recent advances on numerical simulation in coastal...

64
SHARK-FV Arnaud Duran Shallow Water Equations - Generalities dG discretization Extension to dispersive equations Handling breaking waves (work with G. Richard) Numerical validations Perspectives Recent advances on numerical simulation in coastal oceanography Arnaud Duran Institut Camille Jordan - Université Claude Bernard Lyon 1 Work in collaboration with F. Marche (IMAG Montpellier) SHARK-FV 2017 Conference - Ofir, May 19. Arnaud Duran (ICJ) SHARK-FV 19/05/2017 1 / 23

Upload: others

Post on 08-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Recent advances onnumerical simulation in coastal oceanography

Arnaud DuranInstitut Camille Jordan - Université Claude Bernard Lyon 1

Work in collaboration with F. Marche (IMAG Montpellier)

SHARK-FV 2017 Conference - Ofir, May 19.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 1 / 23

Page 2: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Outline

1 Shallow Water Equations - Generalities

2 dG discretization

3 Extension to dispersive equations

4 Handling breaking waves (work with G. Richard)

5 Perspectives

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 2 / 23

Page 3: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Outline

1 Shallow Water Equations - GeneralitiesIntroductionNumerical stability criteriaReformulation of the SW equations

2 dG discretization

3 Extension to dispersive equations

4 Handling breaking waves (work with G. Richard)

5 Perspectives

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 3 / 23

Page 4: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Shallow Water Equations

2D Formulation

∂tU +∇.G (U) = B(U, z) .

U =

h

hu

hv

, G(U) =

hu hv

12gh2 + hu2 huv

huv12gh2 + hv2

, B(U, z) =

0−gh∂xz−gh∂yz

Application field : some examples

Coastalhydrodynamic

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 4 / 23

Page 5: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Shallow Water Equations

2D Formulation

∂tU +∇.G (U) = B(U, z) .

U =

h

hu

hv

, G(U) =

hu hv

12gh2 + hu2 huv

huv12gh2 + hv2

, B(U, z) =

0−gh∂xz−gh∂yz

Application field : some examples

Coastalhydrodynamic

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 4 / 23

Page 6: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Shallow Water Equations

2D Formulation

∂tU +∇.G (U) = B(U, z) .

U =

h

hu

hv

, G(U) =

hu hv

12gh2 + hu2 huv

huv12gh2 + hv2

, B(U, z) =

0−gh∂xz−gh∂yz

Application field : some examples

Coastalhydrodynamic

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 4 / 23

Page 7: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Shallow Water Equations

2D Formulation

∂tU +∇.G (U) = B(U, z) .

U =

h

hu

hv

, G(U) =

hu hv

12gh2 + hu2 huv

huv12gh2 + hv2

, B(U, z) =

0−gh∂xz−gh∂yz

Application field : some examples

Coastalhydrodynamic

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 4 / 23

Page 8: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Shallow Water Equations

2D Formulation

∂tU +∇.G (U) = B(U, z) .

U =

h

hu

hv

, G(U) =

hu hv

12gh2 + hu2 huv

huv12gh2 + hv2

, B(U, z) =

0−gh∂xz−gh∂yz

Application field : some examples

Tsunamis

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 4 / 23

Page 9: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Shallow Water Equations

2D Formulation

∂tU +∇.G (U) = B(U, z) .

U =

h

hu

hv

, G(U) =

hu hv

12gh2 + hu2 huv

huv12gh2 + hv2

, B(U, z) =

0−gh∂xz−gh∂yz

Application field : some examples

Rivers,dam breaks

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 4 / 23

Page 10: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical issues

Stability criteriaPreservation of steady states :→ (C-property) [Bermudez & Vázquez, 1994]

h + z = cte , u = 0 .

Robustness : preservation of the water depth positivity.Entropy inequalities.

Notable advances :. [Greenberg, Leroux, 1996] , [Gosse, Leroux , 1996] scalar case. [Garcia-Navarro, Vázquez-Cendón , 1997] , [Castro, Gonzales, Pares, 2006]Roe schemes, [LeVeque, 1998] wave-propagation algorithm. [Perthame, Simeoni, 2001] , [Perthame, Simeoni, 2003] kinetic schemes. [Gallouët, Hérard, Seguin, 2003] , [Berthon, Marche, 2008] VFRoe schemes. [Audusse et al, 2004] Hydrostatic Reconstruction, [Ricchiuto et al, 2007]RD schemes , [Lukácová-Medvidová, Noelle, Kraft, 2007] FVEG schemes,[Xing, Zhang, Shu, 2010] , [Berthon, Chalons, 2016] ...

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 5 / 23

Page 11: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Reformulation of the SW equations

1D Configuration

z

hu

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 6 / 23

Page 12: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Reformulation of the SW equations

1D Lake at rest configuration

z

h

η = cte

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 6 / 23

Page 13: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Reformulation of the SW equations

1D Lake at rest configuration

z

h

η = cte

First works :. [Zhou, Causon, Mingham, 2001] Surface Gradient Method. [Rogers, Fujihara, Borthwick, 2001] , [Russo, 2005] , [Xing, Shu, 2005]

. [Liang, Borthwick, 2009] , [Liang, Marche, 2009] “Pre-Balanced”formulation.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 6 / 23

Page 14: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Reformulation of the SW equations

1D Lake at rest configuration

z

h

η = cte

First works :. [Zhou, Causon, Mingham, 2001] Surface Gradient Method. [Rogers, Fujihara, Borthwick, 2001] , [Russo, 2005] , [Xing, Shu, 2005]. [Liang, Borthwick, 2009] , [Liang, Marche, 2009] “Pre-Balanced”formulation.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 6 / 23

Page 15: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -GeneralitiesIntroductionNumericalstabilitycriteriaReformulationof the SWequations

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Reformulation of the SW equations

1D Lake at rest configuration

z

h

η = cte

Pre balanced formulation

∂tV +∇.H(V , z) = S(V , z) .

V =

η

hu

hv

, H(V , z) =

hu hv12g(η

2 − 2ηz) + hu2 huv

huv 12g(η

2 − 2ηz) + hv2

.

Topography source term : S(V , z) =

0−gη∂xz−gη∂yz

.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 6 / 23

Page 16: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Outline

1 Shallow Water Equations - Generalities

2 dG discretizationdG method : generalitiesNumerical fluxesPreservation of the water depth positivity

3 Extension to dispersive equations

4 Handling breaking waves (work with G. Richard)

5 Perspectives

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 7 / 23

Page 17: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

dG method : general background

Pd(T ) := 2 variables polynomials onTof degree at most d .

Vh := v ∈ L2(Ω) | ∀T ∈ Th , v|T ∈ Pd(T ).

Approximate solution : Vh(x, t) =

Nd∑l=1

Vl(t)θl(x) , ∀x ∈ T .

Local weak formulation (1)

∂tV +∇.H(V , z) = S(V , z)

∫T

∂tVφh(x)dx−∫T

H(V , z).∇φh(x)dx+∫∂T

H(V , z).~nφh(s)ds =

∫T

S(V , z)φh(x)dx

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 8 / 23

Page 18: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

dG method : general background

Pd(T ) := 2 variables polynomials onTof degree at most d .

Vh := v ∈ L2(Ω) | ∀T ∈ Th , v|T ∈ Pd(T ).

Approximate solution : Vh(x, t) =

Nd∑l=1

Vl(t)θl(x) , ∀x ∈ T .

Local weak formulation (2)

∂tVφh(x) +∇.H(V , z)φh(x) = S(V , z)φh(x)

∫T

∂tVφh(x)dx−∫T

H(V , z).∇φh(x)dx+∫∂T

H(V , z).~nφh(s)ds =

∫T

S(V , z)φh(x)dx

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 8 / 23

Page 19: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

dG method : general background

Pd(T ) := 2 variables polynomials onTof degree at most d .

Vh := v ∈ L2(Ω) | ∀T ∈ Th , v|T ∈ Pd(T ).

Approximate solution : Vh(x, t) =

Nd∑l=1

Vl(t)θl(x) , ∀x ∈ T .

Local weak formulation (3)∫T

∂tVφh(x)dx +

∫T

∇.H(V , z)φh(x)dx =

∫T

S(V , z)φh(x)dx

∫T

∂tVφh(x)dx−∫T

H(V , z).∇φh(x)dx+∫∂T

H(V , z).~nφh(s)ds =

∫T

S(V , z)φh(x)dx

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 8 / 23

Page 20: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

dG method : general background

Pd(T ) := 2 variables polynomials onTof degree at most d .

Vh := v ∈ L2(Ω) | ∀T ∈ Th , v|T ∈ Pd(T ).

Approximate solution : Vh(x, t) =

Nd∑l=1

Vl(t)θl(x) , ∀x ∈ T .

Local weak formulation (4)∫T

∂tVφh(x)dx +∫T∇.H(V , z)φh(x)dx =

∫T

S(V , z)φh(x)dx

∫T

∂tVφh(x)dx−∫T

H(V , z).∇φh(x)dx+∫∂T

H(V , z).~nφh(s)ds =

∫T

S(V , z)φh(x)dx

@@R

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 8 / 23

Page 21: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

dG method : general background

Pd(T ) := 2 variables polynomials onTof degree at most d .

Vh := v ∈ L2(Ω) | ∀T ∈ Th , v|T ∈ Pd(T ).

Approximate solution : Vh(x, t) =

Nd∑l=1

Vl(t)θl(x) , ∀x ∈ T .

Through a semi-discrete formulation (1)

•V → Vh

•φh → θj

∫T

∂t

( Nd∑l=1

Vl(t)θl(x))φh(x)dx−

∫T

H(Vh, zh).∇φh(x)dx+∫∂T

H(Vh, zh).~nφh(s)ds =

∫T

S(Vh, zh)φh(x)dx

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 8 / 23

Page 22: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

dG method : general background

Pd(T ) := 2 variables polynomials onTof degree at most d .

Vh := v ∈ L2(Ω) | ∀T ∈ Th , v|T ∈ Pd(T ).

Approximate solution : Vh(x, t) =

Nd∑l=1

Vl(t)θl(x) , ∀x ∈ T .

Through a semi-discrete formulation (2)

•V → Vh

•φh → θj∫T

∂t

( Nd∑l=1

Vl(t)θl(x))θj(x)dx−

∫T

H(Vh, zh).∇θj(x)dx+∫∂T

H(Vh, zh).~nθj(s)ds =

∫T

S(Vh, zh)θj(x)dx

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 8 / 23

Page 23: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

dG method : general background

Pd(T ) := 2 variables polynomials onTof degree at most d .

Vh := v ∈ L2(Ω) | ∀T ∈ Th , v|T ∈ Pd(T ).

Approximate solution : Vh(x, t) =

Nd∑l=1

Vl(t)θl(x) , ∀x ∈ T .

Through a semi-discrete formulation•V → Vh

•φh → θj∫T

∂t

( Nd∑l=1

Vl(t)θl(x))θj(x)dx−

∫T

H(Vh, zh).∇θj(x)dx+

3∑k=1

∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds =

∫T

S(Vh, zh)θj(x)dx

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 8 / 23

Page 24: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 25: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 26: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 27: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

VF

→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 28: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

DG

→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 29: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

VF

→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 30: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

VF

→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 31: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

VF DG

→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 32: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

VF DG

→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 33: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Numerical fluxes

Contributions on the edges∫Γij(k)

H(Vh, zh).~nij(k)θj(s)ds .

H(Vh, zh).~nij(k) ≈ Hij(k) = H(V−k , V+k , zk , zk , ~nij(k)) .

VF DG→ Preservation of the motionless steady states.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 9 / 23

Page 34: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Preservation of the water depth positivity

dG schemes and maximum principle[X. Zhang, C.-W. Shu, 2010] Maximum-principle-satisfying high orderschemes - 1d and 2d structured meshes

[Y. Xing, X. Zhang, C.-W. Shu, 2010] Application to 1d SW

[Y. Xing, X. Zhang, 2013] Extension to triangular meshes

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 10 / 23

Page 35: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretizationdG method :generalitiesNumericalfluxesPreservationof the waterdepthpositivity

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Preservation of the water depth positivity

dG schemes and maximum principle[X. Zhang, C.-W. Shu, 2010] Maximum-principle-satisfying high orderschemes - 1d and 2d structured meshes

[Y. Xing, X. Zhang, C.-W. Shu, 2010] Application to 1d SW

[Y. Xing, X. Zhang, 2013] Extension to triangular meshes

The methodrelies on a special quadrature rule.

Figure: Nodes locations for the special quadrature - P2 and P3

reduces to the study of a convex combination of first orderFinite Volume schemes.Arnaud Duran (ICJ) SHARK-FV 19/05/2017 10 / 23

Page 36: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Outline

1 Shallow Water Equations - Generalities

2 dG discretization

3 Extension to dispersive equationsMotivationsThe physical modelReformulation of the systemHigh order derivatives

4 Handling breaking waves (work with G. Richard)

5 Perspectives

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 11 / 23

Page 37: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Interest of dispersive equations

ObjectiveExtend the range of applicability of the computations at coast.. Describe the non-linearities before the breaking point.. Dispersive equations : O(µ2)-accurateShallow Water equations : O(µ)-accurate .

Shallowness parameter : µ =h2

0

λ20.

Dispersive equations Shallow Water

State of the art. 1d works : [Antunes Do Carmo et al] (FD, 1993), [Cienfuegos et al] (FV, 2006),

[Dutykh et al] (FV, 2013), [Panda et al] (dG, 2014), [AD, Marche] (dG, 2015). 2d works : [Marche, Lannes] (Hybrid FV/FD, cartésien, 2015),

[Popinet] (Hybrid FV/FD, cartésien, 2015). Unstructured meshes : Weakly non linear models (Boussinesq - type ).

[Kazolea, Delis, Synolakis] (FV, 2014),[Filippini, Kazolea, Ricchiuto] (Hybrid FV/FE, 2016)

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 12 / 23

Page 38: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Interest of dispersive equationsNumerical issues. Non conservative terms, high order derivatives,wave-breaking, non linearities.

. Maintain the stability of the method (positivity, well balancing),even on unstructured environments.

Dispersive equations Shallow Water

State of the art. 1d works : [Antunes Do Carmo et al] (FD, 1993), [Cienfuegos et al] (FV, 2006),

[Dutykh et al] (FV, 2013), [Panda et al] (dG, 2014), [AD, Marche] (dG, 2015). 2d works : [Marche, Lannes] (Hybrid FV/FD, cartésien, 2015),

[Popinet] (Hybrid FV/FD, cartésien, 2015). Unstructured meshes : Weakly non linear models (Boussinesq - type ).

[Kazolea, Delis, Synolakis] (FV, 2014),[Filippini, Kazolea, Ricchiuto] (Hybrid FV/FE, 2016)

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 12 / 23

Page 39: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Interest of dispersive equationsNumerical issues. Non conservative terms, high order derivatives,wave-breaking, non linearities.

. Maintain the stability of the method (positivity, well balancing),even on unstructured environments.

Dispersive equations Shallow Water

State of the art. 1d works : [Antunes Do Carmo et al] (FD, 1993), [Cienfuegos et al] (FV, 2006),

[Dutykh et al] (FV, 2013), [Panda et al] (dG, 2014), [AD, Marche] (dG, 2015). 2d works : [Marche, Lannes] (Hybrid FV/FD, cartésien, 2015),

[Popinet] (Hybrid FV/FD, cartésien, 2015). Unstructured meshes : Weakly non linear models (Boussinesq - type ).

[Kazolea, Delis, Synolakis] (FV, 2014),[Filippini, Kazolea, Ricchiuto] (Hybrid FV/FE, 2016)

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 12 / 23

Page 40: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Model presentation

. [P. Bonneton et al, 2011] 1d derivation and optimized model. Hybrid method.

. [F. Chazel, D. Lannes, F. Marche, 2011] 3 parameters model

. [M. Tissier et al, 2012] Wave breaking issues

. [D. Lannes, F. Marche, 2015] A new class of fully nonlinear and weaklydispersive Green-Naghdi models for efficient 2D simulations

Revoke the time dependency∂tη + ∂x(hu) = 0 ,[1+ αT[hb]

](∂thu + ∂x(hu

2) + α−1α

gh∂xη)+ 1

αgh∂xη

+ h(Q1(u) + gQ2(η)

)+ gQ3

([1+ αT[hb]

]−1(gh∂xη)

)= 0 .

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 13 / 23

Page 41: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Model presentation. [D. Lannes, F. Marche, 2015] A new class of fully nonlinear and weaklydispersive Green-Naghdi models for efficient 2D simulations

Revoke the time dependency∂tη + ∂x(hu) = 0 ,[1+ αT[hb]

](∂thu + ∂x(hu

2) + α−1α

gh∂xη)+ 1

αgh∂xη

+ h(Q1(u) + gQ2(η)

)+ gQ3

([1+ αT[hb]

]−1(gh∂xη)

)= 0 .

.T[h]w = −h3

3∂x

2(wh

)− h2∂xh∂x

(wh

), hb = h0 − z ,

.Qi=1,2,3 : non linear, non conservative terms with second order derivatives.

. 2d version : "diagonal" sytem : no coupling between u and v !

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 13 / 23

Page 42: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Isolation of the hyperbolic part

A convenient formulation

∂tU + ∂xG (U) = B(U, z) + D(U, z)

. Shallow Water equations :

U =

(hhu

), G (U) =

(hu

12gh2 + hu2

), B(U) =

(0

−gh∂xz

).

. Dispersive terms :

D(V , z) =

(0

Dhu(V , z)

), with

Dhu(V , z) =[1 + αT[hb]

]−1( 1αgh∂xη + h

(Q1(u) + gQ2(η)

)+ gQ3

([1 + αT[hb]

]−1(gh∂xη)

))− 1αgh∂xη .

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 14 / 23

Page 43: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Isolation of the hyperbolic part

A convenient formulation

∂tU + ∂xG (U) = B(U, z)︸ ︷︷ ︸Shallow Water

+D(U, z)

. Shallow Water equations :

U =

(hhu

), G (U) =

(hu

12gh2 + hu2

), B(U) =

(0

−gh∂xz

).

. Dispersive terms :

D(V , z) =

(0

Dhu(V , z)

), with

Dhu(V , z) =[1 + αT[hb]

]−1( 1αgh∂xη + h

(Q1(u) + gQ2(η)

)+ gQ3

([1 + αT[hb]

]−1(gh∂xη)

))− 1αgh∂xη .

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 14 / 23

Page 44: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Isolation of the hyperbolic part

A convenient formulation

∂tU + ∂xG (U) = B(U, z)︸ ︷︷ ︸Shallow Water

+ D(U, z)︸ ︷︷ ︸Dispersive terms

. Shallow Water equations :

U =

(hhu

), G (U) =

(hu

12gh2 + hu2

), B(U) =

(0

−gh∂xz

).

. Dispersive terms :

D(V , z) =

(0

Dhu(V , z)

), with

Dhu(V , z) =[1 + αT[hb]

]−1( 1αgh∂xη + h

(Q1(u) + gQ2(η)

)+ gQ3

([1 + αT[hb]

]−1(gh∂xη)

))− 1αgh∂xη .

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 14 / 23

Page 45: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Isolation of the hyperbolic part

A convenient formulation

∂tU + ∂xG (U) = B(U, z)︸ ︷︷ ︸Shallow Water

+ D(U, z)︸ ︷︷ ︸Dispersive terms

Hyperbolic part : okDispersive part :

Dh(x , t) =

Nd∑l=1

Dl(t)θl(x) , x ∈ Ci .

Well balancing and robustness ,Treatment of the second order derivatives .

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 14 / 23

Page 46: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Isolation of the hyperbolic part

A convenient formulation

∂tU + ∂xG (U) = B(U, z)︸ ︷︷ ︸Shallow Water

+ D(U, z)︸ ︷︷ ︸Dispersive terms

Hyperbolic part : okDispersive part :

Dh(x , t) =

Nd∑l=1

Dl(t)θl(x) , x ∈ Ci .

Well balancing and robustness ,Treatment of the second order derivatives .

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 14 / 23

Page 47: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Isolation of the hyperbolic part

A convenient formulation

∂tU + ∂xG (U) = B(U, z)︸ ︷︷ ︸Shallow Water

+ D(U, z)︸ ︷︷ ︸Dispersive terms

Hyperbolic part : okDispersive part :

Dh(x , t) =

Nd∑l=1

Dl(t)θl(x) , x ∈ Ci .

Well balancing and robustness ,Treatment of the second order derivatives .

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 14 / 23

Page 48: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Isolation of the hyperbolic part

A convenient formulation

∂tU + ∂xG (U) = B(U, z)︸ ︷︷ ︸Shallow Water

+ D(U, z)︸ ︷︷ ︸Dispersive terms

Hyperbolic part : okDispersive part :

Dh(x , t) =

Nd∑l=1

Dl(t)θl(x) , x ∈ Ci .

Well balancing and robustness ,Treatment of the second order derivatives .

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 14 / 23

Page 49: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

LDG formalism

Simplified case : T = ∂x2

Consider the second order ODE :

f − ∂2xu = 0 . (1)

(1) reduces to a coupled system of first order equations.

f + ∂xv = 0 , v + ∂xu = 0 .

Weak formulation∫ x ri

x li

f φh −∫ x r

i

x li

vφ′h + vrφh(x ri )− vlφh(x li ) = 0 ,∫ x ri

x li

vφh −∫ x r

i

x li

uφ′h + urφh(x ri )− ulφh(x li ) = 0 .

LDG schemes :[B. Cockburn, C.-W. Shu, 1998] The Local Discontinuous Galerkin method fortime-dependent convection-diffusion systems

.

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 15 / 23

Page 50: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequationsMotivationsThe physicalmodelReformulationof the systemHigh orderderivatives

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

LDG formalism

Simplified case : T = ∂x2

Consider the second order ODE :

f − ∂2xu = 0 . (1)

(1) reduces to a coupled system of first order equations.

f + ∂xv = 0 , v + ∂xu = 0 .

Weak formulation∫ x ri

x li

f φh −∫ x r

i

x li

vφ′h + vrφh(x ri )− vlφh(x li ) = 0 ,∫ x ri

x li

vφh −∫ x r

i

x li

uφ′h + urφh(x ri )− ulφh(x li ) = 0 .

LDG schemes :[B. Cockburn, C.-W. Shu, 1998] The Local Discontinuous Galerkin method fortime-dependent convection-diffusion systems .

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 15 / 23

Page 51: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Outline

1 Shallow Water Equations - Generalities

2 dG discretization

3 Extension to dispersive equations

4 Handling breaking waves (work with G. Richard)

5 Perspectives

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 16 / 23

Page 52: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Switching method : press ENTER and hope ...

Protocol : At each time stepDetection : evaluation of Ik on each cell k .[L. Krivodonova et al, 2004] Shock detection and limiting withdiscontinuous Galerkin methods for hyperbolic conservation laws

Determination of the breaking area.

Switching strategySuppress of the dispersive terms on the targeted area.Application of a limiter to the hyperbolic part (Shallow Water).

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 17 / 23

Page 53: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Switching method : press ENTER and hope ...

Protocol : At each time stepDetection : evaluation of Ik on each cell k .[L. Krivodonova et al, 2004] Shock detection and limiting withdiscontinuous Galerkin methods for hyperbolic conservation laws

Determination of the breaking area.

Switching strategySuppress of the dispersive terms on the targeted area.Application of a limiter to the hyperbolic part (Shallow Water).

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 17 / 23

Page 54: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Switching method : press ENTER and hope ...

Protocol : At each time stepDetection : evaluation of Ik on each cell k .[L. Krivodonova et al, 2004] Shock detection and limiting withdiscontinuous Galerkin methods for hyperbolic conservation laws

Determination of the breaking area.

Switching strategySuppress of the dispersive terms on the targeted area.Application of a limiter to the hyperbolic part (Shallow Water).

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 17 / 23

Page 55: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Switching method : press ENTER and hope ...

Protocol : At each time stepDetection : evaluation of Ik on each cell k .[L. Krivodonova et al, 2004] Shock detection and limiting withdiscontinuous Galerkin methods for hyperbolic conservation laws

Determination of the breaking area.

Switching strategySuppress of the dispersive terms on the targeted area.Application of a limiter to the hyperbolic part (Shallow Water).

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 17 / 23

Page 56: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Through a more rigorous approach

. Account for the mechanical energy dissipation through a thirdvariable ϕ.

A new model (G. Richard, 2016)

∂tU + ∂x G (U) = B(U, z) + D(U, z)

with :

U =

hhuhϕ

, G (U) =

hu12gh2 + h3ϕ+ hu2

huϕ

, B(U) =

0−gh∂xz

0

. A simple additional transport equation in the hyperbolic part !

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 18 / 23

Page 57: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Convergence analysis and model comparison

Profiles

Convergence ratesNe

N 20 40 80 160 320 order1 2.5e-1 4.2e-2 1.0e-3 2.8e-3 9.6e-4 1.92 7.5e-2 7.5e-3 6.2e-4 6.5e-5 7.7e-6 3.23 4.5e-3 3.0e-4 1.7e-5 9.4e-7 5.7e-8 4.04 7.0e-4 1.6e-5 4.6e-7 1.4e-8 4.4e-10 5.15 6.1e-5 7.6e-7 1.0e-8 1.6e-10 3.1e-12 6.1

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 19 / 23

Page 58: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Convergence analysis and model comparison

Profiles

Convergence ratesNe

N 20 40 80 160 320 order1 2.5e-1 4.2e-2 1.0e-3 2.8e-3 9.6e-4 1.92 7.5e-2 7.5e-3 6.2e-4 6.5e-5 7.7e-6 3.23 4.5e-3 3.0e-4 1.7e-5 9.4e-7 5.7e-8 4.04 7.0e-4 1.6e-5 4.6e-7 1.4e-8 4.4e-10 5.15 6.1e-5 7.6e-7 1.0e-8 1.6e-10 3.1e-12 6.1

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 19 / 23

Page 59: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

CPU time

Evolution of the ratio τ = ρo/ρc .ρ : mean iteration time (based on 1000 iterations).

Ne

N 1000 2000 3000 4000 5000 60001 3.23 3.21 3.04 2.96 2.94 2.902 4.09 4.27 4.14 4.01 3.90 3.843 5.32 5.11 5.03 4.97 4.91 4.874 6.01 5.77 5.67 5.63 5.51 5.555 6.66 6.38 6.32 6.30 6.26 6.166 7.15 6.99 7.05 6.97 6.86 6.54

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 20 / 23

Page 60: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Outline

1 Shallow Water Equations - Generalities

2 dG discretization

3 Extension to dispersive equations

4 Handling breaking waves (work with G. Richard)

5 Perspectives

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 21 / 23

Page 61: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Perspectives

Boundary conditions→ Modelling, Numerical methods.→ Theoretical investigations.

Handling breaking waves→ Coupling SW/GN, smoothness criteria.→ Works of S. Gavrilyuk and collaboration with G. Richard (inprogress.)

Numerical treatment of the non-hydrostatic terms→ Weak formulations.→ Numerical exploration (linear solvers, matrix storage,re-numbering).→ Alternative approaches (quadrature rules, Finite Volume methods,FEM).

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 22 / 23

Page 62: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Perspectives

Boundary conditions→ Modelling, Numerical methods.→ Theoretical investigations.

Handling breaking waves→ Coupling SW/GN, smoothness criteria.→ Works of S. Gavrilyuk and collaboration with G. Richard (inprogress.)

Numerical treatment of the non-hydrostatic terms→ Weak formulations.→ Numerical exploration (linear solvers, matrix storage,re-numbering).→ Alternative approaches (quadrature rules, Finite Volume methods,FEM).

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 22 / 23

Page 63: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Perspectives

Boundary conditions→ Modelling, Numerical methods.→ Theoretical investigations.

Handling breaking waves→ Coupling SW/GN, smoothness criteria.→ Works of S. Gavrilyuk and collaboration with G. Richard (inprogress.)

Numerical treatment of the non-hydrostatic terms→ Weak formulations.→ Numerical exploration (linear solvers, matrix storage,re-numbering).→ Alternative approaches (quadrature rules, Finite Volume methods,FEM).

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 22 / 23

Page 64: Recent advances on numerical simulation in coastal ...loubere.free.fr/SHARK_PRESENTATIONS/2017/Duran_SHARK17.pdf · numerical simulation in coastal oceanography Arnaud Duran Institut

SHARK-FV

Arnaud Duran

Shallow WaterEquations -Generalities

dGdiscretization

Extension todispersiveequations

Handlingbreaking waves(work with G.Richard)

Numericalvalidations

Perspectives

Thanks !

Arnaud Duran (ICJ) SHARK-FV 19/05/2017 23 / 23