V ∩V⊥ ⊂ R2,n+2 totally isotropic, h-invariant, dimI ≤ 2.

Two cases:

(1) h preserves an isotropic plane I;

(2) h preserves an isotropic line but no isotropic plane;

Consider case (1):

h ⊂ so(2, n + 2)I =

B

X t

Y t0 −cc 0

0 0 A −X −Y0 00 0

00

−B t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣B ∈ gl(2,R),

A ∈ so(n)X ,Y ∈ Rn

c ∈ R

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 17 / 24

Page 94: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Holonomy in signature signature (2, n + 2)

h ⊂ so(2, n + 2) indecomposable, non-irreducible=⇒V ⊂ R2,n+2 degenerate and h-invariant.=⇒ I := V ∩V⊥ ⊂ R2,n+2 totally isotropic, h-invariant, dimI ≤ 2.Two cases:

(1) h preserves an isotropic plane I;

(2) h preserves an isotropic line but no isotropic plane;

Consider case (1):

h ⊂ so(2, n + 2)I =

B

X t

Y t0 −cc 0

0 0 A −X −Y0 00 0

00

−B t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣B ∈ gl(2,R),

A ∈ so(n)X ,Y ∈ Rn

c ∈ R

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 17 / 24

Page 95: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Holonomy in signature signature (2, n + 2)

h ⊂ so(2, n + 2) indecomposable, non-irreducible=⇒V ⊂ R2,n+2 degenerate and h-invariant.=⇒ I := V ∩V⊥ ⊂ R2,n+2 totally isotropic, h-invariant, dimI ≤ 2.Two cases:

(1) h preserves an isotropic plane I;

(2) h preserves an isotropic line but no isotropic plane;

Consider case (1):

h ⊂ so(2, n + 2)I =

B

X t

Y t0 −cc 0

0 0 A −X −Y0 00 0

00

−B t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣B ∈ gl(2,R),

A ∈ so(n)X ,Y ∈ Rn

c ∈ R

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 17 / 24

Page 96: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Holonomy in signature signature (2, n + 2)

h ⊂ so(2, n + 2) indecomposable, non-irreducible=⇒V ⊂ R2,n+2 degenerate and h-invariant.=⇒ I := V ∩V⊥ ⊂ R2,n+2 totally isotropic, h-invariant, dimI ≤ 2.Two cases:

(1) h preserves an isotropic plane I;

(2) h preserves an isotropic line but no isotropic plane;

Consider case (1):

h ⊂ so(2, n + 2)I =

B

X t

Y t0 −cc 0

0 0 A −X −Y0 00 0

00

−B t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣B ∈ gl(2,R),

A ∈ so(n)X ,Y ∈ Rn

c ∈ R

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 17 / 24

Page 97: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

The so(n)-projection in signature (2, n + 2)

For g ⊂ so(n) define the indecomposable subalgebra of so(2, n + 2)I

hg =

0 0 X t 0 −c0 0 Y t c 00 0 A −X −Y0 0 0 0 00 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣A ∈ gX ,Y ∈ Rn

c ∈ R

= (g⊕R)nR2n ⊂ so(2, n+2)I.

Theorem (Galaev ’04)

For any subalgebra g ⊂ so(n) exists a metric g on Rn+4 of signature(2, n + 2) such that hol0(g) = hg.

This is in sharp contrast to the Lorentzian situation where g = prso(n)(h)had to be a Riemannian holonomy algebra!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 18 / 24

Page 98: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

The so(n)-projection in signature (2, n + 2)

For g ⊂ so(n) define the indecomposable subalgebra of so(2, n + 2)I

hg =

0 0 X t 0 −c0 0 Y t c 00 0 A −X −Y0 0 0 0 00 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣A ∈ gX ,Y ∈ Rn

c ∈ R

= (g⊕R)nR2n ⊂ so(2, n+2)I.

Theorem (Galaev ’04)

For any subalgebra g ⊂ so(n) exists a metric g on Rn+4 of signature(2, n + 2) such that hol0(g) = hg.

This is in sharp contrast to the Lorentzian situation where g = prso(n)(h)had to be a Riemannian holonomy algebra!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 18 / 24

Page 99: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

The so(n)-projection in signature (2, n + 2)

For g ⊂ so(n) define the indecomposable subalgebra of so(2, n + 2)I

hg =

0 0 X t 0 −c0 0 Y t c 00 0 A −X −Y0 0 0 0 00 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣A ∈ gX ,Y ∈ Rn

c ∈ R

= (g⊕R)nR2n ⊂ so(2, n+2)I.

Theorem (Galaev ’04)

For any subalgebra g ⊂ so(n) exists a metric g on Rn+4 of signature(2, n + 2) such that hol0(g) = hg.

This is in sharp contrast to the Lorentzian situation where g = prso(n)(h)had to be a Riemannian holonomy algebra!

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 18 / 24

Page 100: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Kahler manifolds in signature (2, 2n + 2)

Let h ⊂ u(1, n + 1) indecomposable, non-irreducible. =⇒h admits an invariant, totally isotropic plane I which is also J-invariant, i.e.

h ⊂ u(1, n + 1)I =

z v ic0 A −v0 0 −z

| z ∈ C, v ∈ Cn, c ∈ R,A ∈ u(n)

Galaev ’04: Complete classification of holonomy algebras

1 Classification of indecomposable subalgebras of su(1, n + 1)I.2 Classification of indecomposable Berger subalgebras of u(1, n + 1)I.3 For each of those h’s: Construction of a (2, n + 2)-Kahler metric with

holonomy algebra h.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 19 / 24

Page 101: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Kahler manifolds in signature (2, 2n + 2)

Let h ⊂ u(1, n + 1) indecomposable, non-irreducible. =⇒h admits an invariant, totally isotropic plane I which is also J-invariant, i.e.

h ⊂ u(1, n + 1)I =

z v ic0 A −v0 0 −z

| z ∈ C, v ∈ Cn, c ∈ R,A ∈ u(n)

Galaev ’04: Complete classification of holonomy algebras1 Classification of indecomposable subalgebras of su(1, n + 1)I.2 Classification of indecomposable Berger subalgebras of u(1, n + 1)I.3 For each of those h’s: Construction of a (2, n + 2)-Kahler metric with

holonomy algebra h.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 19 / 24

Page 102: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Kahler manifolds in signature (2, 2n + 2)

Let h ⊂ u(1, n + 1) indecomposable, non-irreducible. =⇒h admits an invariant, totally isotropic plane I which is also J-invariant, i.e.

h ⊂ u(1, n + 1)I =

z v ic0 A −v0 0 −z

| z ∈ C, v ∈ Cn, c ∈ R,A ∈ u(n)

Galaev ’04: Complete classification of holonomy algebras

1 Classification of indecomposable subalgebras of su(1, n + 1)I.2 Classification of indecomposable Berger subalgebras of u(1, n + 1)I.3 For each of those h’s: Construction of a (2, n + 2)-Kahler metric with

holonomy algebra h.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 19 / 24

Page 103: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Kahler manifolds in signature (2, 2n + 2)

Let h ⊂ u(1, n + 1) indecomposable, non-irreducible. =⇒h admits an invariant, totally isotropic plane I which is also J-invariant, i.e.

h ⊂ u(1, n + 1)I =

z v ic0 A −v0 0 −z

| z ∈ C, v ∈ Cn, c ∈ R,A ∈ u(n)

Galaev ’04: Complete classification of holonomy algebras

1 Classification of indecomposable subalgebras of su(1, n + 1)I.

2 Classification of indecomposable Berger subalgebras of u(1, n + 1)I.3 For each of those h’s: Construction of a (2, n + 2)-Kahler metric with

holonomy algebra h.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 19 / 24

Page 104: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Kahler manifolds in signature (2, 2n + 2)

Let h ⊂ u(1, n + 1) indecomposable, non-irreducible. =⇒h admits an invariant, totally isotropic plane I which is also J-invariant, i.e.

h ⊂ u(1, n + 1)I =

z v ic0 A −v0 0 −z

| z ∈ C, v ∈ Cn, c ∈ R,A ∈ u(n)

Galaev ’04: Complete classification of holonomy algebras

1 Classification of indecomposable subalgebras of su(1, n + 1)I.2 Classification of indecomposable Berger subalgebras of u(1, n + 1)I.

3 For each of those h’s: Construction of a (2, n + 2)-Kahler metric withholonomy algebra h.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 19 / 24

Page 105: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, n + 2)

Kahler manifolds in signature (2, 2n + 2)

Let h ⊂ u(1, n + 1) indecomposable, non-irreducible. =⇒h admits an invariant, totally isotropic plane I which is also J-invariant, i.e.

h ⊂ u(1, n + 1)I =

z v ic0 A −v0 0 −z

| z ∈ C, v ∈ Cn, c ∈ R,A ∈ u(n)

Galaev ’04: Complete classification of holonomy algebras

1 Classification of indecomposable subalgebras of su(1, n + 1)I.2 Classification of indecomposable Berger subalgebras of u(1, n + 1)I.3 For each of those h’s: Construction of a (2, n + 2)-Kahler metric with

holonomy algebra h.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 19 / 24

Page 106: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature (n, n)

Let H ⊂ SO(n, n) admit an invariant, degenerate subspace V .

Many cases: dim(V ∩ V⊥) = 1, 2, . . . , n !Consider the case V ∩ V⊥ = V , i.e. totally isotropic of dimension n, i.e.

H ⊂ G :=

(B 00 (B t)−1

)| B ∈ Gl(n,R)

, for 〈., .〉 =

(0 InIn 0

)Holp(M, g) ⊂ G ⇐⇒ existence of a para-Kahler structure on (M, g):

1 ∃ J ∈ Γ(TM) such that J2 = id and rk(ker(Id + J) = rk(ker(Id − J),2 g(J., J.) = −g,3 ∇J = 0

[Cortes et al ’04, ’05: Special para-Kahler manifolds]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 20 / 24

Page 107: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature (n, n)

Let H ⊂ SO(n, n) admit an invariant, degenerate subspace V .Many cases: dim(V ∩ V⊥) = 1, 2, . . . , n !

Consider the case V ∩ V⊥ = V , i.e. totally isotropic of dimension n, i.e.

H ⊂ G :=

(B 00 (B t)−1

)| B ∈ Gl(n,R)

, for 〈., .〉 =

(0 InIn 0

)Holp(M, g) ⊂ G ⇐⇒ existence of a para-Kahler structure on (M, g):

1 ∃ J ∈ Γ(TM) such that J2 = id and rk(ker(Id + J) = rk(ker(Id − J),2 g(J., J.) = −g,3 ∇J = 0

[Cortes et al ’04, ’05: Special para-Kahler manifolds]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 20 / 24

Page 108: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature (n, n)

Let H ⊂ SO(n, n) admit an invariant, degenerate subspace V .Many cases: dim(V ∩ V⊥) = 1, 2, . . . , n !Consider the case V ∩ V⊥ = V , i.e. totally isotropic of dimension n,

i.e.

H ⊂ G :=

(B 00 (B t)−1

)| B ∈ Gl(n,R)

, for 〈., .〉 =

(0 InIn 0

)Holp(M, g) ⊂ G ⇐⇒ existence of a para-Kahler structure on (M, g):

1 ∃ J ∈ Γ(TM) such that J2 = id and rk(ker(Id + J) = rk(ker(Id − J),2 g(J., J.) = −g,3 ∇J = 0

[Cortes et al ’04, ’05: Special para-Kahler manifolds]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 20 / 24

Page 109: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature (n, n)

Let H ⊂ SO(n, n) admit an invariant, degenerate subspace V .Many cases: dim(V ∩ V⊥) = 1, 2, . . . , n !Consider the case V ∩ V⊥ = V , i.e. totally isotropic of dimension n, i.e.

H ⊂ G :=

(B 00 (B t)−1

)| B ∈ Gl(n,R)

, for 〈., .〉 =

(0 InIn 0

)

Holp(M, g) ⊂ G ⇐⇒ existence of a para-Kahler structure on (M, g):1 ∃ J ∈ Γ(TM) such that J2 = id and rk(ker(Id + J) = rk(ker(Id − J),2 g(J., J.) = −g,3 ∇J = 0

[Cortes et al ’04, ’05: Special para-Kahler manifolds]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 20 / 24

Page 110: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature (n, n)

Let H ⊂ SO(n, n) admit an invariant, degenerate subspace V .Many cases: dim(V ∩ V⊥) = 1, 2, . . . , n !Consider the case V ∩ V⊥ = V , i.e. totally isotropic of dimension n, i.e.

H ⊂ G :=

(B 00 (B t)−1

)| B ∈ Gl(n,R)

, for 〈., .〉 =

(0 InIn 0

)Holp(M, g) ⊂ G ⇐⇒ existence of a para-Kahler structure on (M, g):

1 ∃ J ∈ Γ(TM) such that J2 = id and rk(ker(Id + J) = rk(ker(Id − J),2 g(J., J.) = −g,3 ∇J = 0

[Cortes et al ’04, ’05: Special para-Kahler manifolds]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 20 / 24

Page 111: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature (n, n)

Let H ⊂ SO(n, n) admit an invariant, degenerate subspace V .Many cases: dim(V ∩ V⊥) = 1, 2, . . . , n !Consider the case V ∩ V⊥ = V , i.e. totally isotropic of dimension n, i.e.

H ⊂ G :=

(B 00 (B t)−1

)| B ∈ Gl(n,R)

, for 〈., .〉 =

(0 InIn 0

)Holp(M, g) ⊂ G ⇐⇒ existence of a para-Kahler structure on (M, g):

1 ∃ J ∈ Γ(TM) such that J2 = id and rk(ker(Id + J) = rk(ker(Id − J),

2 g(J., J.) = −g,3 ∇J = 0

[Cortes et al ’04, ’05: Special para-Kahler manifolds]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 20 / 24

Page 112: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature (n, n)

Let H ⊂ SO(n, n) admit an invariant, degenerate subspace V .Many cases: dim(V ∩ V⊥) = 1, 2, . . . , n !Consider the case V ∩ V⊥ = V , i.e. totally isotropic of dimension n, i.e.

H ⊂ G :=

(B 00 (B t)−1

)| B ∈ Gl(n,R)

, for 〈., .〉 =

(0 InIn 0

)Holp(M, g) ⊂ G ⇐⇒ existence of a para-Kahler structure on (M, g):

1 ∃ J ∈ Γ(TM) such that J2 = id and rk(ker(Id + J) = rk(ker(Id − J),2 g(J., J.) = −g,

3 ∇J = 0

[Cortes et al ’04, ’05: Special para-Kahler manifolds]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 20 / 24

Page 113: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature (n, n)

Let H ⊂ SO(n, n) admit an invariant, degenerate subspace V .Many cases: dim(V ∩ V⊥) = 1, 2, . . . , n !Consider the case V ∩ V⊥ = V , i.e. totally isotropic of dimension n, i.e.

H ⊂ G :=

(B 00 (B t)−1

)| B ∈ Gl(n,R)

, for 〈., .〉 =

(0 InIn 0

)Holp(M, g) ⊂ G ⇐⇒ existence of a para-Kahler structure on (M, g):

1 ∃ J ∈ Γ(TM) such that J2 = id and rk(ker(Id + J) = rk(ker(Id − J),2 g(J., J.) = −g,3 ∇J = 0

[Cortes et al ’04, ’05: Special para-Kahler manifolds]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 20 / 24

Page 114: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature, continued

Theorem (Berard-Bergery, Ikemakhen ’97)

Let (M2n, g) be a para-Kahler manifold, i.e. Hol0p(M, g) ⊂ G.⇒ ∀p ∈ M ∃ co-ordinates (U, ϕ = (x1, . . . xn, y1, . . . , yn)): ϕ(p) = 0 ∈ R2n,and Ω ∈ C∞(ϕ(U)) (para-Kahler potential):

1 g =n∑

i,j=1Dijdxidyj with Dij = ∂2Ωϕ

∂xi∂yj: ϕ(U)→ R.

2 The Taylor series of Ω in 0 starts with x1y1 + . . .+ xnyn and continueswith terms which are at least quadratic in the xi ’s and quadratic in theyj ’s.

3 Holp(U, g) is the smallest connected subgroup of G which contains(Dij(q) 0

0 (Dij(q)t)−1

)∈ G | q ∈ ϕ(U)

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 21 / 24

Page 115: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature, continued

Theorem (Berard-Bergery, Ikemakhen ’97)

Let (M2n, g) be a para-Kahler manifold, i.e. Hol0p(M, g) ⊂ G.⇒ ∀p ∈ M ∃ co-ordinates (U, ϕ = (x1, . . . xn, y1, . . . , yn)): ϕ(p) = 0 ∈ R2n,and Ω ∈ C∞(ϕ(U)) (para-Kahler potential):

1 g =n∑

i,j=1Dijdxidyj with Dij = ∂2Ωϕ

∂xi∂yj: ϕ(U)→ R.

2 The Taylor series of Ω in 0 starts with x1y1 + . . .+ xnyn and continueswith terms which are at least quadratic in the xi ’s and quadratic in theyj ’s.

3 Holp(U, g) is the smallest connected subgroup of G which contains(Dij(q) 0

0 (Dij(q)t)−1

)∈ G | q ∈ ϕ(U)

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 21 / 24

Page 116: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature, continued

Theorem (Berard-Bergery, Ikemakhen ’97)

Let (M2n, g) be a para-Kahler manifold, i.e. Hol0p(M, g) ⊂ G.⇒ ∀p ∈ M ∃ co-ordinates (U, ϕ = (x1, . . . xn, y1, . . . , yn)): ϕ(p) = 0 ∈ R2n,and Ω ∈ C∞(ϕ(U)) (para-Kahler potential):

1 g =n∑

i,j=1Dijdxidyj with Dij = ∂2Ωϕ

∂xi∂yj: ϕ(U)→ R.

2 The Taylor series of Ω in 0 starts with x1y1 + . . .+ xnyn and continueswith terms which are at least quadratic in the xi ’s and quadratic in theyj ’s.

3 Holp(U, g) is the smallest connected subgroup of G which contains(Dij(q) 0

0 (Dij(q)t)−1

)∈ G | q ∈ ϕ(U)

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 21 / 24

Page 117: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Neutral signature (n, n)

Neutral signature, continued

Theorem (Berard-Bergery, Ikemakhen ’97)

Let (M2n, g) be a para-Kahler manifold, i.e. Hol0p(M, g) ⊂ G.⇒ ∀p ∈ M ∃ co-ordinates (U, ϕ = (x1, . . . xn, y1, . . . , yn)): ϕ(p) = 0 ∈ R2n,and Ω ∈ C∞(ϕ(U)) (para-Kahler potential):

1 g =n∑

i,j=1Dijdxidyj with Dij = ∂2Ωϕ

∂xi∂yj: ϕ(U)→ R.

2 The Taylor series of Ω in 0 starts with x1y1 + . . .+ xnyn and continueswith terms which are at least quadratic in the xi ’s and quadratic in theyj ’s.

3 Holp(U, g) is the smallest connected subgroup of G which contains(Dij(q) 0

0 (Dij(q)t)−1

)∈ G | q ∈ ϕ(U)

.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 21 / 24

Page 118: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Signature (2, 2)

Let h ⊂ so(2, 2) indecomposable, non irreducible.

In dimension 4: invariant isotropic line⇒ invariant isotropic plane I, i.e.

so(2, 2)I =

(U aJ0 −Ut

)| U ∈ gl(2,R), a ∈ R

= gl(2,R) nA

where A is the ideal spanned by

(0 J0 0

)and J =

(0 1−1 0

)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 22 / 24

Page 119: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Signature (2, 2)

Let h ⊂ so(2, 2) indecomposable, non irreducible.In dimension 4: invariant isotropic line⇒ invariant isotropic plane I,

i.e.

so(2, 2)I =

(U aJ0 −Ut

)| U ∈ gl(2,R), a ∈ R

= gl(2,R) nA

where A is the ideal spanned by

(0 J0 0

)and J =

(0 1−1 0

)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 22 / 24

Page 120: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Signature (2, 2)

Let h ⊂ so(2, 2) indecomposable, non irreducible.In dimension 4: invariant isotropic line⇒ invariant isotropic plane I, i.e.

so(2, 2)I =

(U aJ0 −Ut

)| U ∈ gl(2,R), a ∈ R

= gl(2,R) nA

where A is the ideal spanned by

(0 J0 0

)and J =

(0 1−1 0

)

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 22 / 24

Page 121: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Indecomposable Berger algebras h ⊂ so(2, 2)I

Berard-Bergery/Ikemakhen ’97: h = (modulo conjugation in SO0(2, 2))

1 Para-Kahler, i.e. h → gl(2,R):

gl(2,R), sl(2,R), (strictly) upper

triangular, b = RId ⊕ RJ, or kλ =

(a b0 λa

)| a, b ∈ R

for λ ∈ R.

2 Not para-Kahler: h = h′ nA where h′ is 0 or an algebra of 1, or

uµ := R ·

(µ 1−1 µ

), or R ·

(1 10 1

)∗.

Kahler: A, b, b nA = u(1, 1)I, uµ nA,

Kahler, Ricci flat: A and su(1, 1)I = R ·

(I2 00 −I2

)nA

SO(2,2)∼ k1.

Existence of metrics: open only for (∗) [Berard-Bergery/Ikemakhen ’97,Galaev ’04, Galaev/— ’07]

[Ghanam/Thompson ’01]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 23 / 24

Page 122: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Indecomposable Berger algebras h ⊂ so(2, 2)I

Berard-Bergery/Ikemakhen ’97: h = (modulo conjugation in SO0(2, 2))

1 Para-Kahler, i.e. h → gl(2,R):

gl(2,R), sl(2,R), (strictly) upper

triangular, b = RId ⊕ RJ, or kλ =

(a b0 λa

)| a, b ∈ R

for λ ∈ R.

2 Not para-Kahler: h = h′ nA where h′ is 0 or an algebra of 1, or

uµ := R ·

(µ 1−1 µ

), or R ·

(1 10 1

)∗.

Kahler: A, b, b nA = u(1, 1)I, uµ nA,

Kahler, Ricci flat: A and su(1, 1)I = R ·

(I2 00 −I2

)nA

SO(2,2)∼ k1.

Existence of metrics: open only for (∗) [Berard-Bergery/Ikemakhen ’97,Galaev ’04, Galaev/— ’07]

[Ghanam/Thompson ’01]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 23 / 24

Page 123: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Indecomposable Berger algebras h ⊂ so(2, 2)I

Berard-Bergery/Ikemakhen ’97: h = (modulo conjugation in SO0(2, 2))

1 Para-Kahler, i.e. h → gl(2,R): gl(2,R), sl(2,R), (strictly) upper

triangular, b = RId ⊕ RJ, or kλ =

(a b0 λa

)| a, b ∈ R

for λ ∈ R.

2 Not para-Kahler: h = h′ nA where h′ is 0 or an algebra of 1, or

uµ := R ·

(µ 1−1 µ

), or R ·

(1 10 1

)∗.

Kahler: A, b, b nA = u(1, 1)I, uµ nA,

Kahler, Ricci flat: A and su(1, 1)I = R ·

(I2 00 −I2

)nA

SO(2,2)∼ k1.

Existence of metrics: open only for (∗) [Berard-Bergery/Ikemakhen ’97,Galaev ’04, Galaev/— ’07]

[Ghanam/Thompson ’01]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 23 / 24

Page 124: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Indecomposable Berger algebras h ⊂ so(2, 2)I

Berard-Bergery/Ikemakhen ’97: h = (modulo conjugation in SO0(2, 2))

1 Para-Kahler, i.e. h → gl(2,R): gl(2,R), sl(2,R), (strictly) upper

triangular, b = RId ⊕ RJ, or kλ =

(a b0 λa

)| a, b ∈ R

for λ ∈ R.

2 Not para-Kahler: h = h′ nA where h′ is 0 or an algebra of 1, or

uµ := R ·

(µ 1−1 µ

), or R ·

(1 10 1

)∗.

Kahler: A, b, b nA = u(1, 1)I, uµ nA,

Kahler, Ricci flat: A and su(1, 1)I = R ·

(I2 00 −I2

)nA

SO(2,2)∼ k1.

Existence of metrics: open only for (∗) [Berard-Bergery/Ikemakhen ’97,Galaev ’04, Galaev/— ’07]

[Ghanam/Thompson ’01]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 23 / 24

Page 125: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Indecomposable Berger algebras h ⊂ so(2, 2)I

Berard-Bergery/Ikemakhen ’97: h = (modulo conjugation in SO0(2, 2))

1 Para-Kahler, i.e. h → gl(2,R): gl(2,R), sl(2,R), (strictly) upper

triangular, b = RId ⊕ RJ, or kλ =

(a b0 λa

)| a, b ∈ R

for λ ∈ R.

2 Not para-Kahler: h = h′ nA where h′ is 0 or an algebra of 1, or

uµ := R ·

(µ 1−1 µ

), or R ·

(1 10 1

)∗.

Kahler: A, b, b nA = u(1, 1)I, uµ nA,

Kahler, Ricci flat: A and su(1, 1)I = R ·

(I2 00 −I2

)nA

SO(2,2)∼ k1.

Existence of metrics: open only for (∗) [Berard-Bergery/Ikemakhen ’97,Galaev ’04, Galaev/— ’07]

[Ghanam/Thompson ’01]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 23 / 24

Page 126: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Indecomposable Berger algebras h ⊂ so(2, 2)I

Berard-Bergery/Ikemakhen ’97: h = (modulo conjugation in SO0(2, 2))

1 Para-Kahler, i.e. h → gl(2,R): gl(2,R), sl(2,R), (strictly) upper

triangular, b = RId ⊕ RJ, or kλ =

(a b0 λa

)| a, b ∈ R

for λ ∈ R.

2 Not para-Kahler: h = h′ nA where h′ is 0 or an algebra of 1, or

uµ := R ·

(µ 1−1 µ

), or R ·

(1 10 1

)∗.

Kahler: A, b, b nA = u(1, 1)I, uµ nA,

Kahler, Ricci flat: A and su(1, 1)I = R ·

(I2 00 −I2

)nA

SO(2,2)∼ k1.

Existence of metrics: open only for (∗) [Berard-Bergery/Ikemakhen ’97,Galaev ’04, Galaev/— ’07]

[Ghanam/Thompson ’01]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 23 / 24

Page 127: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Indecomposable Berger algebras h ⊂ so(2, 2)I

Berard-Bergery/Ikemakhen ’97: h = (modulo conjugation in SO0(2, 2))

1 Para-Kahler, i.e. h → gl(2,R): gl(2,R), sl(2,R), (strictly) upper

triangular, b = RId ⊕ RJ, or kλ =

(a b0 λa

)| a, b ∈ R

for λ ∈ R.

2 Not para-Kahler: h = h′ nA where h′ is 0 or an algebra of 1, or

uµ := R ·

(µ 1−1 µ

), or R ·

(1 10 1

)∗.

Kahler: A, b, b nA = u(1, 1)I, uµ nA,

Kahler, Ricci flat: A and su(1, 1)I = R ·

(I2 00 −I2

)nA

SO(2,2)∼ k1.

Existence of metrics: open only for (∗) [Berard-Bergery/Ikemakhen ’97,Galaev ’04, Galaev/— ’07]

[Ghanam/Thompson ’01]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 23 / 24

Page 128: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Other signatures Signature (2, 2)

Indecomposable Berger algebras h ⊂ so(2, 2)I

Berard-Bergery/Ikemakhen ’97: h = (modulo conjugation in SO0(2, 2))

1 Para-Kahler, i.e. h → gl(2,R): gl(2,R), sl(2,R), (strictly) upper

triangular, b = RId ⊕ RJ, or kλ =

(a b0 λa

)| a, b ∈ R

for λ ∈ R.

2 Not para-Kahler: h = h′ nA where h′ is 0 or an algebra of 1, or

uµ := R ·

(µ 1−1 µ

), or R ·

(1 10 1

)∗.

Kahler: A, b, b nA = u(1, 1)I, uµ nA,

Kahler, Ricci flat: A and su(1, 1)I = R ·

(I2 00 −I2

)nA

SO(2,2)∼ k1.

Existence of metrics: open only for (∗) [Berard-Bergery/Ikemakhen ’97,Galaev ’04, Galaev/— ’07] [Ghanam/Thompson ’01]

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 23 / 24

Page 129: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Open problems

Open Problems (for Lorentzian manifolds)

Special geometries= not products but do not have full holonomy.

Riemannian irreducible manifolds Berger list and subsequent results[Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible⇒ SO(1,n)) indecomposable, non-irreducible manifolds:groups are known, but many questions are open:

1 Find global examples of metrics with prescribed holonomy, which areglobally hyperbolic with complete or compact Cauchy surface (cylinderconstructions in [Baum/Muller ’06])

2 Describe the geometric structures corresponding to the coupled types IIIand IV.

3 Describe indecomposable, non-irreducible Lorentzian homogeneous spacesand their holonomy.

4 Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomyis holonomy of Riemannian symmetric space.

5 Study further spinor field equations for these manifolds.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 24 / 24

Page 130: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Open problems

Open Problems (for Lorentzian manifolds)

Special geometries= not products but do not have full holonomy.

Riemannian irreducible manifolds Berger list and subsequent results[Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible⇒ SO(1,n)) indecomposable, non-irreducible manifolds:groups are known, but many questions are open:

1 Find global examples of metrics with prescribed holonomy, which areglobally hyperbolic with complete or compact Cauchy surface (cylinderconstructions in [Baum/Muller ’06])

2 Describe the geometric structures corresponding to the coupled types IIIand IV.

3 Describe indecomposable, non-irreducible Lorentzian homogeneous spacesand their holonomy.

4 Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomyis holonomy of Riemannian symmetric space.

5 Study further spinor field equations for these manifolds.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 24 / 24

Page 131: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Open problems

Open Problems (for Lorentzian manifolds)

Special geometries= not products but do not have full holonomy.

Riemannian irreducible manifolds Berger list and subsequent results[Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible⇒ SO(1,n)) indecomposable, non-irreducible manifolds:groups are known, but many questions are open:

1 Find global examples of metrics with prescribed holonomy, which areglobally hyperbolic with complete or compact Cauchy surface (cylinderconstructions in [Baum/Muller ’06])

2 Describe the geometric structures corresponding to the coupled types IIIand IV.

3 Describe indecomposable, non-irreducible Lorentzian homogeneous spacesand their holonomy.

4 Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomyis holonomy of Riemannian symmetric space.

5 Study further spinor field equations for these manifolds.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 24 / 24

Page 132: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Open problems

Open Problems (for Lorentzian manifolds)

Special geometries= not products but do not have full holonomy.

Riemannian irreducible manifolds Berger list and subsequent results[Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible⇒ SO(1,n)) indecomposable, non-irreducible manifolds:groups are known, but many questions are open:

1 Find global examples of metrics with prescribed holonomy, which areglobally hyperbolic with complete or compact Cauchy surface (cylinderconstructions in [Baum/Muller ’06])

2 Describe the geometric structures corresponding to the coupled types IIIand IV.

3 Describe indecomposable, non-irreducible Lorentzian homogeneous spacesand their holonomy.

4 Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomyis holonomy of Riemannian symmetric space.

5 Study further spinor field equations for these manifolds.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 24 / 24

Page 133: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Open problems

Open Problems (for Lorentzian manifolds)

Special geometries= not products but do not have full holonomy.

Riemannian irreducible manifolds Berger list and subsequent results[Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible⇒ SO(1,n)) indecomposable, non-irreducible manifolds:groups are known, but many questions are open:

1 Find global examples of metrics with prescribed holonomy, which areglobally hyperbolic with complete or compact Cauchy surface (cylinderconstructions in [Baum/Muller ’06])

2 Describe the geometric structures corresponding to the coupled types IIIand IV.

3 Describe indecomposable, non-irreducible Lorentzian homogeneous spacesand their holonomy.

4 Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomyis holonomy of Riemannian symmetric space.

5 Study further spinor field equations for these manifolds.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 24 / 24

Page 134: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Open problems

Open Problems (for Lorentzian manifolds)

Special geometries= not products but do not have full holonomy.

Riemannian irreducible manifolds Berger list and subsequent results[Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible⇒ SO(1,n)) indecomposable, non-irreducible manifolds:groups are known, but many questions are open:

1 Find global examples of metrics with prescribed holonomy, which areglobally hyperbolic with complete or compact Cauchy surface (cylinderconstructions in [Baum/Muller ’06])

2 Describe the geometric structures corresponding to the coupled types IIIand IV.

3 Describe indecomposable, non-irreducible Lorentzian homogeneous spacesand their holonomy.

4 Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomyis holonomy of Riemannian symmetric space.

5 Study further spinor field equations for these manifolds.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 24 / 24

Page 135: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Open problems

Open Problems (for Lorentzian manifolds)

Special geometries= not products but do not have full holonomy.

Riemannian irreducible manifolds Berger list and subsequent results[Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible⇒ SO(1,n)) indecomposable, non-irreducible manifolds:groups are known, but many questions are open:

1 Find global examples of metrics with prescribed holonomy, which areglobally hyperbolic with complete or compact Cauchy surface (cylinderconstructions in [Baum/Muller ’06])

2 Describe the geometric structures corresponding to the coupled types IIIand IV.

3 Describe indecomposable, non-irreducible Lorentzian homogeneous spacesand their holonomy.

4 Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomyis holonomy of Riemannian symmetric space.

5 Study further spinor field equations for these manifolds.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 24 / 24

Page 136: Recent developments in pseudo-Riemannian holonomy theory · Recent developments in pseudo-Riemannian holonomy theory Thomas Leistner Humboldt University Berlin Minisymposium Differential

Open problems

Open Problems (for Lorentzian manifolds)

Special geometries= not products but do not have full holonomy.

Riemannian irreducible manifolds Berger list and subsequent results[Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible⇒ SO(1,n)) indecomposable, non-irreducible manifolds:groups are known, but many questions are open:

1 Find global examples of metrics with prescribed holonomy, which areglobally hyperbolic with complete or compact Cauchy surface (cylinderconstructions in [Baum/Muller ’06])

2 Describe the geometric structures corresponding to the coupled types IIIand IV.

3 Describe indecomposable, non-irreducible Lorentzian homogeneous spacesand their holonomy.

4 Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomyis holonomy of Riemannian symmetric space.

5 Study further spinor field equations for these manifolds.

Thomas Leistner (HU Berlin) Pseudo-Riemannian holonomy DMV Meeting 24 / 24