recent developments in polarized solid targets h. dutz, s. goertz physics institute, university bonn...

18
Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz Institute for Experimental Physics, Ruhr-University Bochum

Upload: edmund-lang

Post on 30-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Recent Developments in

Polarized Solid Targets

H. Dutz, S. Goertz

Physics Institute, University Bonn

J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Institute for Experimental Physics, Ruhr-University Bochum

Page 2: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Contents:

1. Luminosities of experiments with polarized targets

2. The quality factor of a polarized target: The Figure of Merit

3. Polarized target Basics: Concept and components

4. The DNP process

• The idea of spin temperatures• The role of the electron spin resonance line• The problem of polarizing deuterons

5. Three examples for an optimized preparation

6. The special challange of a large solid angle experiment

7. Developments concerning internal superconducting magnets

8. Summary

Page 3: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

beam projectiles [1/s]

106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018

targ

et n

ucl

ei [1

/cm

2]

1010

1012

1014

1016

1018

1020

1022

1024

1026

1028

1030

COMPASS

CB-ELSA E155

E154,3He

HERMES 3He

HERMES H,D

1030

1032

1034

1028

L = 1036

cm-2s-1

< 100nA

< 30A

< 50mA

Polarized Luminosities in Different Beams

Lunpol = 1036 – 1037 cm-2s-1

Polarized Solid Targets:

Frozen Spin Mode in dilution fridges: up to 107 1/s

Continuous Mode indilution fridges: up to 1 nA

Continuous Mode in4He- evaporators: up to 100 nA

Gas Targets:

Compressed 3He for

external experiments: up to 30 A

H, D storage cells forinternal experiments: up to 50 mA

Page 4: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

The Figure of Merit in Asymmetry Experiments- transverse target asymmetry in the case of spin-1/2 -

Measured counting rate asymmetry: tot

N N

N

Physics asymmetry for a pure target:1

t

AP

H-Butanol:

H H H H

H - C – C – C – C –OH

H H H H

f=10/74~13.5%Dilution factor:

0(1 )A

AA A

ff f

f f

= fraction of polarizable nucleons

Physics asymmetry for a dilute target:1 1

t

Af P

Absolute error of A:

2 2 21 1 1 1 1 1 1t

t t t t

P fA A A

f P P f f P f P T L

small

Page 5: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Measuring time for A = const :

2 22 2

1 1:

t t

Tf P L A FoM I A

Target Figure of Merit:

22 2target thickness [1 / ]tt t t cmnFoM f P n

H-Butanol 13.5 90 0.985 0.62 1

14NH317.6 90 0.853 0.58 1.4

7LiH 25 (?) 90 (?) 0.82 0.55 2.5

D-Butanol 23.8 45 / 90 (!) 1.12 0.62 1 / 4

14ND330 30 - 40 1.00 0.58 0.6 – 1.05

6LiD 50 55 0.82 0.55 4.3

Material fA[%] P[%] [g/cm3] (pack.f.)

fA2·Pt

2··

Typical FoM‘s (continuous polarization at B = 2.5 T, COMPASS like dilution fridge)

incr

easi

ng r

adia

tion h

ard

ness

incr

easi

ng d

iluti

on f

act

ors

Page 6: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Magnet: 2 7 T

Cryogenics: 1 K 100 mK

Microwaves: 50 200 GHz

NMR: 10 200 MHz

DAQ

Refrigerator

The Basic Concept of The Basic Concept of Dynamic Nuclear PolarizationDynamic Nuclear Polarization

~PT

B

k

B / T Pp[%] Pd [%] Pe [%]

2.5 T / 1 K 0.25 0.05 93

15 T / 10mK

91 30 100

Doping and transferof polarization

Page 7: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

DNP in the Picture of Spin TemperatureDNP in the Picture of Spin Temperature

( ) L

E

kTN E e

Page 8: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

( ) SS

E

kTN E e

( ) L

E

kTN E e

~PT

B

k

DNP in the Picture of Spin TemperatureDNP in the Picture of Spin Temperature

Page 9: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

min| | LSSZ

TET

E

SS

PT

Minimize E while maintaining the thermal contact: E

~ O(n)

• Find a chemical radical with a narrow EPR line width

• Try radiation doping if only low nuclei present

The special problem of low The special problem of low nuclei (e.g. deuterons) nuclei (e.g. deuterons)

E

Page 10: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Part I: Material Developments

Page 11: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Example 1: Electron irradiation of Example 1: Electron irradiation of 66LiDLiD

• Idea: A. Abragam 1980, Saclay

• Refinement of preparation:

Since 1991 in Bonn, from 1995 in Bochum COMPASS

1 liter for COMPASS: Synthesized from highly enriched 6LiD(2000 Bochum) Pmax = 55 % at 2.5 T

7Li (large ) impurity has considerable influence on Pmax

F-Center:

• s-wave electron• no g-anisotropy• weak HF interaction

+

B

Li

D

20 MeV atT = 185 K

Page 12: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Example 2: Electron irradiated deuterated ButanolExample 2: Electron irradiated deuterated Butanol

Trityl

Page 13: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Example 3: Trityl doped deuterated alcohols and diolsExample 3: Trityl doped deuterated alcohols and diols

@ B = 2.5 T

@ B = 2.5 T

Page 14: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Part II: Magnet Developments

Page 15: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

CB/ELSA @ Bonn: A 4 double polarization experiment in the frozen spin mode

Page 16: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Disadvantages of the frozen spin mode:

1) Polarization decays while data taking

2) Pmax (frozen) ~ 0.8 · Pmax (cont.)

3) Changing between polarization / measuring modes time consuming and dangerous !

Peff (frozen) ~ 0.7 · Pmax (cont.)

Ways out:

1) Huge polarizing magnet enclosing the detector

2) Thin polarizing magnet as part of the refrigerator

Challanges:

• High field (B > 2T) with only a few layers 120A current: HT superconductors !

• Mechanical stability of the thin carrier structure Stability of magnet operation

• Homogeneous magnetic field (B/B < 10-4) in a volume comparable to the field volume

Already realized as internal holding magnets sincemiddle of 1990 (GDH @ Mainz & Bonn, CB/ELSA)

120mm

Page 17: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Status of the project: Collaboration together with IKP FZ-Jülich and IAM Bonn

• Homogeneous volume can not be achieved just by correction coils !!! Result extremely sensitive to positioning errors of the individual wires

• But: Achieveable by a slightly non-cylindrical shape plus correction coils (B/B << 10-4 ?)

• Theoretical work successfully finished (patent application)

• Test coil to be manufactored in the workshops of the FZ-Jülich

Internal magnet for transverse polarization:

• Saddle coil type with 7 layers

• B = 0.5 T @ 30 A

• Only problem: Mechanical stability

• Order given to a company

Delivery forseen during 2008

Page 18: Recent Developments in Polarized Solid Targets H. Dutz, S. Goertz Physics Institute, University Bonn J. Heckmann, C. Hess, W. Meyer, E. Radke, G. Reicherz

Summary:

Due to the limited luminosity a successfull polarization experiment demands an optimally working polarized target:

1. Choice of a suitable target material:

• Dilution factor

• Maximum polarization

• Long relaxation times (frozen spin)

• Sufficient radiation hardness (more intense beams)

2. Optimized operating conditions:

• Cryostat: Suitable design / high perfomance and reliability

• Magnet technology:

Magnets enabling a continuous polarization mode

Magnets for longitudinal AND transverse spin orientation