recent developments in chalcogen chemistry: 5 oulu mg... · 2012. 8. 27. · outline •...

23
RECENT DEVELOPMENTS IN CHALCOGEN CHEMISTRY: 5 Tristram Chivers Department of Chemistry, University of Calgary, Calgary, Alberta, Canada

Upload: others

Post on 25-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • RECENT DEVELOPMENTS IN

    CHALCOGEN CHEMISTRY: 5

    Tristram Chivers

    Department of Chemistry,

    University of Calgary,

    Calgary, Alberta, Canada

  • Outline • Introduction:

    – Macrocycles incorporating P2N2 Rings Bridged by NH, O, Se Groups

    (a) Synthetic Approaches

    (b) Structures – Host-guest chemistry

    • Macrocycles with E–En–E (E = S, Se, Te; n = 0, 1, 2) functionalities

    – Formation of E–E (E = S, Se, Te) bonds in acyclic PNP-bridged systems via oxidation

    – An oxidative approach to P2N2-supported polychalcogen macrocycles

    – A key ditelluride intermediate

    Lecture 5: Polychalcogen Rings and Macrocycles

    Incorporating P2N2 Scaffolds

    2

  • PIII2N2 rings act as building blocks for macrocycles incorporating bridging NH groups Host-guest chemistry – entrapment of halide ions by NH groups

    Review: S. G. Calera and D. S. Wright. Dalton Trans., 2010, 39, 5055.

    P2N2-Supported Macrocycles with NH Bridges

    3

  • Cyclocondensation Strategy

    • Added halide influences size of macrocycle formed

    4

    + 4 Et3N

    - 4 [Et3NH]Cl

    2

    2

    P

    N

    P

    N

    N

    P

    N

    P

    N

    N P

    N

    P

    N

    N

    P

    N

    P

    N N

    H H

    H H

    P

    N

    P

    N Cl Cl

    P

    N

    P

    N

    N H 2 N H 2

    t Bu Bu

    t Bu Bu

    t Bu Bu

    t Bu Bu

    t Bu Bu

    t Bu Bu

    t Bu Bu

    t Bu Bu

    t Bu Bu t Bu Bu t Bu Bu t Bu Bu

  • D. S. Wright et al. Angew. Chem IE, 2008, 47, 1111.

    • Reduction in hot toluene → hexameric Se-containing macrocycle (80 % yield )

    • P atoms in different oxidation states (PIII/PV)

    5

    Chalcogen-containing Macrocycles Incorporating P2N2 Rings:

    A Reductive Strategy

  • Review: Chivers, Ritch, Robertson, Konu and Tuononen, Acc. Chem. Res., 2010, 43, 1053.

    Acyclic Dichalcogenides

    Spirocyclic Contact-Ion Pairs

    Chalcogen-Chalcogen Bond Formation:

    Acyclic PNP-Bridged Systems

    • Oxidation of dichalcogeno PNP-bridged monoanions → Dichalcogenides

    6

    R 2 P P R 2

    N

    E E

    L i

    T M E D A

    R 2 P P R 2

    N

    E E

    R 2 P P R 2 N

    E E R 2 P

    R 2 P

    N

    T e

    T e

    T e

    R 2 P

    P R 2

    N

    T e 1 / 2 I 2

    - L i I

    o r

    E = S e , T e ; R = i P r R = t B u

  • • Alkali-metal derivatives of dichalcogenido PV2N2-Bridged dianions are known

    (E = S, Se: Chivers, Krahn, Parvez and Schatte, Inorg. Chem., 2001, 40, 1493) (E = Te: Briand, Chivers and Parvez, Angew. Chem. IE, 2002, 41, 3468)

    • Can macrocycles with –E–E– bridges be generated via oxidation?

    • Influence of chalcogens?

    Dichalcogenido P2N2-Bridged Dianions

    7

  • Two-electron oxidation:

    By-products:

    (a) tBuN(H)E=P(μ-NtBu)2P=E(H)NtBu (E = S, Se) (diprotonated precursors)

    (b) A new P-Se compound: NMR: Two 77Se resonances [1J(P,Se) = 524 Hz]

    E = S, 35 % E = Se, 53 %

    Oxidation of Dichalcogenido P2N2-Bridged Dianions

    8

  • • Planar P6Se6 framework

    • P2N2 rings perpendicular to plane

    • Trigonal crystal system P 63/m

    • P atoms are inequivalent

    < P-Se-Se-P = 180°

    d(Se–Se) = 2.32 Å d(Se1’···Se1) = 3.315 Å

    Sulfur analogue Planar P6S6 framework d(S–S) = 2.12 Å d(S1’··S1) = 3.311 Å

    A Trimeric P2N2-Bridged Diselenide

    9

  • 31P NMR (solid state): δ = -67.6 and -59.8

    31P NMR (solution): AA’X system δ = -67.3 (s) 1JPSe = 428 Hz,

    2JPP = 20 Hz 77Se NMR (solution): δ = 409 (d, 1JPSe = 428 Hz)

    • Two P environments in the solid state, cf. XRD • P atoms equivalent in solution

    P6Se6 Macrocycle: Solid-State and Solution NMR

    10

  • (Se atoms ca. 1.0 Å above and below mean plane)

    Is the structure flexible enough to allow a dynamic exchange process? • New dispersion-corrected potential B3LYP-D3 (in ADF) for optimization

    • Calculated planar structure in good agreement with experimental values

    • Puckered structure 30.5 kJ mol-1 lower in energy

    • In solution puckered stucture will undergo conformational exchange

    P6Se6 Macrocycle: Conformational Isomers

    11

  • • Space-filling model d(Se1’···Se1) = 3.315 Å • Calculated bond orders (Nalewajski-Mrozek) → no Se···Se bonding

    • Planar structure in solid state attributed to packing effects

    • Air-stable orange solid

    • Low solubility

    cf. P6S6 Macrocycle

    • Moisture-sensitive yellow crystals

    • Low solubility

    P6Se6 Macrocycle: Intramolecular Se···Se Interactions?

    12

  • • Orange crystals of by-product of I2 oxidation obtained from hexane

    • XRD: A P2N2-Bridged Tetraselenide

    • Tetraselenide is formed by deliberate I2 oxidation of P6Se6 macrocycle i.e. Se2

    2- oxidized to Se42- ligands

    d(P–Se) = 2.28 Å d(Se1–Se3) = 2.34 Å d(Se3–Se4) = 2.33 Å Se2–Se4–Se3 = 103.4 ° Se1–Se3–Se4 = 103.2 ° Se2–Se4–Se3–Se1 = 94.4(1) °

    13

    A P2N2-Bridged Tetraselenide: Structure

  • • Direct synthesis via metathesis with Se2Cl2 – 56% yield

    • Hexane-soluble, bright orange solid

    NMR (same parameters as by-product of I2 oxidation):

    31P: δ = -50.8 (s, 1JPSe = 524 Hz, 2JPP = 10 Hz)

    77Se: δ = 673.0 (pseudo-t, 2JSeP = 20 Hz), 336.7 (dd, 1JSeP = 524 Hz,

    3JSeP = 6 Hz)

    14

    A P2N2-Bridged Tetraselenide: Direct Synthesis

  • One-electron oxidation with I2

    • Formation of central Te-Te unit bridged by two P2N2 rings

    • cf. Oxidation of acyclic chalcogen-centred PNP-bridged anions

    • N,Te-Chelation of TMEDA-solvated Li+ ions

    What about P-Te Systems? A Key Ditelluride Intermediate

    15

  • • d(Te1–Te1’) = 2.755(3) Å;

  • Electronic structure (DFT: PBED3, TZP, ZORA) • Te···Te orbital interaction is insignificant: Bond Order = 0.08

    • The tellurium lone pairs available for

    σ-donation are not combined

    • Structure with a P-Te-Te-P torsion angle of 98.0o is more stable by 7.9 kJ mol-1

    Why is the Dianionic Ditelluride Planar?

    17

  • Preparation of a new Na2 derivative:

    XRD: Symmetrical (N,N’ and Te,Te’) coordination of alkali metal cations cf. Li2 derivative shows unsymmetrical (N,Te and Te,Te’) coordination

    18

    Ditelluro P2N2-Bridged Dianion

  • Two-electron oxidation with I2

    Two resonances (2:1) δ 125Te = 443 (dd, 1JPTe = 1031 Hz, 3JPTe = 41 Hz)

    δ 125Te = 362 (t, 2JPTe = 35 Hz)

    125Te NMR:

    Black crystals (41 %)

    A P2N2-Bridged Tritelluride: Synthesis and NMR

    19

  • d(P–Te) = 2.53-2.54 Å

    d(Te–Te) = 2.72 Å

  • • Can macrocycles with –E–E– bridges be generated via oxidation? Oxidation provides a versatile route to polychalcogen rings stabilized by P2N2

    scaffolds • What is the influence of chalcogens?

    E = S, Se: Planar, macrocyclic trimers P6E6 are formed preferentially

    E = Se: P2N2-bridged tetraselenide

    E = Te: P2N2-bridged tritelluride

    21

    Te

    Te

    Te

    P

    P N N

    N N

    Conclusions - 1

  • Conclusions- 2

    Can the initial oxidation product be isolated for S and Se systems ? Can these dianionic dichalcogenides be used as building blocks to incorporate other main group elements in P2N2-supported macrocycles ?

    What is the significance of the dianionic ditelluride ?

    22

  • • Planar P6S6 unit

    • P2N2 rings perpendicular to plane

    • Trigonal crystal system P 63/n

    < P-S-S-P = 180o

    d(S–S) = 2.121 Å d(S1’···S1) = 3.311 Å

    A Trimeric P2N2-Bridged Disulfide

    23