recent advances in the synthesis of sulfones · recent advances in the synthesis of sulfones...

35
1939 © Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973 N.-W. Liu et al. Review Syn thesis Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang Georg Manolikakes* Institut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany [email protected] R 1 S R 2 O O R 1 S R 2 R 1 S X O O R 1 S O O traditional approaches R 1 -X SO 2 R 2 -X + + 3-component procedures R 1 -H synthesis by C–H activation Received: 04.03.2016 Accepted after revision: 04.04.2016 Published online: 07.06.2016 DOI: 10.1055/s-0035-1560444; Art ID: ss-2016-e0158-r Abstract Sulfones are versatile intermediates in organic synthesis and important building blocks in the construction of biological active mole- cules or functional materials. This review provides a summary of recent developments in the synthesis of sulfones. 1 Introduction 2 Classical Methods and Variants 2.1 Oxidation of Sulfides 2.2 Aromatic Sulfonylation 2.3 Alkylation/Arylation of Sulfinates 2.4 Addition to Alkenes and Alkynes 2.5 Miscellaneous Methods 3 Metal-Catalyzed Coupling Reactions 4 Sulfone Synthesis by C–H Functionalization 5 Sulfur Dioxide Based Three-Component Approaches 6 Biological Synthesis of Sulfones 7 Conclusion Key words sulfone, addition, coupling, catalysis, medicinal chemistry, multicomponent reaction 1 Introduction Sulfones (R-SO 2 -R) are versatile synthetic intermediates in organic chemistry, and molecules bearing a sulfone unit have found various applications in diverse fields such as ag- rochemicals, pharmaceuticals and polymers. 1 The sulfone group can be employed as a temporary modulator of chem- ical reactivity. Therefore a variety of different transforma- tions are feasible with this functional group, leading to the description of sulfones as ‘chemical chameleons’. 2 Sulfone groups can function as activating, electron-withdrawing substituents in Michael acceptors 1,3 or as good leaving groups producing a sulfinate anion, a reactivity that often facilitates removal of the sulfone moiety after the desired transformation. 1,4 In addition, sulfone groups can stabilize adjacent carbanions. 1,5 Classical reactions of sulfones in or- ganic synthesis include the Ramberg–Bäcklund reaction of α-halo sulfones 6 or the Julia–Lythgoe as well as the modi- fied Julia olefination (Scheme 1). 7 Scheme 1 Apart from these classical transformations, sulfones have been employed as versatile intermediates for the preparation of various product classes, for example the van Leusen synthesis of oxazoles and imidazoles 8 or the synthesis of quinolines (Scheme 2). 9 S R 2 R 1 O O X Base – SO 2 R 1 R 2 Ramberg–Bäcklund reaction R 1 SO 2 Ph 1) base 2) R 2 -CHO 3) Ac 2 O R 1 R 2 OAc SO 2 Ph Na(Hg) R 1 R 2 Julia–Lythgoe olefination R 2 O H base R 1 R 2 modified Julia olefination S R 2 R 1 O O H sulfonyl group facilitates deprotonation good leaving group S R 2 O O R 1 good Michael acceptor Het = benzothiazole, 1-phenyl-1H-tetrazole, 1-tert-butyl-1H-tetrazole Het S O O R 1 + SYNTHESIS0039-78811437-210X © Georg Thieme Verlag Stuttgart · New York 2016, 48, 1939–1973 review This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.

Upload: others

Post on 28-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1939

N.-W. Liu et al. ReviewSyn thesis

SYNTHESIS0 0 3 9 - 7 8 8 1 1 4 3 7 - 2 1 0 X© Georg Thieme Verlag Stuttgart · New York2016, 48, 1939–1973review

utio

n is

str

ictly

pro

hibi

ted.

Recent Advances in the Synthesis of SulfonesNai-Wei Liu Shuai Liang Georg Manolikakes*

Institut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, [email protected]

R1S

R2

OO

R1S

R2

R1S

X

OO

R1S

O

O

traditional approaches

R1-X SO2 R2-X+ +

3-component procedures

R1-H

synthesis by C–H activation

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

Received: 04.03.2016Accepted after revision: 04.04.2016Published online: 07.06.2016DOI: 10.1055/s-0035-1560444; Art ID: ss-2016-e0158-r

Abstract Sulfones are versatile intermediates in organic synthesis andimportant building blocks in the construction of biological active mole-cules or functional materials. This review provides a summary of recentdevelopments in the synthesis of sulfones.1 Introduction2 Classical Methods and Variants2.1 Oxidation of Sulfides2.2 Aromatic Sulfonylation2.3 Alkylation/Arylation of Sulfinates2.4 Addition to Alkenes and Alkynes2.5 Miscellaneous Methods3 Metal-Catalyzed Coupling Reactions4 Sulfone Synthesis by C–H Functionalization5 Sulfur Dioxide Based Three-Component Approaches6 Biological Synthesis of Sulfones7 Conclusion

Key words sulfone, addition, coupling, catalysis, medicinal chemistry,multicomponent reaction

1 Introduction

Sulfones (R-SO2-R) are versatile synthetic intermediatesin organic chemistry, and molecules bearing a sulfone unithave found various applications in diverse fields such as ag-rochemicals, pharmaceuticals and polymers.1 The sulfonegroup can be employed as a temporary modulator of chem-ical reactivity. Therefore a variety of different transforma-tions are feasible with this functional group, leading to thedescription of sulfones as ‘chemical chameleons’.2 Sulfonegroups can function as activating, electron-withdrawingsubstituents in Michael acceptors1,3 or as good leavinggroups producing a sulfinate anion, a reactivity that oftenfacilitates removal of the sulfone moiety after the desired

transformation.1,4 In addition, sulfone groups can stabilizeadjacent carbanions.1,5 Classical reactions of sulfones in or-ganic synthesis include the Ramberg–Bäcklund reaction ofα-halo sulfones6 or the Julia–Lythgoe as well as the modi-fied Julia olefination (Scheme 1).7

Scheme 1

Apart from these classical transformations, sulfoneshave been employed as versatile intermediates for thepreparation of various product classes, for example thevan Leusen synthesis of oxazoles and imidazoles8 or thesynthesis of quinolines (Scheme 2).9

S R2R1OO

X

Base

– SO2 R1 R2

Ramberg–Bäcklund reaction

R1

SO2Ph1) base2) R2-CHO

3) Ac2OR1

R2

OAc

SO2Ph

Na(Hg)

R1

R2

Julia–Lythgoe olefination

R2

O

H

base

R1

R2

modified Julia olefination

SR2

R1OO

H

sulfonyl group

facilitates deprotonation

good leaving group

SR2

OO

R1

good Michaelacceptor

Het = benzothiazole, 1-phenyl-1H-tetrazole, 1-tert-butyl-1H-tetrazole

HetS

O O

R1 +

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 2: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1940

N.-W. Liu et al. ReviewSyn thesis

auth

oriz

ed d

istr

ibut

ion

is s

tric

tly p

rohi

bite

d.

Scheme 2

Due to their distinct electronic and structural features,sulfones play a prominent role in various fields of applica-tions. A large number of biologically active molecules con-tain this functional group.10 The sulfone scaffold is thus ofparticular relevance in medicinal chemistry. Moleculesused against diverse medical indications such as eletrip-tan11 (treatment of migraine), bicalutamide12 (treatment ofprostate cancer) or the antibacterial dapsone13 feature asulfone unit (Figure 1). The sulfone group is also embeddedin various important agrochemicals, for example mesotri-one,14 pyroxasulfone15 or cafenstrole16 (Figure 1). Sulfone-containing polymers display interesting properties and bis-phenol S (Figure 1) is used replacement for bisphenol A.17

Considering this plethora of possible applications, it isnot surprising that a number of efficient methods for thesynthesis of sulfones have been developed. Indeed, the firstmethods were reported in the 19th century. The constantdemand for efficient, robust and more sustainable ap-proaches for the preparation of sulfones has led to a resur-gence of research activities in this field in recent years. Thisreview highlights advances in the synthesis of sulfones un-til the end of 2015.

S NC

O O

Me

+R H

Xbase

ON

X = O, NR'

Ror

NN

R

R'

van Leusen synthesis

oxazole

imidazole

S

R1

R2

O

R3

OO

+

NHBoc

R4

t-BuLi

CuCN, LiCl

S

R1

R2

O

R3

OO

R4

NHBoc

TFA, Δ

NR2

R1

R4

quinoline

S

R1

R2

O

R3

OO

R4

NHBoc

onl

y. U

n

Biographical Sketches

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se

Georg Manolikakes was bornin Ebersberg (Germany) in1979. He studied chemistry atthe LMU Munich (Germany)where he received his Diplomain 2005. In 2009 he obtained hisPhD from the same universityunder the guidance of Prof. PaulKnochel working on functional-

ized organometallics and cross-coupling reactions. From2009­–2010 he worked as apostdoctoral fellow with Prof.Phil S. Baran at the Scripps Re-search Institute (La Jolla, USA)on synthesis of cortistatin A. Atthe end of 2010 he took up hiscurrent position as junior re-

search group leader at theGoethe-Universität Frankfurt.His research interests are multi-component and one-pot reac-tions, synthesis of sulfonyl-group-containing moleculesand asymmetric synthesis.

Shuai Liang was born in Qing-dao (P. R. of China) in 1988. Heearned his BS degree in 2011from Sichuan University. In2014 he received his MS degreein chemistry from Sichuan Uni-

versity under the supervision ofProf. Xiaoqi Yu. Since November2014 he is a PhD student at theGoethe-Universität Frankfurt,under the supervision of Dr.Georg Manolikakes. His current

research interest focuses onnovel methods for the synthesisof sulfones via selective C–Hfunctionalization.

Nai-Wei Liu was born in Taipei(Taiwan R.O.C.) in 1987. He ob-tained his B.Sc. and M.Sc. de-grees from the Goethe-

Universität Frankfurt (Germa-ny). He is currently working onhis PhD thesis in the group ofDr. Georg Manolikakes and de-

veloping new methods for thefixation of sulfur dioxide intosmall molecules.

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 3: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1941

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

2 Classical Methods and Variants

The four traditional and still most common approachesfor the synthesis of sulfones are the oxidation of the corre-sponding sulfides or sulfoxides, alkylation of sulfinate salts,Friedel–Crafts-type sulfonylation of arenes, and additionreactions to alkenes and alkynes.1 Although all four reac-tion types were discovered several decades ago, new vari-ants with improved substrate scope, functional group toler-ance and efficiency, as well as new reagents, are constantlybeing developed. Other methods, such as rearrangements,reactions of sulfonic acid derivatives with nucleophiles, orcycloaddition reactions, although known for decades, arerarely used.

2.1 Oxidation of Sulfides

The oxidation of sulfides is perhaps still the most fa-vored method for the synthesis of sulfones. While a varietyof oxidants can be used for this transformations,1 peracidsor hydrogen peroxide in combination with acetic acid aremost frequently employed (Scheme 3).18 In general, excessoxidizing agent, high temperatures and/or long reactiontimes are necessary to achieve complete conversion of theintermediate sulfoxide to the sulfone. In most cases, exist-ing procedures will furnish the desired sulfones in accept-able yields. Current research focuses mainly on safe oxida-tion reagents, such as urea–hydrogen peroxide,19 catalyticsystems for milder and faster oxidations20 and solvent-freesystems21 or highly sustainable methods.22

Scheme 3

2.2 Aromatic Sulfonylation

Another widely used strategy for the synthesis of sul-fones involves the reaction between a (hetero)arene and asulfonyl halide or sulfonic acid in the presence of a suitableLewis or Brønsted acid catalyst (Scheme 4).1 Sulfonyl chlo-rides are most commonly employed in these Friedel–Crafts-type reactions and substituents on the (hetero)arene exertactivating/deactivating as well as directing effects as ex-pected for electrophilic aromatic substitutions.23 Typically,these reactions are performed in the presence of stoichio-metric amounts of conventional Lewis or Brønsted acid,such as aluminum trichloride, iron(III) chloride or phos-phoric acid.24

Scheme 4

In general, these reactions suffer from the typical draw-backs of Friedel–Crafts-type processes, such as harsh reac-tion conditions, low regioselectivity, the need for stoichio-metric amounts of the catalyst, and the generation of sub-stantial quantities of hazardous waste. Therefore, a varietyof more efficient catalysts have been developed throughoutthe last decades.25 Special emphasis was placed on moresustainable methods such as reusable solid acids,25e sol-vent-free25i or ionic-liquid-based25d,f systems and reactions

Figure 1

PhS

O O

NH

N

Me

H

eletriptan

HN

NC

CF3

O

HO Me

S

O O

F

bicalutamide

S

H2N NH2

O O

dapsone

O

O

O NO2

SMe

O Omesotrione

O N

MeMe

S

N NMe

OCHF2

pyroxasulfone

OO N N

N

O

NEt2

S

OO

Me

Me

Mecafenstrole

S

HO OH

O O

bisphenol S

R1S

R2oxidizing conditions

R1S

R2

OO

sulfide sulfone

viaR1

SR2

O

sulfoxide

General reaction:

Recent examples

PhS

Meoxidant

PhS

Me

OO

Oxidant:

urea-H2O2, neat, 85 °C 87%

H2O2, NbC (4 mol%), 92%EtOH, 60 °C

KMnO4/MnO2, neat, rt 83–93%

30% aq H2O2, 75 °C 68%

NaOCl, cyanuric acid (10 mol%) 96% toluene, rt

RS

Ar

OO

sulfone

RS

X

OO

sulfonyl halide(X = Cl, F, Br)

catalyst

Ar-H

RS

Ar

OO

sulfone

catalystand/or

activating agent

Ar-HRS

OH

OO

sulfonic acid

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 4: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1942

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

with low catalyst loadings.25i The direct sulfonylation ofarenes with sulfonic acids in the presence of acid catalystshas also been reported.25e,26 Activation of the sulfonic acidwith suitable reagents, such as phosphorus pentoxide ortriflic anhydride, leads to the in situ formation of reactivemixed anhydrides and an efficient sulfonylation of arenes atroom temperature.27

Sulfones are frequently encountered side-products inthe sulfonation of arenes with sulfuric acid.28 They areformed by the reaction of the intermediate sulfonic acidwith an excess of the arene. Removal of water during the re-action furnishes the symmetrical diaryl sulfone as the ma-jor product (Scheme 5).29 In a similar manner, symmetricaldiaryl sulfones can be prepared by the reaction of an arenewith dimethyl pyrosulfate in the presence of sulfuric acid.30

Scheme 5

Rao and co-workers reported a similar method.31 Theirprocedure enables the one-pot synthesis of symmetrical aswell as unsymmetrical diaryl sulfones starting from arenes,a persulfate salt, trifluoromethanesulfonic acid (TfOH) andtrifluoroacetic acid anhydride (TFAA) (Scheme 6). The reac-tion is presumed to proceed via a sulfonic acid which is ac-tivated to the corresponding anhydride with TFAA.

Scheme 6

An unusual process is the sulfonylation of arenes withsulfonamides in the presence of triflic anhydride as activat-ing agent.32 This method provides an alternative access toaryl sulfones using a stable primary sulfonamide as sulfo-nylating agent (Scheme 7).

Scheme 7

2.3 Alkylation/Arylation of Sulfinates

The salts of sulfinic acids are useful precursors for thesynthesis of sulfones. Sulfinates are powerful nucleophilesand react with a variety of different electrophiles at the sul-fur atom to form sulfones.1,33 Only in the case of hard al-kylating agents, such as dimethyl sulfate or diazomethane,does O-alkylation occur, and the corresponding sulfinateesters are produced predominantly (Scheme 8).34

Scheme 8

Typical electrophiles include alkyl halides,34,35 epox-ides,36 Michael acceptors,37 and aryl halides activated to-wards nucleophilic aromatic substitution (Scheme 9).38 Al-though the reactions are generally high-yielding, simple toperform and suitable for a broad scope of alkylating agents,this approach is limited owing to the modest availability ofsulfinate salts.

ArS

Ar

OO

sulfone

Ar-H

S

O O

83%Method B

80%Method B

S

O O

80%Method A

S

O O

S

O O

41%Method A

Method AH2SO4

Method BMeO-SO2-O-SO2-OMeH2S2O7

Me

SOO

Ar1-HK2S2O8

TfOH, TFAA+ Ar2-H

35–98% yield

S

Me

Me

Me

Me

O O

91%

S

F

MeO O

Me60%

S

O O

NO

F3C

Me

N

Me

CF3

O

80%

S

Me

Me

O O

S

47%

Ar1 Ar2

ArS

R

O OAr-H

Tf2O

DCE, 80–120 °C+

42–95% yield

RS

NH2

OO

S

Me Br

O O

S

O2N

O O Me

Me

S

O O

S

Me

Me 86%

89% 42%

MeS

O O

Ph58%

O

SOR

sulfinate

RS

M

O O

M

O

SOR

E+

RS

E

O O

O

SOR

sulfinate ester

minor product or not formed at all

sulfone

electrophile

+M

sulfinate

E

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 5: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1943

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 9

Recent developments in this field include the sulfonyla-tion of five- and six-membered heterocycles with sodiumsulfinates by way of nucleophilic aromatic substitution(Scheme 10).39 Both methods enable the transition-metal-free synthesis of heterocyclic sulfones, of particular rele-vance for medicinal chemistry.

Scheme 10

In a similar manner, diaryliodonium salts, powerful ary-lating reagents,40 react with sodium sulfinates in the ab-sence of any catalyst.41 In contrast to classical SNAr reac-

tions, this method is not limited to activated arenes, andunsymmetrical diaryliodonium salts can transfer one arylmoiety with high degrees of chemoselectivity (Scheme 11).

Scheme 11

Mhaske and Pandya developed a transition-metal-freeprocess for the synthesis of aryl sulfones based on the addi-tion of sodium sulfinates to in situ generated arynes(Scheme 12).42

Scheme 12

Chen, Yu and co-workers extended the transition-metal-free coupling of sodium sulfinates to employ vinylhalides (Scheme 13).43 The reaction proceeds in water withcatalytic amounts of an acid and a phase-transfer catalyst.An addition–elimination mechanism is proposed for thistransformation.

RS

Alkyl

OO

sulfinate

Alkyl-X

EWG

RS

OO

EWG

O

RS

OO

OH

Ar-X

RS

Ar

OO

alkyl hailde

Michael acceptoractivatedaryl halide

epoxide

O

SOR M

RS

O

O

NaN

75–98% yield

TBACl (0.3 equiv)(HCl)

Z

YX

Z

YSO2R

DMSO, 110 °C

38–98% yield

X = Cl, Br, I, OTf, NO2Y = O, S, NHZ = N, CH

S

O O

S

NMe

84%

S

O O

S

N

89%

S

N

O O

Me

S

N

O O

Me

Me

CN

97% 91%

X

N

SO2RDMAc, 100 °C

Ar2I

X

Ar3

DMF, 90 °C Ar1S

Ar2

O O

X = Cl, PF6, BF4, OTs, OTf

S

O O

S

O O

S

S

O O Me

Me Me

S

O O

CF3

94% 83%

88% 78%

17–96% yield

Ar1S

O

O

Na

TMS

OTf

TBAF (1.1 equiv)

MeCN, rt

aryne precursor 45–96% yield

S

O OS

O O

O

O

S

O O

SBr

S

O O

NO2

95% 96%

73% 74%

SO2R1

+R1

SO

O

NaR2 R2

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 6: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1944

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 13

The lithium bromide catalyzed reaction of sodium sulfi-nates with terminal epoxides in water provides a sustain-able approach for the preparation of vinyl sulfones (Scheme14).44 A mixture of the internal and the terminal regioiso-mer is obtained in most cases. The regioselectivity is gov-erned by electronic and steric effects of the expoxide sub-stituent. The reaction is presumed to proceed through ini-tial expoxide opening with the sulfinate followed bydehydration of the formed β-hydroxy sulfone.

Scheme 14

Liang and co-workers developed a synthesis of vinyl sul-fones starting from sodium sulfinates and 1,2-dibromidesin the absence of any catalyst.45 The method provides the(E)-vinyl sulfone as the major stereoisomer or sole product(Scheme 15).

Scheme 15

Sreedhar and co-workers reported an iron(III) chloridecatalyzed direct sulfonylation of activated alcohols with so-dium sulfinates (Scheme 16).46 The reaction proceedsthrough an activation of the alcohol and formation of a sta-bilized carbocation.

Scheme 16

The Ji group developed a one-pot synthesis of allylic sul-fones, β-keto sulfones or triflic alcohols from allylic alco-hols and sulfinic acids.47 Substitution of the allylic alcoholyields the allyl sulfone. Direct treatment of the reactionmixture with phenyliodine(III) diacetate (PIDA) and sulfuricacid leads to an oxidative rearrangement of the allyl sulfoneand formation of β-keto sulfones. For triflated intermedi-ates, no migration is observed and triflic alcohols are ob-tained instead (Scheme 17).

R1S

O

O

Na

+HCl (30 mol%)TBAB (5 mol%)

H2O, 100 °C

40–99% yield

R2

X

X = Br, Cl

R2

SO2R1

O2S

MeOMe

O2S

Me

O2S Me

HOOC

O2S

Me

99% 40%

59% 53%

R1S

O

O

Na+

LiBr (10 mol%)

H2O, 80–90 °C

combined yield: 71–93%regioselectivity: 100:0 to 9:91

R2

R2

SO2R1

O+

R2

R1O2S

internalvinylsulfone

terminalvinylsulfone

O2S

72% 84:16

O2S

Me

Me

78%0:100

O2S

Me

OMe

84%91:9

O2S

O

71%0:100

R1S

O

O

Na+

DMF, 80 °C

65–88% yield

R2 R2

SO2R1Br Br

S

O

NH2O O

80%

CNS

Me

O O

PhS

O O

PentS

O OS

O O

Pent

80% 65%

66% (5:1)

R1S

O

O

Na

+

CH2Cl2, 45 °C

35–96% yield

R3

R2R2

SO2R1HO

R2, R3 = alkyl, aryl, allyl

R3

FeCl3 (15 mol%)TMSCl (1.2 equiv)

O2S

Me

O2S

Me

F

SO2

Me

O2S

Me

Me

Br

60%

65%71%75%

38%

O2S

Me

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 7: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1945

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 17

Tian and co-workers reported a catalyst-free alkylationof sulfinic acids with allylic and benzylic sulfonamides.48

Cleavage of the C–N bond takes place even at room tem-perature (Scheme 18).

Scheme 18

Sulfonyl hydrazides can be considered as masked sulfi-nates, as treatment of a hydrazide with base or with waterand heating can liberate the free sulfinic acid or the corre-

sponding salt.1,49 If unmasking of the sulfinate is performedin the presence of a suitable electrophile, formation of asulfone occurs. Exploiting this reactivity, Petrini and co-workers reported the synthesis of sulfones from alkyl andactivated aryl halides and p-toluenesulfonyl hydrazide withsodium acetate as base (Scheme 19).50

Scheme 19

In a similar manner, sulfonyl hydrazides react withMichael acceptors to yield the corresponding ethyl sul-fones.51 The reaction proceeds in water without any catalyst(Scheme 20).

Scheme 20

Tang and co-workers reported a sulfonylation of allylicacetates with sulfonyl hydrazides in water.52 The reaction iscatalyzed by tetrabutylammonium iodide (TBAI), and tert-butyl hydroperoxide (TBHP) is employed as cooxidant(Scheme 21).

SO2R1

Ar

R2 PIDA, H2SO4

SO2R1

O

Ar

ArR2 = ArR1 = Ar

SO2R1

Ar

R2

OH

R1 = CF3

O

S

O

O

O

S

O

O

Me

69%

Br

75% (1:1)

SCF3

O

O

OH

F

68%

R1S

OH

O

DCE, 120 °C

33–97% yield

SO2R1

O2 (balloon)HO

ArR2

Me Ar

R2

R1S

OH

O+

CHCl3, rtR2

SO2R1

R3

56–99% yield

MeO

S

Me

O O

OMe99%

MeO

SPh

O O

H

67%

Ph SPh

O O

Ph

56%

SMe

O O

Me

72%

MeO

R2NHTs

R3

EtOH, refluxMe S

O

O

NHNH2 + R X

R = alkyl, benzyl, allyl, arylX = Cl, Br, I

Me S

O

O

RNaOAc

Me S

O O

85%

Me S

O O

Me

92%

S

O O

84%

S

O O

Me

NO2

O2N

95%

MeMe

80–95% yield

H2O, 65 °CAr S

O

OHN NH2 +

R = OR', NHR'

Ar S

O

ONaOAcR

O

O

R

70–98% yield

EtO S

OOMe

O OEtO S

ONO2

O O

PhO S

OMe

O O

PhHN S

OMe

O O

93% 91%

70% 99%

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 8: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1946

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 21

Li and co-workers reported an interesting approachstarting from 1,2-bis(phenylsulfonyl)ethane as sulfinateprecursor.53 In the presence of a palladium catalyst, cleav-age of one C–S bond and formation of a palladium–sulfinatecomplex occurs. Transfer of the sulfinate to an activatedalkyne affords the (E)-vinyl sulfone in good yields (Scheme22).

Scheme 22

Allylic alcohols react with arenesulfonyl cyanides to af-ford trisubstituted allyl sulfones (Scheme 23).54

Tian and co-workers developed a method to convertbenzylic and allylic alcohols into the corresponding sul-fones using sulfinyl chlorides (Scheme 24).55 The reactionproceeds through in situ formation of a sulfinic acid or asulfinate ester and is catalyzed by the by-product HCl.

Scheme 24

2.4 Addition to Alkenes and Alkynes

The addition of sulfonyl radicals to alkenes and alkynesis an important method for the synthesis of sulfones(Scheme 25).1,56 Since the first reports on addition of sulfo-nyl halides to alkenes in the presence of radical initiators,light or copper(I) chloride,57 various improvements andmodifications of this atom-transfer radical addition (ATRA)process have been developed. Sulfonyl radicals can be gen-erated from sulfonyl haldes, sulfonyl selenides, sulfonyl hy-drazides, sulfonyl azides, or by the oxidation of sulfinates.58

Scheme 25

Ruthenium complexes are amongst the most efficientcatalysts for the ATRA of sulfonyl chlorides to olefins. Cata-lyst loadings as low as 0.1 mol% and high turnover frequen-cies are observed for modified cyclopentadienyl–rutheni-um complexes.59,60

H2O, 80 °CAr S

O

OHN NH2 +

EWG = CO2R, CN 44–72% yield

Ph

OAc

EWG

TBAI (20 mol%)TBHP (2.0 equiv) Ph

EWG

SO2Ar

CO2Me

S

Br

O

O

Cl

CO2Et

S

Me

O

O

O2N

CO2Me

S

Me

O

OS

CN

S

O

O

69% Z/E = 1:99

72%Z/E = 89:11

54% Z/E = 97:3

63%Z/E = 99:1

KOtBu, DMF/MeCN120 °C

Ph S

O

O+

R = OR, NHR 43–79% yield

Ph

OR

S Ph

O

O

Pd-mediatedC–S bond cleavage

Pd(OAc)2 (10 mol%)DMEDA (20 mol%)

S

Ph

Ph

R

O

O

O

S

Ph

Ph

N

O

O

O

Me

OMe

S

Ph

Ph

O

O

O

64%

OMe

43%

S

H11C5

Ph

N

O

O

O

Me

54%

Scheme 23

+CH2Cl2, rt

Ar S CN

O

OR1

OH

R2iPr2NEt R1

R2

SO2Ar

COOMe

SO2Ph

95%

MeCOOMe

SO2Ph

72%

SO2Ph

Br

81%

O2N

SO2

Me

84%

72–95% yield

CHCl3, 25–60 °CR1S

Cl

O

+ R2 R3

OH

R2 R3

SO2R1

SO2Ph

MeO

75%

PhCOMe

SO2Ph

77%

SO2Me

Ph

Ph

78%

53–99% yield

R1 S

O

O

XR1 S

O

Oinitiator or catalyst R2+ R2

X

radical precursorvia R1 S

O

O

sulfonyl radical

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 9: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1947

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Addition of sulfonyl halides to alkynes affords haloge-nated vinyl sulfones. In general, the (E)-β-halovinyl sulfonesare obtained as either the major or the sole diastereomer(Scheme 26).1,57 Nakamura and co-workers reported aniron-catalyzed regio- and stereoselective addition of sulfo-nyl chlorides to terminal alkynes (Scheme 26).61 A bromo-sulfonylation of terminal alkynes was achieved with a tri-ethylborane-initiated sulfonyl radical generation.62

Scheme 26

The Kang group developed methods for the synthesis ofheterocyclic compounds based on the radical additions oftosyl bromide or iodide to allenes.63 Treatment of the re-sulting allylic halides with base furnished the correspond-ing heterocycles (Scheme 27).

Scheme 27

The ATRA of tosyl bromide to bisallenes leads to the for-mation of five-membered rings bearing an exocyclic vinylsulfone via a 5-exo-trig cyclization (Scheme 28).64

Scheme 28

1,6-Diynes react with tosyl bromide in a similar man-ner, affording bromo-substituted sulfonylated methylcyclo-pentenes via a 5-endo-dig cyclization (Scheme 29).65

Scheme 29

Generation of sulfonyl radicals from the correspondingazides is also possible. For example, Mantrand and Renauddeveloped a radical-mediated azidosulfonylation of alkenes,dienes and enynes with phenylsulfonyl azide (Scheme30).66 The reaction is limited to 1,6-dienes, 1-en-6-ynes, oralkenes that are able to undergo a rapid radical rearrange-ment. In the case of simple alkenes, no reaction is observedowing to the reversibility of the sulfonyl radical additionand the low reaction rate of the final azidation of secondaryalkyl radicals.

Sulfinic acids and their salts are competent radical pre-cursors and yield the corresponding sulfonyl radicals uponsingle-electron oxidation. Various methods have been re-ported for the generation of sulfonyl radicals from sulfi-nates or the free acids.1,56,58 Addition to an alkene or alkynecan yield the formal hydrosulfonylation product as well asvarious other sulfonylated products arising from differenttrapping processes. Two-electron oxidation of sulfinic acidscan yield a sulfonyl cation, which can undergo similar reac-tions with double or triple bonds.

R1 SCl

R2

O

OR1 S X

O

O R2

R1 SBr

R2

O

OEt3B, O2

Fe(acac)3 (10 mol%)(p-Tol)3P (10 mol%)

toluene

Ph

Cl

S

OO

Me

O

nBu

Cl

S

OO

83%

Me

67%

Ph

Br

S

OO

Me

99%

Br

SMe

OO

91%

(base)

Y

Ts

n

HN

Ts

78%

Tol S

O

O

X

X = Br, I

+

YH

Y = O, NTs

n

AIBN

toluene, 90 °CYHn

Ts

X

YHnTs

X

YHnTs

Br51%

K2CO3

DMF

Ts

O

70%

OHTs

Br

67%

Tol S

O

O

X Y Y

Ts

X

AIBN(20 mol%)

toluene, 90 °C

Y = O, NR, CR2 48–73% yield

TsN

Ts

BrH

H

O

Ts

SePhH

H

73%

X = Br, SePh

55%

Ts

BrH

HPh

Ph

63%

Tol S

O

O

Br +hν

benzene, rt

R1

R2

R3

R4

Br

Ts

R1

R2

R3

R4

Br

Ts

HO

HO

Me

Me

68%

Br

Ts

Me

Me

O

O

72%

Br

Ts

Me

Me

O

O

51%

51–72% yield

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 10: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1948

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Taniguchi reported a copper-catalyzed addition of sodi-um sulfinates to alkenes and alkynes.67 Addition to alkenesaffords (E)-vinyl sulfones via an addition–elimination pro-cess. Reaction of alkynes in the presence of potassium ha-lides furnishes (E)-β-haloalkenyl sulfones (Scheme 31). Thismethod was later extended to a formal hydrosulfonylationof alkynes.68

Scheme 31 DMI = 1,3-Dimethyl-2-imidazolidinone

Jiang and co-workers reported a palladium-catalyzedaddition of sodium sulfinates to alkynes affording (E)-vinylsulfones (Scheme 32).69

Scheme 32

Kuhakarn and co-workers developed a PIDA and potas-sium iodide mediated synthesis of vinyl sulfones and β-io-dovinyl sulfones (Scheme 33).70 The reaction of sodium sul-finates with alkenes furnishes β-iodo sulfones, which elimi-nate to the corresponding vinyl sulfones under the reactionconditions or upon treatment with base. In the case ofalkynes, (E)-β-iodovinyl sulfones are obtained as products.An in situ formation of sulfonyl iodides as reactive species isproposed.

Scheme 33

Scheme 30

Ph S

O

O

N3 +sun lamp

X

R1 R3

tBuN=NtBu(0.5 equiv)

X

X = O, NR, CR2

PhO2S

R1N3

R3

R2

R2

PhO2S

N3

Me

MeMeO2C

MeO2CN

PhO2S

N3

Me

Me

76%

Ts

89%

O

H H

82%

O

N3

MeH H

80%

SO2Ph

N3

Me

SO2Ph

41–89% yield

R2

R1S

O

O

Na

Method A CuI/bpy (8 mol%)

KI (50 mol%)

R1 S

O

O X

R2Method ACuI/bpy (8 mol%)

KX (1.1 equiv)

AcOH, air100 °C

R3

R3

Method B CuCl/ligand (5 mol%)

for alkynes

R1 S

O

O R2

R3

for alkynes

AcOH, air 100 °C

AcOH, DMIH2O or MX, 60 °C

R1 S

O

O R2

R3

for alkenes

X/H

Ph

Br

SO2Me

74%Method A

68%Method A

SO2Tol

N

SO2Tol

91%Method B

Br

SO2Tol

35%Method B

R1 S

O

O R2

R2

R1S

O

O

NaPdCl2 (5 mol%)

DMSO

X

X = H, COOH

O2S

NO2S

82% X = H

O2S O

OMe83%X = H

O2S

PhF3C

73%X = COOH

O2S

Ph

93%X = COOH

65–93% yield

R1 S

O

O R2

R2

R1S

O

O

Na

MeCN, rt(then DBU)

R1 S

O

O I

R2

for alkenes

PIDA, KI

H

for alkynes

MeCN, rt

PIDA, KI

S

O

O I

Me

O2N

S

O

O I

Me

C6H13

77% 64%

S

O

O

Me

O

75%

S

O

O

Me

OMe

O

62%

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 11: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1949

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

The potassium persulfate promoted direct sulfonylationof N-phenylmethacrylamides with sulfinic acids leads tothe formation of sulfonylated oxindoles (Scheme 34).71

Scheme 34

In general, the addition of sulfinic acids or sulfinates toalkynes leads to the regioselective formation of the anti-Markovnikov-type products. Shi and co-workers reported agold-catalyzed synthesis of α-substituted vinyl sulfones.72

In the presence of a suitable gold catalyst and gallium(III)triflate, regioselective Markovnikov addition to terminalalkynes takes place (Scheme 35).

Scheme 35

Visible-light-photocatalyzed oxidation of sulfinates orsulfinic acids provides an attractive alternative for the gen-eration of sulfonyl radicals. König and co-workers devel-oped a visible-light-mediated addition of sodium sulfinatesto alkenes.73 This method provides a general and simpleprocedure for the synthesis of vinyl sulfones (Scheme 36).

Scheme 36

Visible-light-initiated addition of sulfinic acids to N-arylacrylamides furnishes sulfonylated oxindoles via an ad-dition/cyclization cascade (Scheme 37).74

Scheme 37

Under similar reaction conditions, sulfinic acids reactwith phenyl propiolates to afford coumarins (Scheme 38).75

R1S

OH

O+

N O

R3

Me

R2

K2S2O8

MeCN, H2O 80 °C

NO

Me

R3SO2R1

R2

NO

Me

MeSO2Ph

Me

O

70%

NO

MeSO2Ph

76%

NO

Me

Me O2S

F3C

81%

NO

Me

SO2PhOH

92%

54–93% yield

R1 S

O

O

R2

R1S

OH

O

DCE, rt to 45 °C

50–91% yield

+

[BrettPhosAu(TA)]OTf(5 mol%)

Ga(OTf)3 (10 mol%)

R2

SPhO

O

tBu

80%

Ph

SO

O

SCl

Cl

82%

O

HH

H

SPhO

O86%

ArS

O

O

Na EtOH, 40 °C

R2

R1 Eosin Y (10 mol%)PhNO2 (1.0 equiv)

green LEDR2

R1

ArO2S

SO O

F

88%

SO O

OMe

90%

SO O

SO O

74%Me

79%

51–99% yield

+

R1S

OH

O

TBHP (1 equiv)H2O, rt

+

N

Me

O

R3

R2

Na2-Eosin Y (2 mol%)white LED

NO

Me

R3SO2R1

R2

NO

Me

MeSO2Ph

85%

NO

Me

Me O2S

nBu

65%

NO

Me

MeSO2TolO2N

70%

N SO2Tol

OMeMe

70%

60–91% yield

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 12: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1950

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 38

In the presence of oxygen or another oxidant as radicaltrapping reagent, the addition of sulfonyl radicals toalkenes and alkynes yields the corresponding hydroxy orketo sulfones. Taniguchi reported a nickel-catalyzed hy-droxysulfonylation of alkenes with sodium sulfinates in thepresence of air.76 Addition to disubstituted alkenes leads tothe formation of trans-substituted β-hydroxy sulfones in-dependent of the olefin configuration (Scheme 39).

Scheme 39

The oxidative addition of sodium sulfinates to terminalalkenes can be catalyzed by molecular iodine in the pres-ence of air.77 Oxygen acts as terminal oxidant, while iodineserves as radical initiator and reducing agent for the initial-ly formed β-hydroperoxo sulfone (Scheme 40).

Scheme 40

Interestingly, addition of sulfinic acids to alkenes can bemediated by oxygen alone.78 A basic additive, such as pyri-dine, enhances the reaction rate considerably (Scheme 41).The reaction proceeds through the initial formation of a β-hydroperoxo sulfone, which is reduced to the correspond-ing hydroxysulfone upon workup with triphenylphospine.

Scheme 41

Yadav and co-workers reported a silver nitrate and po-tassium persulfate promoted synthesis of β-keto sulfonesstarting from alkenes and sodium sulfinates.79 The sameketo sulfones can be also prepared by the oxygen-initiatedaddition of sulfinic acids to alkynes (Scheme 42).80

R1S

OH

O

TBHP (1 equiv)MeCN/H2O, rt

+

O O

R2R2

Eosin Y (1 mol%)visible light

R3

O

SO2R1

O

R3

O

O2S

O

Ph

71%

Me O

O2S

O

Ph

Me

I

65%

O

O2S

O

Ph

Cl

CF3

58%

O

O2S

O Me

Me

77%

55–77% yield

Ar1S

O

O

Na AcOH, DMF H2O, air, 60 °C

R

NiBr2-TEEDA (5 mol%)NH4PF6

(30 mol%)Ar2

OH

Ar2R

SO2Ar1

O2S

OH

OMe

O2S

OH

MeBr74%80%

O2S

Me

HO Me

73%

OHO2S

Me67%

62–88% yield

R1S

O Na

O

MeCN, AcOH+

I2 (10 mol%)O2 (air)

R2R2

SO2R1

OH

SO2Ph

OH

93%

SO2Ph

HO Me

79%

SO2Ph

OH

Br

72%

61–93% yield

R1S

OH

O

+pyridine, O2 (air)

R2

R3

R4

R2

R3

R4

SO2R1

HO

CHCl3, 45 °Cthen Ph3P

Me

OH

Ph

O2S

OMe

83%

O2S

Me

HO

MeMe

66%

O2S

Me OHEtO

OMe

82%

O2S

MeF

OH

95%

60–98% yield

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 13: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1951

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 42

Sulfonyl hydrazides can be employed as stable and easi-ly accessible starting materials for the sulfonylation ofdouble and triple bonds. Jiang and co-workers reported acopper-catalyzed synthesis of vinyl sulfones based on theoxidative cleavage of a hydrazide, followed by reaction of areactive sulfonyl species with the alkene (Scheme 43).81 Leiand co-workers were able to achieve the generation of sul-fonyl radicals from sulfonyl hydrazides with catalyticamounts of potassium iodide and TBHP (Scheme 43).82

Scheme 43

Interestingly, in the presence of stoichiometric amountsof iodine, the TBHP-mediated reaction of sulfonyl hydra-zides with alkenes yields the corresponding β-iodo sulfones(Scheme 44).83 Performing the same reaction with alkynesfurnishes (E)-β-vinyl sulfones (Scheme 45).84

Scheme 44

Scheme 45

In the presence of catalytic amounts of copper acrylateand iron(II) chloride, the reaction of sulfonyl hydrazideswith alkynes affords (E)-vinyl sulfones (Scheme 46).85 Theiron-catalyzed reaction of sulfonyl hydrazides with alkenesin the presence of air yields β-hydroxy sulfones (Scheme47).86 With Cu(OAc)2 as catalyst, the reaction of sulfonyl hy-drazides with alkenes affords the corresponding β-keto sul-fones (Scheme 48).87

R1S

ONa

O

+

Method BpyridineO2 (air)

R2R2

O

SO2R1

Method AAgNO3K2S2O8

O2

R2

R1S

OH

O

+

S

O

75%Method A

F

O

O

S

O O

OS

67%Method B

S

O O

O

OMe

71%Method A

S

O O

O

76%Method B

H2O 25 °C

CHCl3 45 °C

+

Method ACuCl (10 mol%)LiBr (30 mol%)

DMSO, 100 °C, airR2 R2

SO2R1

R1 S

O

O

HN NH2

Method BKI (20 mol%)

TBHPDMSO/AcOH, 25–30 °C

O2SN

S

88%Method A

NC

O2S

Me

54%Method A

O2S

F

Br

Me

76%Method B

O2S

MeMe

79%Method B

Me

0–20 °C+

I2, TBHPR2

R2SO2R1R1 S

O

O

HN NH2

I

O2S

Me

I

89%

I

O2S Me

MeO88%

Br

O2S

Me

I

72%

O2S

I

O

84%

Me

71–95% yield

0–20 °C+

I2, TBHP

ISO2R1R1 S

O

O

HN NH2

R2

R2

O2S

I

O2S

I

Me

S

83%

I

O2S

Pent

Me

22%

O2S

I

Me

CF3

F3C

94%

94%

22–94% yield

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 14: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1952

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 46

Scheme 47

Scheme 48

Breit and co-workers reported a rhodium-catalyzedsynthesis of branched allylic sulfones starting from termi-nal alkynes and sulfonyl hydrazides (Scheme 49).88 The re-action proceeds via a benzoic acid mediated formation of arhodium–allyl species, which undergoes nucleophilic dis-placement with a sulfinic acid generated in situ from thesulfonyl hydrazide.

Scheme 49

Another approach to allylic sulfones is the TBAI/TBHP-mediated reaction of sulfonyl hydrazides with α-substitut-ed styrenes (Scheme 50).89 Generation of a sulfonyl radical,followed by addition to the double bond and eliminationleads to the formation of nonconjugated sulfones.

Scheme 50

Qu, Chen and co-workers developed a copper-catalyzedsulfonylation of alkynes with tert-butylsulfinamide(Scheme 51).90 Phosphorous acid serves as terminal reduc-ing agent and the oxidation of the sulfinyl (SO) to the sulfo-nyl (SO2) moiety takes place under the reaction conditions.

Scheme 51

Widely available dimethyl sulfoxide (DMSO) is a suit-able starting material for the methylsulfonylation of alkenesand alkynes. The ammonium iodide induced addition ofDMSO to alkenes yields (E)-vinyl methyl sulfones (Scheme

DTBP, DMSO100 °C

+Fe/Cu catalyst

R2SO2R1

R1 S

O

O

HN NH2 R2 X

X = H, COOH

O2S

Me

81%X = COOH

O2S

OMe

72%X = COOH

O2S

MeBr

75%X = H

N

O2S

Me

80%X = H

30–84% yield

FeCl3, air

THF, 80 °CTsNHNH2 +

21–95% yield

R2

R1

SO2Tol

OH

R1

R2

SO2Tol

OH

PhMe

95%

SO2Tol

OH

Ph

54%

SO2Tol

OH

Me

48%N

Cu(OAc)2 (5 mol%)O2

EtOH, 70 °C

R1SO2NHNH2

+

50–72% yieldAr

R2

Ar

O

SO2R1

R2

Ph

O

SO2Ph

70%

O

SO2Ph

52%

MeO

Ph

O

SO2Ph

70%

Me

DCE, 80 °C+

[Rh(COD)Cl]2 (2.5 mol%)DPEphos (10 mol%)PhCO2H (50 mol%)

R1

S OO

R2R2

SO2R1

NHNH2

Ph

SO2TolSO2Tol

Pent

SO2Bz

82% 87% 90%

79–98% yield

ArR

TBAI (20 mol%)TBHP (2.0 equiv)

MeCN, 80 °C Ar

Ts

R

F3C

SO2Tol

MeO

SO2Tol SO2Tol

21% 60% 90%

TsNHNH2 +

21–90% yield

DMF, 100 °C

CuSO4 (20 mol%)H3PO3 (2.0 equiv)TFA (2.0 equiv)

SNH2

O

R2R2

SO2tBu

tBu +

SO2tBuS

SO2tBu

MeO

SO2tBu

SO2tBu

81% 66%

53% 69%

51–81% yield

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 15: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1953

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

52).91 The authors propose that the reaction proceeds viathe generation of thiomethyl radicals and water serves asthe source of the second sulfonyl oxygen.

Scheme 52

The groups of Chen and Qu and the group of Loh report-ed two procedures for the copper-catalyzed synthesis of(E)-vinyl methyl sulfones from alkynes in DMSO.92 DiethylH-phosphonate acts as terminal reducing agent (Scheme53). Loh showed that under identical conditions, the reac-tion of alkenes affords β-keto sulfones (Scheme 54).92b

Scheme 53

Scheme 54

Several groups have developed decarboxylative cou-plings of sodium sulfinates and cinnamic acids for the syn-thesis of vinyl sulfones. These reactions can be mediated byPIDA,93 catalytic ammounts of copper(I) chloride,94 iodineand TBHP,95 or iodine96 and even proceed in the absence of

any catalyst at high temperatures in DMSO97 (Scheme 55). Amechanism consisting of sulfonyl radical formation fol-lowed by addition to the alkene and decarboxylation is pro-posed for all transformations.

Scheme 55

Liu and Li reported a copper/silver-mediated dominoreaction for the synthesis of 2-sulfonylbenzofurans basedon a cyclization–decarboxylation sequence (Scheme 56).98

Scheme 56

Interestingly, palladium-catalyzed69 as well as phos-phoric acid mediated99 decarboxylative coupling reactionsof sodium sulfinates with aryl propiolic acids affords (E)-vi-nyl sulfones (Scheme 57).

As mentioned previously, sulfonyl hydrazides are at-tractive alternatives to sulfinates in various transforma-tions. Accordingly, the iodine-mediated reaction of sulfonylhydrazides with cinnamic acids yields (E)-vinyl sulfones viaa radical addition and carbon dioxide extrusion (Scheme58).100 The copper-101 or copper/iron-catalyzed86 decarbox-ylative hydrosulfonylation of phenyl propiolic acids withsulfonyl hydrazides furnishes the corresponding vinyl sul-fones (Scheme 59).

DMSO/H2O130 °C

NH4I (4.0 equiv)

MeS

Me

O

R

SO2Me

R+

MeO

SO2Me

PhSO2Me

Ph

SO2MePh

SO2MeN

S

Me75% 68%

46% 87%

46–99% yield

Method ACuSO4 (25 mol%)(EtO)2P(O)H (1.1 equiv)TFA (2.0 equiv)120 °C

MeS

Me

O

R1

SO2MeR1

R2R2Method B

CuBr (10 mol%), O2(EtO)2P(O)H (3.0 equiv)120 °C

+

PhSO2Me

89% Method A85% Method B

SO2Me

F55% Method A82% Method B

SO2Me

MeO60% Method A 80% Method B

PhSO2Me

Me

68% Method A70% Method B

MeS

Me

O

ArSO2Me

R

CuBr (10 mol%)(EtO)2P(O)H (3.0 equiv)

Ar

R O

+O2, 90 °C

Ph

O

SO2MePh

O

SO2Me

Me82% 71%

O

SO2MeS

75%

43–84% yield

RS

O

O

Na – CO2

conditions

conditions: yield (for R, Ar = Ph)

PIDA (2.0 equiv), DMF, 100 °C

CuCl (20 mol%), KI (1.5 equiv), DMSO, air, 100 °C

I2 (2.0 equiv), TBHP (2.0 equiv), toluene, 90 °C

I2 (1.0 equiv), K2CO3 (1.0 equiv), H2O, 60 °C

K2CO3 (0.50 equiv), DMSO, 100 °C

73%

74%

92%

78%

82%

SO2R

Ar

+

Ar

HO2C

R1S

O

O

Na+

O

SO2R1

CuCl2 (0.5 equiv)AgTFA (2.5 equiv)Cs2CO3 (2.0 equiv)

DMF, 80–100 °C

OH

– CO2

HO2C

S

O O

O

S

O O

O

STol

O O

O

SEt

O O

O

MeO

NH

Me

O

Me

79%

81% 31%

72%

R2 R2

20–79% yield

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 16: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1954

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 58

Scheme 59

Lei and co-workers developed a copper-catalyzed decar-boxylative oxosulfonylation of arylacrylic acids with sulfin-ic acids (Scheme 60).102 Evidence for a single-electron-transfer process between copper and the sulfinic acid wasprovided by extensive spectroscopic studies.

Scheme 60

Vinyl acetates are suitable olefins for the synthesis of β-keto sulfones. Sulfonylation of vinyl acetates with sulfonylhydrazides mediated by either iron(III) chloride in the pres-ence of air103 or TBAI and TBHP104 affords the oxidative cou-pling products via a radical addition (Scheme 61).

Scheme 61

A photoredox-catalyzed addition of sulfonyl chlorides tovinyl acetates for the synthesis of β-keto sulfones was de-veloped by Zhang, Yu and co-workers (Scheme 62).105

Scheme 57

RS

O

O

Na+

Method BH3PO4 DMSO, 80 °C

Method APdCl2 (5 mol%)DMSO, 100 °C

Ar

CO2HSO2R

Ar

PhPhO2S

83% Method A 92% Method B

PhMeO2S

91% Method A82% Method B

PhS

73% Method A 73%64% Method B 64%

F3C

PhS

87% Method A80% Method B

O O O O

RS

O O

NHNH2 Ar

HO2CI2 (40 mol%)DBU, TBHP

MeCN, H2O, rt Ar

SO2R+

PhSO2Tol

87%

SO2TolS

78%

Ph SO2Tol

61%Ph

SO2Ph

68%

57–88% yield

Method Bcopper acrylate (20 mol%)FeCl2 (15 mol%)DTBPDMSO,100 °C

Method ACuI/bpy (10 mol%)DMF, air, 100 °C

Ar

CO2H

RS

NHNH2

O O+

SO2R

Ar

PhSO2Tol

TolSO2Tol

SO2Tol

F

43% Method A72% Method B

60% Method A 73% Method B

85% Method A 81% Method B

PhS

71% Method A72% Method B

O O

OMe

R1S

OH

O

DMF, rt

CuBr2 (10 mol%)air

Ar

CO2H

R2

O

Ar

R2

SO2R1+

Ph

O

SO2Ph

O

SO2PhMeO

MeO

O

SO2Ph

F

Ph

O

SO2Me

92% 61%

63%81%

Ph

O

SO2Ph

38%Me

38–92% yield

Method BTBAI (20 mol%)TBHP (2.0 equiv)MeCN, 80 °C

Method AFeCl3 (10 mol%), airTHF, 70 °C

R2SO2R1

R1S

NHNH2

O O

R2

OAc O+

Ph

O

SO2Tol

O

SO2TolS

Ph

O

SO2Tol

Me

Ph

O

S

F

O O

91% Method A 70% Method B

53% Method A40% Method B

80% Method A51% Method B

40% Method A45% Method B

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 17: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1955

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 62

The TBAI-mediated oxidative coupling of enamides withsulfonyl hydrazides yields β-keto sulfones in a similar fash-ion (Scheme 63).106

Scheme 63

2.5 Miscellaneous Methods

Apart from these first four important approaches for thepreparation of sulfones, several other synthetic routes exist.The reaction of sulfonic acid derivatives, such as sulfonateesters, or sulfonyl chlorides, with organometallic reagentsproduces sulfones (Scheme 64).1,107 Generally, these reac-tions are low-yielding and limited to certain substrate com-binations. For example, reactions with sulfonyl chloridesfrequently afford the corresponding sulfoxides as the majorproducts.108 It has been shown that sulfonyl fluorides aresuperior electrophiles for reactions with organomagnesiumor organolithium reagents.109

Scheme 64

Katritzky reported on N-sulfonylbenzotriazoles as ad-vantageous reagents for the sulfonylation of lithiated het-erocycles or lithium enolates (Scheme 65).110

Scheme 65

In the presence of Lewis or Brønsted acid, aryl sulfon-ates and aryl sulfonamides will rearrange to the corre-sponding hydroxyaryl and aminoaryl sulfones, respectively(Scheme 66).24a,111 This exetension of the classical Fries re-arrangement affords a mixture of ortho and para isomers.Solvents and substituents on the aromatic ring can affectthe ortho/para ratio.

Scheme 66

Wang and co-workers reported a copper-catalyzed rear-rangement of N-tosylhydrazones to (E)-vinyl sulfones.112

Prabhu and Ojha developed a similar reaction mediated bycyanogen bromide and a phase-transfer catalyst (Scheme67).113

R1S

Cl

O OAcO

+

R2

O

R2

SO2R1

OSO2Tol

46%

O

S

O O

98%

O

S

O O

N71%

O

S

O O

F3C69%

CH2Cl2, white LEDN2, rt

fac-IrIII(ppy)3 (1 mol%)

46–98% yield

TBAI (20 mol%)THBP (2.0 equiv)

R2SO2R1

R2

NHAc O

R3 R3R1

SNHNH2

O O

MeCN, 80 °C+

Ph

O O

SO2Tol

27%

Ph

O

S

O O

Cl

63%80%

13–80% yield

SO2Tol

X = OR, Cl, F

R2 M

M = Li, Mg, Hg

R1S

R2

O O

R1S

R2

O

R1S

X

O O+ +

Het-LiRS

O O

N NN

R1S

O O

N NN

RS

O O

Het

R1S

O O

R3

OR2O

R2O

R3

OLi

Me

S

O O

OMe

S

O O

S

73% 47%

S

O O

OEt

S

O O

Bn

OEtO

Me

60% 71%

Ph

X = O, NR

Lewis orBrønsted acid

XH

SO2R1+

XH

SO2R1

Δ

R1S

X

O O

R2 R2R2

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 18: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1956

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 67

In the presence of a copper catalyst, sulfonyl hydrazonescan undergo nitrogen extrusion to yield sulfones (Scheme68).114

Scheme 68

Jiang and Tu reported a THBP/TBAI-mediated synthesisof allenyl sulfones starting from propargylic alcohols andsulfonyl hydrazides (Scheme 69).115 The authors proposethe formation of a sulfonyl hydrazone followed by a radicalfragmentation/coupling process to afford the final product.

Scheme 69

Dienediones react with sulfonamides in an acid-mediat-ed cascade process furnishing sulfonated cyclopentaneswith three contiguous stereocenters (Scheme 70).116

Scheme 70

The reaction of sulfur dioxide with dienes yields sulfo-lenes in a chelotropic reaction. Although this [4+1] cycload-dition is one of the classical textbook examples for a ste-reospecific, pericyclic reaction, it is rarely used in organicsynthesis.1,117,118 Vogel and Sordo showed that the reactionof dienes with sulfur dioxide can indeed produce not onlyone but two products.119 Under kinetic control (< –60 °C), ahetero-Diels–Alder reaction takes place and the corre-sponding sultine is formed. Under thermodynamic control(> –40 °C), the sulfolene is formed (Scheme 71).

Scheme 71

3 Metal-Catalyzed Coupling Reactions

In the last 15 years, transition-metal-catalyzed couplingreactions of either sulfinates as nucleophilic or sulfonyl ha-lides as electrophilic coupling partners have emerged as at-

R2

NNH

SO O

R1

R3

Method ACu(OAc)2 (15 mol%)xylene, 90–140 °C

R2

SO2R1

R3Method BCNBr (1.1 equiv), TBAB (2.5 equiv)K2CO3 (3.0 equiv), dioxane, 100 °C

Ph Ph

TolSO2

Ph SO2(p-Tol)

TolSO2

Me Ph

TolSO2

93% Method A 93% Method B

87% Method A69% Method B

81% Method A84% Method B

R2

N

R3

NH

SO O

R1

CuI (20 mol%)K2CO3

R2 R3

SO2R1

dioxane, 110 °C

46–90% yield

Ph

SO2Tol

Br

88%

Me

SO2Tol

OMe

76%

SO2Tol

46 %

+

TBAI (20 mol%)TBHP (2.0 equiv)

AcOH, MeCN60 °C

C

R1R2

Ar SO2R3Ar

HO R2

R1

R3S

NHNH2

O O

42–84% yield

C

SO2TolPh

Ph Ph

C

SO2(2-Np)Ph

Ph Ph

84% 69%

C

SO2Ph

Ph Ph

C

SO2C6H4-4-ClCl

73%

Me

F F63%

O

R2

R2O

R1S

NH2

O HBF4 (1.0 equiv)

MeCN/CH2Cl2, rt

R2

O

R2O

SO2R1

+

64–83% yield1,2-syn/2,3-anti major1,2-anti/2,3-anti minor

Ph

O

PhO

SO2tBu

80% (75:25)

Me

O

MeO

SO2tBu

66% (68:32)

Ph

O

PhO

SO2Ph

73% (70:30)

Me

O

MeO

SO2Tol

64% (83:17)

+SO2< –60 °C S

O

O

sultine

SO

O

sulfolene

[4+2]

[4+1]

> –40 °C+SO2

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 19: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1957

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

tractive alternatives to the traditional procedures. They al-low the synthesis of sulfones in a regiospecific manner, of-ten under milder reaction conditions compared to thoseused in sulfide oxidation or electrophilic sulfonylation reac-tions. Therefore metal-catalyzed coupling reactions can ex-pand the functional group compatibility considerably.

Since the first report by Suzuki and Abe on the copper-assisted coupling of sodium sulfinates with non-activatediodoarenes,120 various improvements have been developed.The introduction of ligands such as proline,121 N,N-di-methyethylenediamine (DMEDA),122 D-glucosamine,123

functionalized ionic liquids124 or 1,10-phenanthroline125

enables the copper-catalyzed coupling of sulfinic acid sodi-um salts with aryl iodides or bromides (Scheme 72). How-ever, there is only one report for copper-catalyzed cross-couplings with aryl chlorides,126 and this procedure is limit-ed to activated, electron-poor (hetereo)aromatic chlorides,which should undergo a direct, uncatalyzed nucleophilicaromatic substitution.1,38

Scheme 72

Nagarkar and co-workers developed a copper-catalyzedcross-coupling of sodium p-toluenesulfinate with arenedi-azonium salts as an alternative to aryl halides.127 Theauthors propose a TBAI-mediated in situ formation of aryliodides as coupling partners by way of a Sandmeyer-typereaction (Scheme 73).

Scheme 73

Xu and Qing employed arenediazonium salts as startingmaterials in a copper-catalyzed coupling with sodium tri-fluoromethylsulfinate.128 This method allows the mild syn-thesis of trifluoromethanesulfonyl-substituted arenes, ofparticular interest for medicinal chemistry, in good yields(Scheme 74).

Scheme 74

Cacchi and co-workers developed a palladium-catalyzedcoupling of sodium sulfinates with aryl and vinyl halidesfor the synthesis of diaryl and aryl vinyl sulfones.129 Thebest yields were obtained with Pd2(dba)3–Xantphos as thecatalyst system. The reaction is strongly influenced by theaddition of tetraalkylammonium salts, such as tetrabu-tylammonium chloride (Scheme 75). The palladium-cata-lyzed coupling of vinyl tosylates with aryl sulfonate saltsgives aryl vinyl sulfones in a similar manner (Scheme 76).130

conditions

conditions yield (for R = Ph, Ar = Tol, X = I)

CuI (10 mol%), L-proline sodium salt (20 mol%) 77% DMSO, 90 °C

(CuOTf)2.PhH (5 mol%), DMEDA (10 mol%) 70%

DMSO, 110 °C

CuI (10 mol%), D-glucosamine (20 mol%) 94%KOAc, DMSO/H2O, 100 °C

CuI (10 mol%), [enim][Val] (20 mol%) 81%DMSO, 95 °C

CuFe2O4 (10 mol%), 1,10-phenanthroline (10 mol%) 78%DMF, 110 °C

Ar X R S Ar

O

OX = Br, I

+R

SO

O

Na

TolS

O

O

Na

CuI (15 mol%)DMEDA (15 mol%)

TBAI (1.3 equiv)K2CO3+

DMSO, N2, 100 °CTol

SAr

O ON2

+BF4–Ar

TolS

Ph

O OTol

S

O O

OMe

TolS

O O

NO2

TolS

O O Me

Me

91% 89%

72%84%

72–91% yield

F3CS

O

O

Na

Cu2O (10 mol%)F3C S Ar

O

ODMSO, N2, rt

N2+BF4

Ar+

45–90% yield

HO2C

SCF3

O O

SCF3

O O

NO252% 85%

Tol

HN

S

O O

SCF3

O O

N

SCF3

O O

59% 45%

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 20: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1958

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 75

Scheme 76

Yu and Wu reported an interesting palladium-catalyzedsynthesis of sulfones by a denitrative coupling of ni-troarenes with sulfinic acid salts (Scheme 77).131

Scheme 77

The groups of Beaulieu and Evans developed a copper-mediated cross-coupling of boronic acids and sodium sulfi-nates (Scheme 78).132 This oxidative coupling reaction pro-vides a useful and mild alternative to the just-describedcoupling reactions.

Scheme 78

Later, several catalytic versions of these Chan–Evans–Lam-type couplings were reported (Scheme 79), includingmethods with imidazole133 or phenanthroline134 ligands, inionic liquids135 or water136 and utilizing magnetically sepa-rable copper ferrite nanoparticles.125

Scheme 79

Xu, Liang and co-workers developed a palladium-cata-lyzed coupling of sulfonyl hydrazones with aryl iodides forthe synthesis of allylic sulfones.137 Base-mediated decom-position of the hydrazine leads to the simultaneous forma-tion of a diazo compound and a sulfinate as nucleophiliccoupling partners (Scheme 80).

Scheme 80

R1S

O

O

Na

Pd2(dba)3 (2.5 mol%)Xantphos (5 mol%)

TBACl (0 or 1.2 equiv)Cs2CO3 (1.5 equiv)

+toluene, argon

60–120 °C

X

X = I, Br, OTf

SO2R1

S

O O

Me Me96%

S

O O

Me

NO2

S

O O

Me

Me

MeMe

Me

89%

80%

N

S

O O

Me52%

20–96% yield

R1S

O

O

Na

Pd2(dba)3 (2.5 mol%)Xantphos (5 mol%)K3PO4 (1.5 equiv)

+toluene, N2,100 °C

R3R3

OTs

R3R3

SO2R1

40–75% yield

SO2Tol

BocN

SO2Tol

S

O O

74%

69% 75%

40%

PhSO2Tol

Ph

palladacycle (0.75 mol%)K2CO3 (1.0 equiv)

DMSO, N2, 110 °CAr SO2R

RS

O

O

Na+

NO2

Ar48–90%

S

O O

MeO2N

85%

N

S

O O

Me

Me

90%

S

O O

Me

SO

68%

S

O O

Me

O

48%

Fe

NPd Cl

2

palladacycle

R1S

O

O

Na

Cu(OAc)2 (1.1 equiv)K2CO3 (2.0 equiv)

+R2

B(OH)2

DMSO, 4 Å MS rt to 60 °C

R1S

R2

O O

SMe

O O

Ph

SMe

O O

N

SMe

O OMe

Me

97% 63% 19%

19–97% yield

R1S

O

O

Na+

R2

B(OH)2

R1S

R2

OOconditions

conditions yield (for R1 = Me , R2 = 4-MeOC6H4)

Cu(OAc)2 (20 mol%) 68% 1-benzylimidazole (40 mol%) 4 Å MS, DMSO, air, 60 °C

Cu(OAc)2 (10 mol%) 60%1,10-phenanthroline (20 mol%) 4 Å MS, CH2Cl2/DMSO, O2, 40 °C

Cu2O (10 mol%), NH3, H2O, air, rt 76%

MeCN, 50 °C

Ar2

NNH

SO2R Pd2dba3 (2.5 mol%)Ph3P (15 mol%)

BnNEt3Cl (1.0 equiv)Na2CO3 (2.5 equiv)

Ar2

Ar1

SO2R+

40–93% yield

2-Tol

2-Tol

SO2Tol

40%

Ph

Ph

SO2Ph

93%

Ph

Ph

S

O O

S

78%

Ar1I

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 21: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1959

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

A common method for the regio- and stereoselectivepreparation of allylic sulfones is the transition-metal-cata-lyzed coupling of allylic electrophiles with sulfinate salts orsulfininic acids.138 Allylic carboxylates,139 carbonates,140 al-cohols141 or nitro compounds142 can undergo substitutionreactions with sulfinic acids and their salts (Scheme 81).Reactivities and regioselectivities can differ significantlydepending on the structure of the allyl electrophile and thecatalyst system.

Scheme 81

Tian, Gu and co-workers reported a stereospecific sub-stitution of enantioenriched allylic alcohols with sodiumsulfinates that proceeds with complete retention of config-uration (Scheme 82).141b Palladium-catalyzed direct substi-tution of allylic amines with sulfinate salts is also possible,furnishing allyl sulfones with almost complete retention ofconfiguration (Scheme 83).143

Scheme 82

In addition, various efficient chiral catalyst systems forthe asymmetric allylic sulfonylation were developed in the1980s and 1990s (Scheme 84).144 In general, these methodsenable the highly enantioselective synthesis of allylic sul-fones, which are useful asymmetric building blocks.145 A

more recent example is the iridium-catalyzed regio- andenantioselective allylic substitution with sodium sulfi-nates.146 Branched allylic sulfones are obtained in highregio- and enantioselectivities (Scheme 85).

Scheme 84

Scheme 85

Plietker and Jegelka showed that low-valent iron(II)complexes can catalyze the allylation of sodium sulfi-nates.147 The sulfonylation of allylic carbonates proceedswith excellent retention of configuration (Scheme 86). Theylater extended their work to include α-sulfonyl succinimid-es as sulfonyl donors.148

Scheme 86

R1S

O

O

Y+

Pd catalyst

Y = metal or H

LG SO2R2

LG = OAc, OCO2Et, OH, NO2, etc.

R1S

O

O

NaR2

R3HO

dioxane, N2, 100 °CR2

R3

R1O2S

+

51–97% yield

Ph

Me

PhO2S Me

PhO2S

OCy

Me

PhO2S

90%, 97% ee 72%, 97% ee 51%, 97% ee

Pd(OAc)2 (5 mol%)rac-BINAP (5 mol%)

B(OH)3 (4 equiv)

Scheme 83

R1S

O

O

Na

[Pd(allyl)Cl]2 (0.1 mol%)rac-BINOL (0.4 mol%)

B(OH)3 (4.0 equiv)

R2

R3H2N

dioxane, N2, 100 °CR2

R3

R1O2S

R4 R4

+

86–93% yield

Ph

Me

TolO2S

H

93%

Cy

Me

TolO2S

H

82%

Ph

Me

BnO2S

H

88%

R1S

O

O

Na

Pd catalystchiral ligand

R2 R2

OAc

R2 R2

SO2R1

+

R1S

O

O

Na

Ir catalyst (2 mol%)R2

OCO2Me

R2

dioxane, N2, 50 °C

SO2R1

+

77–99% yield86–98% ee

SO2Ph

Ph

92%, 94% ee

SO2iPr

99%, 93% ee

SO2Tol

nPr

92%, 94% ee

MeO

SO2Me

MeO95%, 92% ee

Ir

N

PhPh

P

Ir catalyst

OO

TBAFe (5 mol%)(4-MeOAr)3P

(6 mol%)O

R4R3

DMF/MeOC2H4OH 80 °C

R4R3

SO2R1

R1S

O

O

Na

MeMe

SO2Ph

83%

MeMe

SO2Ph

MeO2C

77%

Me

SO2Ph

O

N

MeMe

62%

OR2

O

31–86% yield

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 22: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1960

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

The transition-metal-catalyzed coupling of sulfonylchlorides with various organometallic reagents is anotherapproach for the synthesis of sulfones. Crucial for the suc-cess of these transformations is the reaction temperature.Vogel and co-workers showed that, at higher temperatures,desulfinylative carbon–carbon bond formation via sulfurdioxide extrusion takes place.149 Palladium-catalyzed reac-tion of organostannes150 or organoboronic acids151 with sul-fonyl chlorides at low temperatures yields the desired sul-fones (Scheme 87).

Scheme 87

Hu and Lei reported copper-catalyzed coupling reac-tions of sulfonyl chlorides with arylboronic acids152 or or-ganozinc reagents,153 respectively (Scheme 88).

Scheme 88

The copper-catalyzed reaction of silyl dienol etherswith sulfonyl chlorides affords γ-sulfonylated α,β-unsatu-rated carbonyl compounds (Scheme 89).154

Scheme 89

4 Sulfone Synthesis by C–H Functionaliza-tion

The selective functionalization of C–H bonds plays a keyrole in the development of efficient and sustainable meth-ods for organic synthesis.155 Regioselective metal-catalyzedas well as metal-free activations of C–H bonds haveemerged as valuable tools for the preparation of carbon–carbon and carbon–heteroatom bonds. In recent years, syn-thesis of sulfones by selective functionalization of C–Hbonds has become an important area of research. Althoughthe established Friedel–Crafts-type sulfonylation can beconsidered as C–H functionalization, recent research effortsfocus on different reactivity profiles.

Dong and co-workers reported the first palladium-cata-lyzed C–H bond sulfonylation of phenylpyridines with sul-fonyl chlorides (Scheme 90).156 Mechanistic studies indicatea Pd(II)/Pd(IV) catalytic cycle.157

Scheme 90

R1 S

O

O

R2R1 S

O

O

Cl + R2 M

M = SnR3, B(OH)2

Method A (M = SnR3):Pd(PPh3)4, THF, 65–70 °C

Method B (M = B(OH)2):PdCl2, K2CO3

acetone/H2O, 0–25 °C

O2S

Me

90%Method A

MeO

SO2

Me

57%Method A

O2S

MeO

98%Method B

N

O2S

82%Method B

Me

R1 S

O

O

R2R1 S

O

O

Cl + R2 M

M = ZnX, B(OH)2

Method A (M = ZnX):CuI (5 mol%), TMEDA (2.0 equiv)

THF, rt

Method B (M = B(OH)2): (phen)CuBr (10 mol%), K2CO3

CH2Cl2/H2O, rt

O2S

Br

86%Method A

O2S

S

Me

76%Method A

74%Method A

O2S

O2S

OMe

OMe

88%Method B

O2S

73%Method B

R S

O

O

Cl +

OTMS

CuCl (10 mol%)MeCN, 80 °C

O

SO2R

O2S

O Me87%

O2S

O70%

O2S

O Me

75%dr = 15:1

N

O2S

O Me

CO2Me

56%

38–87% yield

N

H+ R S Cl

O

O

Pd(MeCN)2Cl2 (10 mol%)

K2CO3

4 Å MS dioxane, 120 °C

N

SO2R

N

82%

Ph N

OMe

N

SO2Tol

N

42%78%

SO2Tol SO2Tol

41–88% yield

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 23: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1961

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Palladium-catalyzed sulfonylation of 2-aryloxypyridineswith sulfonyl chlorides proceeds in the ortho-position rela-tive to the directing group.158 Removal of the pyridyl groupthus gives access to ortho-sulfonylated phenols, which aredifficult to synthesize otherwise (Scheme 91).

Two independent reports describe the ortho-sulfonyla-tion of azobenzenes with arylsulfonyl chlorides via palladi-um-catalyzed C–H activation (Scheme 92).159 Loh and co-workers developed a palladium-catalyzed alkenyl C–H bondsulfonylation of vinyl pyridines and enamides with sulfonylchlorides (Scheme 93).160

Scheme 93

Palladium-catalyzed coupling of quinones with arylsul-fonyl chlorides gives rise to arylsulfonyl quinones via aHeck-type coupling (Scheme 94).161

Scheme 94

Regioselective ortho-sulfonylation of quinolone N-ox-ides was achieved via copper-catalyzed C–H bond activa-tion (Scheme 95).162

Scheme 95

Scheme 91

O

H + R S Cl

O

O Pd(OAc) (8 mol%)K2CO3

4 Å MSdioxane, 120 °C

O

SO2R

N N

OO2S

N

Me62%

OO2S

N

Cl

OO2S

N

Cl 46%

Me

O

47%

OO2S

N

Me

57%

29–67% yield

Scheme 92

+

R S Cl

O

O

Method A:Pd(OAc)2 (5 mol%)K2S2O5 (1.1 equiv)DCE, air, 110 °C

Method B:Pd(MeCN)2Cl2 (10 mol%)

K2CO3, 4 Å MSdioxane, 130 °C

N

NPh

HN

NPh

SO2R

N

NPh

SO2

Me

90%Method A

N

NPh

SO2

CN

71%Method A

N

NPh

SO2

F

86%Method B

N

NPh

SO2 O

N

Me

Me90%

Method B

+ R1 S Cl

O

O

dioxane, 120 °CR2

DG

R3

R2

DG

R3

SO2R1

Pd(PhCN)2Cl2 (10 mol%)K2CO3, 4 Å MS

N

MeO2S

Me67%

N

MeO2S

Cl

ClCl

61%

O2S

NHMe

O

61%

O2S

MeO

NHMe

O

33%

25–70% yield

+ R S Cl

O

O

K2CO3DCE, 90 °C

Pd(OAc)2 (5 mol%)

O

O

H

O

O

SO2R

O

O

SO2

Me

89%

O

O

SO2

OMe

OMe

81%

O

O

SO2

63%

52–91% yield

+ R S Cl

O

O

K2CO3DCE, 100 °C

CuI (10 mol%)

N

O

H N

O

SO2R

N

O

SO2

OMe

N

O

SO2

Me

80% 84%

N

O

SO2

MeMe

53%

N

O

SO2

F

Me

65%

28–91% yield

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 24: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1962

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Kambe and co-workers reported a nickel-mediated C–Hbond sulfonylation of benzamides enabled by the 8-amino-quinoline (AQ) directing group (Scheme 96). 163

Scheme 96

Interestingly, the copper-catalyzed reaction of benz-amides bearing the 8-aminoquinoline moiety with sulfonylchlorides leads to a remote functionalization of the quino-line (Scheme 97).164

A ruthenium-catalyzed regioselective meta-sulfonyla-tion of 2-phenylpyridines with sulfonyl chlorides was de-veloped by Frost and co-workers.165 The observed switch inregioselectivity is attributed to a change in the mechanisticpathway via a para-directing Ru–C bond (Scheme 98).

Scheme 98

Several groups reported copper-mediated ortho-sulfo-nylations of benzoic acid derivatives with sodium sulfinatesemploying the 8-aminoquinoline (AQ),166 the 2-pyridinylisopropyl (PIP),167 or the amide-oxazoline (Oxa)168 directinggroups (Scheme 99). These oxidative coupling reactions uti-lize sulfinates as the coupling partner.

Scheme 99

Shi and co-workers described a palladium-catalyzed di-rect sulfonylation of non-activated C(sp3)–H bonds with so-dium sulfinates enabled by the 8-aminoquinoline moiety(Scheme 100).169 Late-stage sulfonylation of complex mole-cules can be achieved with this method.

+ R1 S Cl

O

O

Na2CO3dioxane, 140 °C

NiCl2 (50 mol%)

R2

OHN

AQ

H

R2

OHN

AQ

SO2R1

AQ =N

O NH

O2SMe

AQ

Cl

O NH

O2S

AQ

OMe42% 38%

33–57% yield

Scheme 97

+

R1 S Cl

O

ONa2CO3

toluene, 110 °C

CuCl (10 mol)

R2

OHN

N

R2

OHN

N

H

SO2R2

Ph NH

N

OSO2Ph

86%

Ph NH

N

O

O2S S

86%

NH

N

OTs

S78%

NH

N

OTs

70%

27–89% yield

+ R S Cl

O

O

K2CO3MeCN, 115 °C

[Ru(p-cymene)Cl2]2 (2.5 mol%)

N

H

N

SO2R

N

SO2Ph

70%

N

SO2

Br

74%

N

SO2

Me

40%

23–74% yield

RS

O

O

Na

conditions

OHN

DG

H

OHN

DG

SO2R

NH

N

AQ

NH

N

Me Me

PIP

NH

NO

Oxa

conditions:

DG = AQ Cu(OAc)2 (1.0 equiv), K2CO3 DMF, 80 °C

DG = PIP Cu(OAc)2 (10 mol%), Ag2CO3 DCE, 120 °C

DG = Oxa Cu(OAc)2 (2.0 equiv), K2CO3 TFE, 80 °C

yield (for R = Ph)

73%

69%

76%

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 25: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1963

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 100

The copper-catalyzed oxidative coupling of oxime ace-tates with sodium sulfinates provides access to sulfonylvi-nylamines and keto sulfones via a formal C(sp3)–H bond ac-tivation (Scheme 101).170

Scheme 101

Kamijo and co-workers reported a photoinduced sulfo-nylation of ethereal C–H bonds with sulfonyl chlorides.171

The C–H bond activation is achieved by hydrogen abstrac-tion with photoexcited benzophenone (Scheme 102).

Qu, Zhao and co-workers developed a metal-free, H-phosphonate-mediated direct sulfonylation of heteroaro-matic N-oxides with sulfonyl chlorides,172 wherein 2-sulfo-nyl-N-heterocycles are obtained as products (Scheme 103).

Scheme 103

The groups of Deng and Kuhakarn described methodsfor the regioselective C2-sulfonylation of indoles with sodi-um sulfinates catalyzed or mediated by iodine (Scheme104).173 Both authors propose an addition–eliminationmechanism for this transformation. Later, an extension tothe coupling of azetidine and oxetane sulfinate salts was re-ported.174

TBHP/TBAI-mediated oxidative coupling of C2/C3-un-substituted indoles with sulfonyl hydrazides leads to theformation of 3-sulfonyl-2-sulfonyldiazenyl-1H-indoles(Scheme 105).175

R1S

O

O

Na

Pd(OAc)2 (10 mol%)MesCO2H (20 mol%)

Ag2CO3 CH2Cl2, 90 °C

NH

R2

O

AQ

H

NH

R2

O

AQ

SO2R1

NNH

NSO2Ph

OO

O

72%

NH

NSO2Ph

O

53%

NH

NSO2Ph

O

O

H

OMeMe

Me

44%

26–72% yield

R1S

O

O

Na Cu(OAc)2 (10 mol%)toluene, 100 °C

(hydrolysis with SiO2)

R2

N

H

HO

R2

NH2

SO2R1

direct product

or

R2

O

SO2R1

after hydrolysis

PhSO2Tol

NH2

92%

S

SO2Tol

O

78%

Ph

O2S

O

97%

Scheme 102

+ R1 S Cl

O

O

acetone, rt

OH

n

OSO2R1

n

Ph2C=O, hν

O

H

H

Ts

100%

OO2S

Oct

74%

OTs

44%

44–100% yield

+ R S Cl

O

O

THF, rt

HP(O)(OiPr)2 (1 equiv)KOH

N

O

HN SO2R

N

Me

SO2

Me

86%

O2S

N

65%

N SO2

60%

N

N

SO2

Me

35%

35–87% yield

Scheme 104

R1S

O

O

Na

Method A:I2 (10 mol%), TBHP

AcOH, rt

Method B:I2 (1.5 equiv), MeOH, rt

NH

R2

NH

R2

H

SO2R1

NH

SO2

NBoc

94%Method B

NSO2

Me

Cl

75%Method B

NH

SO2Ph

Me

84%Method A

NH

SO2Me

90%Method A

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 26: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1964

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 105

Xiao, Deng and co-workers reported a metal-free directsulfonylation of 2-methylquinolines with sodium sulfinatesmediated by potassium iodide and TBHP (Scheme 106).176

Scheme 106

5 Sulfur Dioxide Based Three-Component Approaches

Almost all hitherto-described methods for the synthesisof sulfones utilize starting materials that already contain asulfur functionality. Only a few of these sulfur-containingstarting materials are commercially available, and theirsynthesis can be quite cumbersome. Therefore, efficientmethods for the incorporation of the sulfonyl moiety fromsimple, readily available sources offer a very attractive ap-proach for the preparation of sulfones. In the last 10 to 15years, the development of new one-pot and multicompo-nent processes for the synthesis of sulfones from twosulfur-free starting materials and a simple sulfonyl sourcehas become a very active area of research.177

Of course, sulfur dioxide (SO2) would be an obviouschoice as reagent for the installation of a sulfonyl (-SO2-)moiety. Sulfur dioxide is produced on an enormous scaleand has been utilized by mankind since ancient times.However, it is a toxic and corrosive gas. The associated safe-ty considerations and the difficult handling can limit theuse of sulfur dioxide in the laboratory-scale synthesis offine chemicals. Despite this, sulfur dioxide has found vari-ous applications in organic synthesis.178 Important exam-ples include the sulfur dioxide ene reaction and the associ-ated sulfur dioxide induced alkene isomerization,179 as wellas copolymerizations with alkenes to produce polysul-fones.180

Vogel and co-workers were among the first to investi-gate the potential of sulfur dioxide as a reagent in the syn-thesis of complex molecules.177d They reported a Lewis acidpromoted ene reaction of enoxysilanes and allylsilanes orallylstannanes.181 The formed sulfinates can be trapped insitu with a variety of electrophiles, enabling a one-pot,three-componenet synthesis of polyfunctional sulfones(Scheme 107).

Scheme 107

Unfunctionalized alkenes can react with sulfur dioxidein the presence of stoichiometric amounts of boron trichlo-ride to form sulfinic acid–boron trichloride adducts, whichcan be hydrolyzed with base to generate sulfinates.182 Reac-tion of the latter with alkyl halides yields α,β-unsaturatedsulfones in a one-pot transformation (Scheme 108).

TBAI (30 mol%)TBHP

MeCN, 40 °C

NH

R2

NH

R2

H

N

R1 SHN

O

O

NH2 SO2R1

N SO2R1

NH

N

SO2Tol

N SO2Tol

87%

NH

N

SO2Tol

N SO2Tol

Cl

72%

42–87% yield

H

RS

O

O

Na KI (1.0 equiv)TBHP (1.0 equiv)

DMSO/AcOH air, 80 °C

N

X

H

N

X

SO2R

NSO2Ph

F

94%

N

N

SO2Ph

Ph

69%

N

O2S

N

O2S

51% 56%

37–94% yield

S CO2Et

OO

60%

S

OO

65%

S CO2Et

OO

50%

MeS Ph

OO

70%

R1

OSiMe3

R2

M

R1

R2

R1 O

R2 S

M = SiMe3, SnBu3

S

R1

R2

SO2TBSOTf

(cat.)

SO2TBSOTf

(cat.)

O

OSiMe3

O

OM

R3-X

TBAF

R3-X

(TBAF)

R1 O

R2 SO2R3

SO2R3

R1

R2

50–88% yield

Me

O

MeO

Me

O

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 27: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1965

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 108

Vogel and co-workers pioneered the use of sulfur diox-ide in Lewis acid mediated hetero-Diels–Alder processes asa novel method to construct C–C bonds via an umpolung ofelectron-rich 1,3-dienes.183 A typical example is depicted inScheme 109. Reaction of a mixture of an electron-rich dienewith sulfur dioxide and a silyl enol ether in the presence ofa Lewis acid affords a silyl sulfinate. The Lewis acid catalyz-es the initial formation and heterolysis of the hetero-Diels–Alder adduct to from a zwitterionic sulfinate, which istrapped by the enoxy silane as terminal nucleophile. Treat-ment of the sulfinate with tetrabutylammonium fluoride(TBAF) and methyl iodide affords the corresponding sulfonein 63% yield and high stereoselectivity. This method allowsthe one-pot, four-component synthesis of polyfunctionalsulfones and sulfonamides and has found application in thetotal synthesis of complex molecules and natural prod-ucts.183,184

Scheme 109

The reaction of organometallic compounds with sulfurdioxide gas for the preparation of sulfinates is well docu-mented.1,178a Direct trapping of these salts without priorisolation provides a convenient one-pot approach for thesynthesis of sulfones. Since various efficient procedures forthe preparation of a plethora of highly functionalized or-ganometallic reactions are known,185 this process offers anattractive approach for the synthesis of complex sulfones.

A group from Boehringer Ingelheim developed a practi-cal three-step protocol for the transformation of (hetero)ar-omatic halides into sulfones (Scheme 110).186 Their proce-dure consists of (1) generation of a Grignard reagent viamagnesium–halide exchange; (2) reaction of the Grignardreagent with sulfur dioxide to afford the correspondingmagnesium sulfinate; and (3) trapping of the sulfinate withan alkylating agent.

Scheme 110

A similar one-pot sequence has been reported with a di-aryliodonium salt as terminal electrophile (Scheme 111).187

This procedure allows the efficient synthesis of aryl sul-fones starting from (hetero)aromatic or aliphatic halides aswell as non-prefunctionalized (hetero)arenes. The lithium,magnesium and zinc reagents were prepared via metal in-sertion, exchange or deprotonation.

It has been shown that lithium sulfinates, prepared insitu from the reaction of organolithium compounds withsulfur dioxide, can undergo oxidative coupling with benzoicacids bearing the amide-oxazoline (Oxa) directing groupvia copper-mediated C–H bond activation (Scheme 112).168

R1

R2

R3R1

R2R3

S

OH.BCl3

O

SO2BCl3

CH2Cl2–20 °C

R1

R2R3

SO2R4

R4-X

NaOH

S Ph

OO

83%

80–91% yield

S

OO

87%

Me

Me

Ph

O

S

OO

80%

S Ph

OO

85%

Ph

O

Me

Et

OSiMe3

Me

+

OMe

SO2TBSOTf

(cat.)

S

O

OMe

OS

O

OMe

O

LA

Et

OSiMe3

Me

Et

O

Me

OMeS

O

OSiMe3TBAFMeI

Et

O

Me

OMeSO2Me

63%, dr = 81:19100% Z

S(CH2)4OAc

OO

91%

EtO2C

S(CH2)4OAc

OO

60%

N

Ar XR-X

1) cPentMgBr THF, –40 °C

2) SO2 ArS

R

OO

60–91% yield

ArS

OMgBr

O

S

OO

65%

EtO2C

S(CH2)4OAc

OO

S

Me

94%

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 28: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1966

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 112

Despite its potential utility, there are some drawbacksassociated with the toxic, corrosive and gaseous nature ofsulfur dioxide. A popular strategy to overcome this limita-tion is the use of solid, easy-to-handle surrogates.10c,177 Sim-ple, commercially available metal sulfites (MSO3) or meta-bisulfites (M2S2O5) can release sulfur dioxide upon the addi-tion of Brønsted acids or upon heating to hightemperatures. Researchers from Pfizer described a palladi-um-catalyzed sulfonylation of (hetero)aryl halides with po-tassium metabisulfite (K2S2O5) and sodium formate(Scheme 113).188 Direct reaction of the generated sulfinateswith alkyl halides enables the one-pot synthesis of sul-fones.

They later reported a palladium-catalyzed three-com-ponent synthesis of sulfones from (hetero)arylboronicacids, alkyl halides and potassium metabisulfite (Scheme114).189 The authors propose an in situ formation of a palla-dium sulfinate, which then reacts with the alkyl halide.

Scheme 114

The gold-catalyzed reaction of (hetero)arylboronic acidswith K2S2O5 and alkyl halides yields the corresponding sul-fones in a similar fashion (Scheme 115).190

Scheme 111

S

OO

85%

EtO2C

S

OO

51%

N PhS

OO

S

OO

64%

R X

R SO2MAr2I+Y–

or

R H

M = Li, MgX, ZnX

1) metalation

2) SO2 RS

Ar

OO

17–97% yield

NC

Me

Me

Me

80%

R LiSO2

HNO

DG

H NHO

81% (R = Ph)44% (R = nBu)

RS

OLi

O

Cu(OAc)2K2CO3

TFE, 80 °C

DG

SO2R

N

O

DG =

Scheme 113

SMe

OO

58%

N

MeO

SMe

OO

68%

Ar X

Pd(OAc)2Ph3P, 1,10-phenanthroline

K2S2O5, NaO2CHTBAB

DMSO, 70 °C

ArS

R

OO

31–79% yield

SMe

OO

X = Br, I

R-X

ArS

O

O

S

OO

56%

MeO

CO2tBu

N

MeO2C

57%

Ar B(OH)2

ArS

R

OO

39–96% yield

+

R X

[Pd(MeCN)2Cl2] (10 mol%)tBuXPhos (10 mol%)

K2S2O5, TBAB DMF, 85 °C

58%

SnPr

OO

NN

Me96%

SnPr

OO

NH

Me

O

94%

S

OO

MeO

CO2Et

51%

S

OO

MeO

CO2Me

NHBoc

Scheme 115

49%

Ar B(OH)2 ArS

R

OO

46–66% yield

S

OO

Ph

+ R X

tBuP3AuCl (10 mol%)

K2S2O5

DIPEAMeOH/toluene

100 °C

Me

53%

S

OO

Ph

NN

Me

S

OO

Ph

Me

56%

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 29: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1967

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Willis and co-workers pioneered the use of the 1,4-di-azabicyclo[2.2.2]octane–bis(sulfur dioxide) adduct DABSOas very useful, solid and bench-stable sulfur dioxide surro-gate.191 The addition of organolithium or organomagnesiumreagents to DABSO generates the corresponding sulfinates,which can be directly trapped with a variety of differentelectrophiles, such as alkyl halides, epoxides or diaryliodo-nium salts (Scheme 116).192 This method enables the one-pot synthesis of a diverse set of sulfones. Organozinc re-agents react with DABSO in a similar manner, and the gen-erated zinc sulfinates can be alkylated to form sulfones(Scheme 117).193

Scheme 116

Reaction of organolithium reagents with DABSO, fol-lowed by palladium-catalyzed cross-coupling of the formedlithium sulfinate with (hetero)aryl halides allows the three-component synthesis of aryl sulfones (Scheme 118).194 Thelithium reagents can be prepared in situ through halogen–lithium exchange.

Palladium-catalyzed coupling of aryl halides withDABSO in the presence of triethylamine yields ammoniumsulfinates. These salts can be directly converted into a vari-ety of sulfones by trapping with different electrophiles(Scheme 119).195

Scheme 119

Waser and Chen reported a one-pot, three-componentsynthesis of aryl alkynyl sulfones through the reaction of insitu generated sulfinates with ethynyl-benziodoxolone(EBX).196 The sulfinates were prepared from DABSO and anorganomagnesium reagent or aryl iodide and a palladiumcatalyst (Scheme 120).

S

OO

46%

R MR

SE

OO

46–94% yield

83%

DABSO

THF, –40 °CR S

OM

OE+

S Ph S

OO

Ph

M = Li, MgX

MeO2C

56%

S

OO

MeO

OH

90%

nBuS

OO O

Ph

Scheme 117

S

OO

89 %

R1 ZnXR1

SR2

OO

25–90% yield

58%

DABSO

THF, 21 °CR1 S

OZnx

OR2-X

DMSO70 °C

S

N

CO2tBu S

OO

Ph

CO2Et

S

OO

CO2tBu

CO2MeBocHN

77%

Scheme 118

S

OO

95%

92%

Ar1 Br1) tBuLi

2) DABSO

Ar1 SO2

Li

Pd(OAc)2ligand

Ar1S

Ar2

OO

35–98% yield

93%

Ar2-Br, Cs2CO3

dioxane, 110 °C

O

MeMe

PR2 PR2

ligand [R = 3,5-(F3C)2C6H3)]

CO2Me

81%

S

OO

N OMe

S

OO

F3C

OMe

S

OO

Me

OMeMe

Cl

Me Me

S

OO

74%

MeO2C

S

OO

S

64%

S

OO

85%

Ar I

Pd(OAc)2PAd2Bu

DABSO, Et3N iPrOH, 75 °C

Ar SO2

HNEt3

E+

ArS

E

OO

38–90% yield

CO2tBu CO2

tBu

Me

Me

Ph S

OO

76%

Me

Me

OH

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 30: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1968

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

Scheme 120

Building on their previous results with the palladium-catalyzed aminosulfonylation of aryl halides,197 the Willisgroup developed a different approach for the one-pot syn-thesis of aryl sulfones based on in situ generated sulfonylhydrazines.198 Key steps in this transformation are the pal-ladium-catalyzed aminosulfonylation of the aryl halidewith DABSO and the hydrazine, degradation of the generat-ed sulfonyl hydrazine to the corresponding sulfinate, andsulfinate alkylation to yield the desired sulfone (Scheme121).

Scheme 121

Wu and co-workers extended this approach to the syn-thesis of diaryl sulfones utilizing diaryliodonium salts aselectrophiles.199 In this study, the intermediate sulfonyl hy-drazines were prepared by reaction of diazonium salts withDABSO and hydrazines (Scheme 122).200

Scheme 122

Feng and co-workers reported an iodide-catalyzedthree-component synthesis of vinyl sulfones from aryldi-azonium salts, DABSO and alkenes (Scheme 123).201

Scheme 123

6 Biological Synthesis of Sulfones

Considering the biological activity profile of sulfones,and especially their antibacterial activities, it is very sur-prising that there are only three known examples of natu-rally occurring sulfones (Figure 2). The diaryl sulfone echi-nosulfone A, a bromoindole derivative, was isolated fromthe marine sponge Echinodictyum sp.202 So far nothing isknown about the biosynthesis of echinosulfone A. Only asrecently as 2015 did Hertweck and co-workers report theisolation of two more diaryl sulfones, sulfadixiamycins Band C, from recombinant Streptomyces species harboringthe entire xiamycin biosynthesis gene cluster.203 The au-thors propose a flavoprotein-mediated incorporation ofsulfur dioxide, via a radical copolymerization of two carba-

I

O

OR

Ar-Br + Mg

or

Ar-I + cat. Pd(0)

Ar-SO2 DABSO

ArS

OO

R

R-EBX

R-EBX

39–85% yield

S

OO

SiiPr3

56%

MeO2C

S

OO

SiiPr3O

70%

S

OO

tBu

79%

Me

S

OO

SiiPr3

46%

R1

IPd(OAc)2 (10mol%)tBu3P.HBF4 (20 mol%)

DABSO, H2N-NR22

R1

SNH

NR22

OO

K2CO3 BnBr

R1

SO

O

KR3-X

R1

SR3

OO

S

OO

36–91% yield

NH

Ph

36%

S

OO

Ph

MeS89%

S

OO

EtO

55%

MeS

OO

CO2Et

EtO

57%

Me Me

Ar1 N2+BF4

+1) DABSO, MeCN, rt

2) (Ar2)2I+BF4–

2-methylbutan-2-ol 90 °C

Ar2S

Ar1

OO

42–88% yieldN

O

H2N

PhS

OO

74%

CO2Me

PhS

OO

88%

Cl

SPh

OO

OMe

42%

(Het)Ar N2+BF4

R1

+

TBAI (10 mol%)TBHP

DABSOMeCN, 80 °C R1

S(Het)ArO

O

58–88% yield

Ph

SO

O

82%

Cl

Ph

SO

O

S

75%

CO2Me

SPhO

O

SPh

OO

N

71% 83%

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 31: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1969

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

zoles with sulfur dioxide. This report might provide usefulinsights for biomimetic synthesis of sulfones in organic lab-oratories.

7 Conclusion

Sulfones (R-SO2-R) have been known for over 100 years,and they have found widespread application in organic syn-thesis and as pharmaceuticals, agrochemicals and poly-mers. Indeed, the first sulfone-based drug, sulfonal, datesback to 1888.204 The chemistry of sulfones has been subjectto a formidable evolution since their initial discovery andexperienced a considerable growth in the last 15 years. Thetransition-metal-catalyzed reactions, selective C–H func-tionalizations, and methods based on sulfur dioxide andsulfur dioxide surrogates, in particular, have led to majorimprovements for the synthetic preparation of sulfones andrelated applications. Nevertheless, there is a constant highdemand for novel general and sustainable methods for thesynthesis of sulfones. Regioselective C–H functionaliza-tions, sulfur dioxide based introductions of the sulfonylmoiety and biomimetic syntheses remain largely unex-plored and new innovative possibilities still lie ahead.

Acknowledgment

We thank Prof. Michael Göbel for his support. Funding by the Fondsder Chemischen Industrie (Liebig Fellowship to G.M.), the DeutscheForschungsgemeinschaft (DFG), and the Chinese Scholarship Council(PhD fellowship to S.L.) is gratefully acknowledged.

References

(1) (a) Whitham, G. H. Organosulfur Chemistry; Oxford UniversityPress: Oxford/New York, 1995. (b) Oae, S. Organic Chemistry ofSulfur; Plenium Press: New York, 1977. (c) Stirling, C. J. M.Organic sulphur chemistry: Structure, mechanism, and synthesis;Butterworths: London/Boston, 1975. (d) Patai, S.; Rappoport, Z.;Stirling, C. J. M. The Chemistry of Sulphones and Sulphoxides;Wiley: New York, 1988.

(2) Trost, B. M.; Chadiri, M. R. J. Am. Chem. Soc. 1984, 106, 7260.(3) (a) Simpkins, N. S. Tetrahedron 1990, 46, 6951. (b) Forristal, I.

J. Sulfur Chem. 2005, 26, 163.(4) (a) Alonso, D. A.; Ájera, C. N. Org. React. 2009, 72, 367. (b) Gui, J.;

Zhou, Q.; Pan, C.-M.; Yabe, Y.; Burns, A. C.; Collins, M. R.;Ornelas, M. A.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2014,136, 4853. (c) Ku, Y.-Y.; Patel, R. R.; Roden, B. A.; Sawick, D. P.Tetrahedron Lett. 1994, 35, 6017. (d) Brown, A. C.; Carpino, L. A.J. Org. Chem. 1985, 50, 1749. (e) Kumar, V.; Ramesh, N. G. Chem.Commun. 2006, 4952. (f) Abrunhosa, I.; Gulea, M.; Masson, S.Synthesis 2004, 928.

(5) (a) Seeliger, F.; Mayr, H. Org. Biomol. Chem. 2008, 6, 3052.(b) Magnus, P. D. Tetrahedron 1977, 33, 2019.

(6) (a) Ramberg, L.; Bäcklund, B. Ark. Chim., Mineral Geol. 1940, 27,1. (b) Taylor, R. J. K.; Casy, G. Org. React. 2004, 62, 359.

(7) (a) Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 14, 4833.(b) Kocienski, P. J.; Lythgoe, B.; Ruston, S. J. Chem. Soc., PerkinTrans. 1 1978, 829. (c) Aïssa, C. J. Org. Chem. 2006, 71, 360.(d) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563.

(8) (a) Li, J. J. Name Reactions in Heterocyclic Chemistry; John Wiley& Sons: Hoboken, 2005. (b) van Leusen, A. M.; Hoogenboom, B.E.; Siderius, H. Tetrahedron Lett. 1972, 13, 2369. (c) van Leusen,A. M.; Wildeman, J.; Oldenziel, O. H. J. Org. Chem. 1977, 42, 1153.

(9) Swenson, R. E.; Sowin, T. J.; Zhang, H. Q. J. Org. Chem. 2002, 67,9182.

(10) (a) Acton, Q. A. Sulfones—Advances in Research and Application;Scholarly Editions: Atlanta, 2013. (b) Meadows, D. C.; Gervay-Hague, J. Med. Res. Rev. 2006, 26, 793. (c) Bisseret, P.; Blanchard,N. Org. Biomol. Chem. 2013, 11, 5393.

(11) (a) Goadsby, P. J.; Ferrari, M. D.; Olesen, J.; Stovner, L. J.; Senard,J. M.; Jackson, N. C.; Poole, P. H. Neurology 2000, 54, 156.(b) Sandrini, G.; Farkkila, M.; Burgess, G.; Forster, E.; Haughie, S.Neurology 2002, 59, 1210.

(12) (a) Iversen, P.; Tyrrell, C. J.; Kaisary, A. V.; Anderson, J. B.; vanPoppel, H.; Tammela, T. L.; Chamberlain, M.; Carroll, K.;Melezinek, I. J. Urol. 2000, 164, 1579. (b) Le, Y.; Ji, H.; Chen, J.-F.;Shen, Z.; Yun, J.; Pu, M. Int. J. Pharm. 2009, 370, 175. (c) Kanfer, I.J. Pharm. Pharm. Sci. 2000, 5, 1.

(13) (a) Yazdanyar, S.; Boer, J.; Ingvarsson, G.; Szepietowski, J. C.;Jemec, G. B. E. Dermatology 2011, 222, 342. (b) Lopez de Compa-dre Rosa, L.; Pearlstein, R. A.; Hopfinger, A. J.; Seydel, J. K. J. Med.Chem. 1987, 30, 900. (c) Zhang, F.-R.; Liu, H.; Irwanto, A.; Fu, X.-A.; Li, Y.; Yu, G.-Q.; Yu, Y.-X.; Chen, M.-F.; Low, H.-Q.; Li, J.-H.;Bao, F.-F.; Foo, J.-N.; Bei, J.-X.; Jia, X.-M.; Liu, J.; Liany, H.; Wang,N.; Niu, G.-Y.; Wang, Z.-Z.; Shi, B.-Q.; Tian, H.-Q.; Liu, H.-X.; Ma,S.-S.; Zhou, Y.; You, J.-B.; Yang, Q.; Wang, C.; Chu, T.-S.; Liu, D.-C.; Yu, X.-L.; Sun, Y.-H.; Ning, Y.; Wei, Z.-H.; Chen, S.-L.; Chen,X.-C.; Zhang, Z.-X.; Liu, Y.-X.; Pulit, S. L.; Wu, W.-B.; Zheng, Z.-Y.;Yang, R.-D.; Long, H.; Liu, Z.-S.; Wang, J.-Q.; Li, M.; Zhang, L.-H.;Wang, H.; Wang, L.-M.; Xiao, P.; Li, J.-L.; Huang, Z.-M.; Huang, J.-X.; Li, Z.; Xiong, L.; Yang, J.; Wang, X.-D.; Yu, D.-B.; Lu, X.-M.;Zhou, G.-Z.; Yan, L.-B.; Shen, J.-P.; Zhang, G.-C.; Zeng, Y.-X.; deBakker, P.; Chen, S.-M.; Liu, J.-J. N. Engl. J. Med. 2013, 369, 1620.

Figure 2

S

OO

N NH

HO2C

Br Br

echinosulfone A

NH

MeOH

CO2H

Me

H

NHMe

HO

HO2CMe

H

SO

O

sulfadixiamycin B

NH

MeOH

CO2H

Me

H

SO

O

NH

MeOH

CO2H

Me

H

sulfadixiamycin C

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 32: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1970

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

(14) (a) Mitchell, G.; Bartlett, D. W.; Fraser, T. E. M.; Hawkes, T. R.;Holt, D. C.; Townson, J. K.; Wichert, R. A. Pest. Manag. Sci. 2001,57, 120. (b) Beaudegnies, R.; Edmunds, A. J. F.; Fraser, T. E. M.;Hall, R. G.; Hawkes, T. R.; Mitchell, G.; Schaetzer, J.; Wendeborn,S.; Wibley, J. Bioorg. Med. Chem. 2009, 17, 4134.

(15) Tanetani, Y.; Kaku, K.; Kawai, K.; Fujioka, T.; Shimizu, T. Pest.Biochem. Physiol. 2009, 95, 47.

(16) Takahashi, H.; Ohki, A.; Kanzaki, M.; Tanaka, A.; Sato, Y.;Matthes, B.; Böger, P.; Wakabayashi, K. Z. Naturforsch. C 2001,56, 781.

(17) El-Hibri, M. J.; Weinberg, S. A. In Encyclopedia of Polymer Scienceand Technology; Mark, H. F., Ed.; Wiley: New York, 2014, 179.

(18) (a) Pritzius, A. B.; Breit, B. Angew. Chem. Int. Ed. 2015, 54, 3121.(b) Griffin, R. J.; Henderson, A.; Curtin, N. J.; Echalier, A.;Endicott, J. A.; Hardcastle, I. R.; Newell, D. R.; Noble, M. E. M.;Wang, L.-Z.; Golding, B. T. J. Am. Chem. Soc. 2006, 128, 6012.(c) Catarinella, M.; Grüner, T.; Strittmatter, T.; Marx, A.; Mayer,T. U. Angew. Chem. Int. Ed. 2009, 48, 9072. (d) Posner, G. H.;Maxwell, J. P.; O’Dowd, H.; Krasavin, M.; Xie, S.; Shapiro, T. A.Bioorg. Med. Chem. 2000, 8, 1361. (e) Tozkoparan, B.; Küpeli, E.;Yeşilada, E.; Ertan, M. Bioorg. Med. Chem. 2007, 15, 1808.

(19) Varma, R. S.; Naicker, K. P. Org. Lett. 1999, 1, 189.(20) (a) Kirihara, M.; Itou, A.; Noguchi, T.; Yamamoto, J. Synlett 2010,

1557. (b) Bahrami, K.; Khodaei, M. M.; Sheikh Arabi, M. J. Org.Chem. 2010, 75, 6208. (c) Karimi, B.; Ghoreishi-Nezhad, M.;Clark, J. H. Org. Lett. 2005, 7, 625. (d) Jana, N. K.; Verkade, J. G.Org. Lett. 2003, 5, 3787. (e) Fukuda, N.; Ikemoto, T. J. Org. Chem.2010, 75, 4629.

(21) Shaabani, A.; Mirzaei, P.; Naderi, S.; Lee, D. G. Tetrahedron 2004,60, 11415.

(22) Jereb, M. Green Chem. 2012, 14, 3047.(23) Olah, G. A. Friedel–Crafts and Related Reactions; Wiley-Inter-

science: New York, 1964.(24) (a) Jensen, F. R.; Goldman, G. In Friedel–Crafts and Related Reac-

tions; Olah, G. A., Ed.; Wiley-Interscience: New York, 1964,1319. (b) Olah, G. A.; Kobayashi, S.; Nishimura, J. J. Am. Chem.Soc. 1973, 95, 564. (c) Olah, G. A.; Lin, H. C. Synthesis 1974, 342.(d) Hyatt, J. A.; White, A. W. Synthesis 1984, 214. (e) Effenberger,F.; Huthmacher, K. Angew. Chem. Int. Ed. 1974, 13, 409.(f) Répichet, S.; Le Roux, C.; Hernandez, P.; Dubac, J.; Desmurs,J.-R. J. Org. Chem. 1999, 64, 6479. (g) Graybill, B. M. J. Org. Chem.1967, 32, 2931. (h) Sipe, H. J. Jr; Clary, D. W.; White, S. B. Synthe-sis 1984, 283. (i) Ueda, M.; Uchiyama, K.; Kano, T. Synthesis1984, 323. (j) Effenberger, F.; Huthmacher, K. Chem. Ber. 1976,109, 2315. (k) Ono, M.; Nakamura, Y.; Sato, S.; Itoh, I. Chem. Lett.1988, 395.

(25) (a) Choudary, B. M.; Chowdari, N.; Kantam, M.; Kannan, R. Tet-rahedron Lett. 1999, 40, 2859. (b) Singh, R. P.; Kamble, R. M.;Chandra, K. L.; Saravanan, P.; Singh, V. K. Tetrahedron 2001, 57,241. (c) Jang, D. O.; Moon, K. S.; Cho, D. H.; Kim, J.-G. Tetrahe-dron Lett. 2006, 47, 6063. (d) Bahrami, K.; Khodei, M. M.;Shahbazi, F. Tetrahedron Lett. 2008, 49, 3931. (e) Choudary, B.M.; Chowdari, N. S.; Kantam, M. L. J. Chem. Soc., Perkin Trans. 12000, 2689. (f) Nara, S. J.; Harjani, J. R.; Salunkhe, M. M. J. Org.Chem. 2001, 66, 8616. (g) Noronha, R. G.; Fernandes, A. C.;Romão, C. C. Tetrahedron Lett. 2009, 50, 1407. (h) Borujeni, K. P.;Tamami, B. Catal. Commun. 2007, 8, 1191. (i) Marquié, J.;Laporterie, A.; Dubac, J.; Roques, N.; Desmurs, J.-R. J. Org. Chem.2001, 66, 421.

(26) (a) Olah, G. A.; Mathew, T.; Surya Prakash, G. K. Chem. Commun.2001, 1696. (b) Li, H.-Z.; Xiao, L.-W.; Li, H.-Y.; Wang, K.-F.; Li, X.J. Chem. Res., Synop. 2003, 493.

(27) (a) Mirjalali, M. B.; Zolfigol, M. A.; Bamoniri, A.; Khazdooz, L.Bull. Korean Chem. Soc. 2003, 24, 1009. (b) Alizadeh, A.; Khodaei,M. M.; Nazari, E. Tetrahedron Lett. 2007, 48, 6805.

(28) Rueggerberg, W. H. C.; Sauls, T. W.; Norwood, S. L. J. Org. Chem.1955, 20, 455.

(29) (a) Fouque, G.; Lacroix, J. Bull. Soc. Chim. Fr. 1923, 33, 180.(b) Kozlov, V. V.; Vol’fson, T. I.; Kozlova, N. A.; Tubyarskaya, G. S.J. Gen. Chem. USSR 1962, 32, 3373.

(30) Joly, R.; Bucourt, R.; Mathieu, J. Recl. Trav. Chim. Pays-Bas 1959,78, 527.

(31) Yang, Y.; Chen, Z.; Rao, Y. Chem. Commun. 2014, 50, 15037.(32) Yao, B.; Zhang, Y. Tetrahedron Lett. 2008, 49, 5385.(33) Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Org. Biomol. Chem.

2014, 12, 9743.(34) Meek, J. S.; Fowler, J. S. J. Org. Chem. 1968, 33, 3422.(35) Oxley, P.; Partridge, M. W.; Robson, T. D.; Short, W. F. J. Chem.

Soc. 1946, 763.(36) Culvenor, C. C. J.; Davies, W.; Heath, N. S. J. Chem. Soc. 1949, 278.(37) (a) Achmatowicz, O.; Michalski, J. Rocz. Chem. 1956, 30, 243.

(b) Hansen, O. R.; Hammer, R.; Vister, T. Acta Chem. Scand. 1953,7, 1331.

(38) Roblin, R. O.; Williams, J. H.; Anderson, G. W. J. Am. Chem. Soc.1941, 63, 1930.

(39) (a) Maloney, K. M.; Kuethe, J. T.; Linn, K. Org. Lett. 2011, 13, 102.(b) Liang, S.; Zhang, R.-Y.; Xi, L.-Y.; Chen, S.-Y.; Yu, X.-Q. J. Org.Chem. 2013, 78, 11874.

(40) (a) Merritt, E. A.; Olofsson, B. Angew. Chem. Int. Ed. 2009, 48,9052. (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.(c) Olofsson, B. Arylation with Diaryliodonium Salts, In Topics inCurrent Chemistry; Springer: Berlin/Heidelberg, 2015, 1.(d) Silva, L. F. Jr.; Olofsson, B. Nat. Prod. Rep. 2011, 28, 1722.

(41) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 188.(42) Pandya, V. G.; Mhaske, S. B. Org. Lett. 2014, 16, 3836.(43) Liang, S.; Zhang, R.-Y.; Wang, G.; Chen, S.-Y.; Yu, X.-Q. Eur. J. Org.

Chem. 2013, 7050.(44) Chawla, R.; Kapoor, R.; Singh, A. K.; Yadav, L. D. S. Green Chem.

2012, 14, 1308.(45) Guan, Z.-H.; Zuo, W.; Zhao, L.-B.; Ren, Z.-H.; Liang, Y.-M. Synthe-

sis 2007, 1465.(46) Reddy, M. A.; Reddy, P. S.; Sreedhar, B. Adv. Synth. Catal. 2010,

352, 1861.(47) Chu, X.-Q.; Meng, H.; Xu, X.-P.; Ji, S.-J. Chem. Eur. J. 2015, 21,

11359.(48) Liu, C.-R.; Li, M.-B.; Cheng, D.-J.; Yang, C.-F.; Tian, S.-K. Org. Lett.

2009, 11, 2543.(49) (a) Dornow, A.; Bartsch, W. Liebigs Ann. Chem. 1957, 602, 23.

(b) Powell, B. F.; Overberger, C. G.; Anselme, J.-P. J. Heterocycl.Chem. 1983, 20, 121. (c) Carter, P.; Stevens, T. S. J. Chem. Soc.1961, 1743. (d) Lemal, D. M.; Rave, T. W.; McGregor, S. D. J. Am.Chem. Soc. 1963, 85, 1944. (e) Lemal, D. M.; Menger, F.; Coats, E.J. Am. Chem. Soc. 1964, 86, 2395. (f) Carpino, L. A. Chem. Ind.1957, 172. (g) Carpino, L. A. J. Am. Chem. Soc. 1957, 79, 4427.(h) Baker, W.; McOmie, J. F. W.; Preston, D. R. J. Chem. Soc. 1961,2971.

(50) Ballini, R.; Marcantoni, E.; Petrini, M. Tetrahedron 1989, 45,6791.

(51) Yang, Y.; Tang, L.; Zhang, S.; Guo, X.; Zha, Z.; Wang, Z. GreenChem. 2014, 16, 4106.

(52) Li, X.; Xu, X.; Tang, Y. Org. Biomol. Chem. 2013, 11, 1739.(53) Song, R.-J.; Liu, Y.; Liu, Y.-Y.; Li, J.-H. J. Org. Chem. 2011, 76, 1001.(54) Reddy, L. R.; Hu, B.; Prashad, M.; Prasad, K. Angew. Chem. Int. Ed.

2009, 48, 172.

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 33: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1971

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

(55) Li, H.-H.; Dong, D.-J.; Jin, Y.-H.; Tian, S.-K. J. Org. Chem. 2009, 74,9501.

(56) Pan, X.-Q.; Zou, J.-P.; Yi, W.-B.; Zhang, W. Tetrahedron 2015, 71,7481.

(57) (a) Asscher, M.; Vofsi, D. J. Chem. Soc. 1964, 4962. (b) Skell, P. S.;Woodworth, R. C.; McNamara, J. H. J. Am. Chem. Soc. 1957, 79,1253. (c) Cristol, S. J.; Davies, D. I. J. Org. Chem. 1964, 29, 1282.

(58) (a) Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev.2014, 114, 2587. (b) Dénès, F.; Schiesser, C. H.; Renaud, P. Chem.Soc. Rev. 2013, 42, 7900. (c) Majumdar, K. C.; Debnath, P. Tetra-hedron 2008, 64, 9799. (d) Hart, D. J. In Radicals in Organic Syn-thesis; Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001,279. (e) Bertrand, M. P.; Ferreri, C. In Radicals in Organic Synthe-sis; Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001,485. (f) Alfassi, Z. B. S-Centered Radicals; Wiley: Chichester,1999.

(59) (a) Quebatte, L.; Thommes, K.; Severin, K. J. Am. Chem. Soc. 2006,128, 7440. (b) Nair, R. P.; Kim, T. H.; Frost, B. J. Organometallics2009, 28, 4681.

(60) Kamigata, N.; Shimizu, T. Rev. Heteroat. Chem. 1997, 17, 1.(61) Zeng, X.; Ilies, L.; Nakamura, E. Org. Lett. 2012, 14, 954.(62) Gilmore, K.; Gold, B.; Clark, R. J.; Alabugin, I. V. Aust. J. Chem.

2013, 66, 336.(63) (a) Kang, S.-K.; Ko, B.-S.; Ha, Y.-H. J. Org. Chem. 2001, 66, 3630.

(b) Kang, S.-K.; Ko, B.-S.; Lee, D.-M. Synth. Commun. 2006, 32,3263. (c) Kang, S.-K.; Seo, H.-W.; Ha, Y.-H. Synthesis 2001, 1321.

(64) Kang, S.-K.; Ha, Y.-H.; Kim, D.-H.; Lim, Y.; Jung, J. Chem.Commun. 2001, 1306.

(65) Alabugin, I. V.; Timokhin, V. I.; Abrams, J. N.; Manoharan, M.;Abrams, R.; Ghiviriga, I. J. Am. Chem. Soc. 2008, 130, 10984.

(66) Mantrand, N.; Renaud, P. Tetrahedron 2008, 64, 11860.(67) Taniguchi, N. Synlett 2011, 1308.(68) Taniguchi, N. Tetrahedron 2014, 70, 1984.(69) Xu, Y.; Zhao, J.; Tang, X.; Wu, W.; Jiang, H. Adv. Synth. Catal.

2014, 356, 2029.(70) Katrun, P.; Chiampanichayakul, S.; Korworapan, K.; Pohmakotr,

M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. Eur. J. Org. Chem.2010, 5633.

(71) Wei, W.; Wen, J.; Yang, D.; Du, J.; You, J.; Wang, H. Green Chem.2014, 16, 2988.

(72) Xi, Y.; Dong, B.; McClain, E. J.; Wang, Q.; Gregg, T. L.; Akhmedov,N. G.; Petersen, J. L.; Shi, X. Angew. Chem. Int. Ed. 2014, 53, 4657.

(73) Meyer, A. U.; Jäger, S.; Prasad Hari, D.; König, B. Adv. Synth. Catal.2015, 357, 2050.

(74) Xia, D.; Miao, T.; Li, P.; Wang, L. Chem. Asian J. 2015, 10, 1919.(75) Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51,

7520.(76) Taniguchi, N. J. Org. Chem. 2015, 80, 7797.(77) Kariya, A.; Yamaguchi, T.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A.

RSC Adv. 2014, 4, 13191.(78) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew.

Chem. Int. Ed. 2013, 52, 7156.(79) Singh, A. K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55,

4742.(80) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem.

Soc. 2013, 135, 11481.(81) Li, X.; Xu, Y.; Wu, W.; Jiang, C.; Qi, C.; Jiang, H. Chem. Eur. J. 2014,

20, 7911.(82) Tang, S.; Wu, Y.; Liao, W.; Bai, R.; Liu, C.; Lei, A. Chem. Commun.

2014, 50, 4496.(83) Sun, K.; Lv, Y.; Zhu, Z.; Jiang, Y.; Qi, J.; Wu, H.; Zhang, Z.; Zhang,

G.; Wang, X. RSC Adv. 2015, 5, 50701.(84) Li, X.; Xu, X.; Shi, X. Tetrahedron Lett. 2013, 54, 3071.

(85) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015,80, 4697.

(86) Taniguchi, T.; Idota, A.; Ishibashi, H. Org. Biomol. Chem. 2011, 9,3151.

(87) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H.Chem. Commun. 2013, 49, 10239.

(88) Xu, K.; Khakyzadeh, V.; Bury, T.; Breit, B. J. Am. Chem. Soc. 2014,136, 16124.

(89) Li, X.; Xu, X.; Zhou, C. Chem. Commun. 2012, 48, 12240.(90) Liu, Z.; Chen, X.; Chen, J.; Qu, L.; Xia, Y.; Wu, H.; Ma, H.; Zhu, S.;

Zhao, Y. RSC Adv. 2015, 5, 71215.(91) Gao, X.; Pan, X.; Gao, J.; Huang, H.; Yuan, G.; Li, Y. Chem.

Commun. 2015, 51, 210.(92) (a) Chen, J.-Y.; Chen, X.-L.; Li, X.; Qu, L.-B.; Zhang, Q.; Duan, L.-

K.; Xia, Y.-Y.; Chen, X.; Sun, K.; Liu, Z.-D.; Zhao, Y.-F. Eur. J. Org.Chem. 2015, 314. (b) Jiang, Y.; Loh, T.-P. Chem. Sci. 2014, 5, 4939.

(93) Katrun, P.; Hlekhlai, S.; Meesin, J.; Pohmakotr, M.; Reutrakul, V.;Jaipetch, T.; Soorukram, D.; Kuhakarn, C. Org. Biomol. Chem.2015, 13, 4785.

(94) Jiang, Q.; Xu, B.; Jia, J.; Zhao, A.; Zhao, Y.-R.; Li, Y.-Y.; He, N.-N.;Guo, C.-C. J. Org. Chem. 2014, 79, 7372.

(95) Chen, J.; Mao, J.; Zheng, Y.; Liu, D.; Rong, G.; Yan, H.; Zhang, C.;Shi, D. Tetrahedron 2015, 71, 5059.

(96) Gao, J.; Lai, J.; Yuan, G. RSC Adv. 2015, 5, 66723.(97) Xu, Y.; Tang, X.; Hu, W.; Wu, W.; Jiang, H. Green Chem. 2014, 16,

3720.(98) Li, H.-S.; Liu, G. J. Org. Chem. 2014, 79, 509.(99) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015,

80, 7652.(100) Singh, R.; Allam, B. K.; Singh, N.; Kumari, K.; Singh, S. K.; Singh,

K. N. Org. Lett. 2015, 17, 2656.(101) Li, S.; Li, X.; Yang, F.; Wu, Y. Org. Chem. Front. 2015, 2, 1076.(102) Lu, Q.; Zhang, J.; Peng, P.; Zhang, G.; Huang, Z.; Yi, H.; Miller, J.

T.; Lei, A. Chem. Sci. 2015, 6, 4851.(103) Yadav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Synlett 2016, 27,

427.(104) Tang, Y.; Fan, Y.; Gao, H.; Li, X.; Xu, X. Tetrahedron Lett. 2015, 56,

5616.(105) Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Eur. J. Org. Chem. 2013,

5485.(106) Tang, Y.; Zhang, Y.; Wang, K.; Li, X.; Xu, X.; Du, X. Org. Biomol.

Chem. 2015, 13, 7084.(107) (a) Gilman, H.; Beaber, N. J.; Myers, C. H. J. Am. Chem. Soc. 1925,

47, 2047. (b) Burton, H.; Davy, W. A. J. Chem. Soc. 1948, 528.(c) Whitmore, F. C.; Thurman, N. J. Am. Chem. Soc. 1923, 45,1068.

(108) Gilman, H.; Fothergill, R. E. J. Am. Chem. Soc. 1929, 51, 3501.(109) Shirota, Y.; Nagai, T.; Tokura, N. Tetrahedron 1969, 25, 3193.(110) Katritzky, A. R.; Abdel-Fattah, A. A.; Vakulenko, A. V.; Tao, H. J.

Org. Chem. 2005, 70, 9191.(111) (a) Gerasimova, T. N.; Bushmelev, V. A.; Koptyug, V. A. Russ.

J. Org. Chem. 1965, 1, 1667. (b) Bradley, W.; Hannon, J. D. Chem.Ind. 1959, 540.

(112) Mao, S.; Gao, Y. R.; Zhu, X. Q.; Guo, D. D.; Wang, Y. Q. Org. Lett.2015, 17, 1692.

(113) Ojha, D. P.; Prabhu, K. R. Org. Lett. 2015, 17, 18.(114) Feng, X. W.; Wang, J.; Zhang, J.; Yang, J.; Wang, N.; Yu, X. Q. Org.

Lett. 2010, 12, 4408.(115) Yang, Z.; Hao, W. J.; Wang, S. L.; Zhang, J. P.; Jiang, B.; Li, G.; Tu, S.

J. J. Org. Chem. 2015, 80, 9224.(116) Gigant, N.; Drège, E.; Retailleau, P.; Joseph, D. Chem. Eur. J. 2015,

21, 15544.(117) Mock, W. L. J. Am. Chem. Soc. 1966, 88, 2857.

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 34: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1972

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

(118) Smith, M. March's Advanced Organic Chemistry. Reactions, Mech-anisms, and Structure; Wiley: Hoboken, 2013.

(119) (a) Deguin, B.; Vogel, P. J. Am. Chem. Soc. 1992, 114, 9210.(b) Vogel, P.; Sordo, J. A. Curr. Org. Chem. 2006, 10, 2007.(c) Suarez, D.; Sordo, T. L.; Sordo, J. A. J. Org. Chem. 1995, 60,2848. (d) Suarez, D.; Gonzalez, J.; Sordo, T. L.; Sordo, J. A. J. Org.Chem. 1994, 59, 8058. (e) Suarez, D.; Sordo, T. L.; Sordo, J. A. J.Am. Chem. Soc. 1994, 116, 763.

(120) Suzuki, H.; Abe, H. Tetrahedron Lett. 1995, 36, 6239.(121) Zhu, W.; Ma, D. J. Org. Chem. 2005, 70, 2696.(122) Baskin, J. M.; Wang, Z. Org. Lett. 2002, 4, 4423.(123) Yang, M.; Shen, H.; Li, Y.; Shen, C.; Zhang, P. RSC Adv. 2014, 4,

26295.(124) Bian, M.; Xu, F.; Ma, C. Synthesis 2007, 2951.(125) Srinivas, B. T. V.; Rawat, V. S.; Konda, K.; Sreedhar, B. Adv. Synth.

Catal. 2014, 356, 805.(126) Yuan, Y. Q.; Guo, S. R. Synlett 2011, 2750.(127) Gund, S. H.; Shelkar, R. S.; Nagarkar, J. M. RSC Adv. 2015, 5,

62926.(128) Zhang, K.; Xu, X. H.; Qing, F. L. J. Org. Chem. 2015, 80, 7658.(129) (a) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M. Org. Lett.

2002, 4, 4719. (b) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L.M. Synlett 2003, 361. (c) Cacchi, S.; Fabrizi, G.; Goggiamani, A.;Parisi, L. M.; Bernini, R. J. Org. Chem. 2004, 69, 5608.

(130) Reeves, D. C.; Rodriguez, S.; Lee, H.; Haddad, N.; Krishnamurthy,D.; Senanayake, C. H. Tetrahedron Lett. 2009, 50, 2870.

(131) Tian, H.; Cao, A.; Qiao, L.; Yu, A.; Chang, J.; Wu, Y. Tetrahedron2014, 70, 9107.

(132) Beaulieu, C.; Guay, D.; Wang, Z.; Evans, D. A. Tetrahedron Lett.2004, 45, 3233.

(133) Kir, A.; Sayyed, I. A.; Lo, W. F.; Kaiser, H. M.; Beller, M.; Tse, M. K.Org. Lett. 2007, 9, 3405.

(134) Huang, F.; Batey, R. A. Tetrahedron 2007, 63, 7667.(135) Kantam, M.; Neelima, B.; Sreedhar, B.; Chakravarti, R. Synlett

2008, 1455.(136) Yang, H.; Li, Y.; Jiang, M.; Wang, J.; Fu, H. Chem. Eur. J. 2011, 17,

5652.(137) Zhou, P. X.; Ye, Y. Y.; Zhao, L. B.; Hou, J. Y.; Kang, X.; Chen, D. Q.;

Tang, Q.; Zhang, J. Y.; Huang, Q. X.; Zheng, L.; Ma, J. W.; Xu, P. F.;Liang, Y. M. Chem. Eur. J. 2014, 20, 16093.

(138) (a) Tsuji, J. Acc. Chem. Res. 1969, 2, 144. (b) Trost, B. M. Tetrahe-dron 1977, 33, 2615. (c) Trost, B. M.; Van Vranken, D. L. Chem.Rev. 1996, 96, 395. (d) Trost, B. M.; Crawley, M. L. Chem. Rev.2003, 103, 2921.

(139) (a) Billamboz, M.; Mangin, F.; Drillaud, N.; Chevrin-Villette, C.;Banaszak-Léonard, E.; Len, C. J. Org. Chem. 2014, 79, 493.(b) Inomata, K.; Yamamoto, T.; Kotake, H. Chem. Lett. 1981,1357. (c) Felpin, F.-X.; Landais, Y. J. Org. Chem. 2005, 70, 6441.(d) Liao, M.-C.; Duan, X.-H.; Liang, Y.-M. Tetrahedron Lett. 2005,46, 3469. (e) Uozumi, Y.; Danjo, H.; Hayashi, T. Tetrahedron Lett.1997, 38, 3557. (f) Seebach, D.; Devaquet, E.; Ernst, A.;Hayakawa, M.; Kühnle, F. N. M.; Schweizer, W. B.; Weber, B.Helv. Chim. Acta 1995, 78, 1636. (g) Vasen, D.; Salzer, A.;Gerhards, F.; Gais, H.-J.; Bieler, N. H.; Togni, A. Organometallics2000, 19, 539. (h) Trost, B. M.; Crawley, M. L.; Lee, C. B. Chem.Eur. J. 2006, 12, 2171. (i) Boldrini, G. P.; Savoia, D.; Tagliavini, E.;Trombini, C.; Umani-Ronchi, A. J. Organomet. Chem. 1984, 268,97.

(140) (a) Safi, M.; Sinou, D. Tetrahedron Lett. 1991, 32, 2025. (b) Kang,S.-K.; Park, D.-C.; Jeon, J.-H.; Rho, H.-S.; Yu, C.-M. TetrahedronLett. 1994, 35, 2357.

(141) (a) Chandrasekhar, S.; Jagadeshwar, V.; Saritha, B.; Narsihmulu,C. J. Org. Chem. 2005, 70, 6506. (b) Ma, X.-T.; Dai, R.-H.; Zhnag, J.;Gu, Y.; Tian, S.-K. Adv. Synth. Catal. 2014, 356, 2984.

(142) (a) Ono, N.; Hamamoto, I.; Kawai, T.; Kaji, A.; Tamura, R.;Kakihana, M. Bull. Chem. Soc. Jpn. 1986, 59, 405. (b) Tamura, R.;Kai, Y.; Kakihana, M.; Hayashi, K.; Tsuji, M.; Nakamura, T.; Oda,D. J. Org. Chem. 1986, 51, 4375.

(143) Wu, X. S.; Chen, Y.; Li, M. B.; Zhou, M. G.; Tian, S. K. J. Am. Chem.Soc. 2012, 134, 14694.

(144) (a) Hiroi, K.; Kurihara, Y. J. Chem. Soc., Chem. Commun. 1989,1778. (b) Hiroi, K.; Makino, K. Chem. Pharm. Bull. 1988, 36, 1744.(c) Hiroi, K.; Makino, K. Chem. Lett. 1986, 617. (d) Hiroi, K.;Kitayama, R.; Sato, S. J. Chem. Soc., Chem. Commun. 1984, 303.(e) Hiroi, K.; Kitayama, R.; Sato, S. Chem. Pharm. Bull. 1984, 32,2628. (f) Hiroi, K.; Kitayama, R.; Sato, S. J. Chem. Soc., Chem.Commun. 1983, 1470. (g) Eichelmann, H.; Gais, H.-J. Tetrahe-dron: Asymmetry 1995, 6, 643. (h) Gavrilov, K. N.; Bondarev, O.G.; Tsarev, V. N.; Shiryaev, A. A.; Lyubimov, S. E.; Kucherenko, A.S.; Davankov, V. A. Russ. Chem. Bull. 2003, 52, 122. (i) Wolfe, J. A.;Hitchcock, S. R. Tetrahedron: Asymmetry 2010, 21, 2690. (j) Gais,H.-J.; Eichelmann, H.; Spalthoff, N.; Gerhards, F.; Frank, M.;Raabe, G. Tetrahedron: Asymmetry 1998, 9, 235. (k) Tsarev, V. N.;Konkin, S. I.; Shyryaev, A. A.; Davankov, V. A.; Gavrilov, K. N. Tet-rahedron: Asymmetry 2005, 16, 1737.

(145) Trost, B. M.; Organ, M. G.; O’Doherty, G. A. J. Am. Chem. Soc.1995, 117, 9662.

(146) Ueda, M.; Hartwig, J. F. Org. Lett. 2010, 12, 92.(147) Jegelka, M.; Plietker, B. Org. Lett. 2009, 11, 3462.(148) Jegelka, M.; Plietker, B. Chem. Eur. J. 2011, 17, 10417.(149) (a) Dubbaka, S. R.; Vogel, P. Angew. Chem. Int. Ed. 2005, 44, 7674.

(b) Dubbaka, S. R.; Vogel, P. Tetrahedron Lett. 2006, 47, 3345.(c) Dubbaka, S. R.; Vogel, P. Org. Lett. 2004, 6, 95. (d) Dubbaka, S.R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292. (e) Volla, C. M.R.; Dubbaka, S. R.; Vogel, P. Tetrahedron 2009, 65, 504.

(150) Labadie, S. S. J. Org. Chem. 1989, 54, 2496.(151) Bandgar, B. P.; Bettigeri, S. V.; Phopase, J. Org. Lett. 2004, 6,

2105.(152) Hu, F.; Lei, X. ChemCatChem 2015, 7, 1539.(153) Fu, Y.; Zhu, W.; Zhao, X.; Hügel, H.; Wu, Z.; Su, Y.; Du, Z.; Huang,

D.; Hu, Y. Org. Biomol. Chem. 2014, 12, 4295.(154) Liu, X.; Chen, X.; Mohr, J. T. Org. Lett. 2015, 17, 3572.(155) (a) Yamaguchi, J.; Itami, K.; Yamaguchi, A. D. Angew. Chem. Int.

Ed. 2012, 51, 8960. (b) Gutekunst, W. R.; Baran, P. S. Chem. Soc.Rev. 2011, 40, 1976. (c) Ackermann, L. Chem. Rev. 2011, 111,1315. (d) Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem.Soc. Rev. 2011, 40, 4740. (e) Jazzar, R.; Hitce, J.; Renaudat, A.;Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654.(f) Crabtree, R. H. Chem. Rev. 2010, 110, 575. (g) Bergman, R. G.Nature 2007, 446, 391. (h) Godula, K.; Sames, D. Science 2006,312, 67.

(156) Zhao, X.; Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009,131, 3466.

(157) Zhao, X.; Dong, V. M. Angew. Chem. Int. Ed. 2011, 50, 932.(158) Xu, Y.; Liu, P.; Li, S. L.; Sun, P. J. Org. Chem. 2015, 80, 1269.(159) (a) Zhang, D.; Cui, X.; Zhang, Q.; Wu, Y. J. Org. Chem. 2015, 80,

1517. (b) Xia, C.; Wei, Z.; Shen, C.; Xu, J.; Yang, Y.; Su, W.; Zhang,P. RSC Adv. 2015, 5, 52588.

(160) Xu, Y. H.; Wang, M.; Lu, P.; Loh, T. P. Tetrahedron 2013, 69, 4403.(161) Ge, B.; Wang, D.; Dong, W.; Ma, P.; Li, Y.; Ding, Y. Tetrahedron

Lett. 2014, 55, 5443.(162) Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Org. Lett. 2013, 15,

1270.

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973

Page 35: Recent Advances in the Synthesis of Sulfones · Recent Advances in the Synthesis of Sulfones Nai-Wei Liu Shuai Liang ... cycloaddition reactions, although known for decades, are rarely

1973

N.-W. Liu et al. ReviewSyn thesis

Thi

s do

cum

ent w

as d

ownl

oade

d fo

r pe

rson

al u

se o

nly.

Una

utho

rized

dis

trib

utio

n is

str

ictly

pro

hibi

ted.

(163) Reddy, V. P.; Qiu, R.; Iwasaki, T.; Kambe, N. Org. Biomol. Chem.2015, 13, 6803.

(164) Liang, H. W.; Jiang, K.; Ding, W.; Yuan, Y.; Shuai, L.; Chen, Y. C.;Wei, Y. Chem. Commun. 2015, 51, 16928.

(165) Saidi, O.; Marafie, J.; Ledger, A. E.; Liu, P. M.; Mahon, M. F.;Kociok-Köhn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc.2011, 133, 19298.

(166) Liu, J.; Yu, L.; Zhuang, S.; Gui, Q.; Chen, X.; Wang, W.; Tan, Z.Chem. Commun. 2015, 51, 6418.

(167) Rao, W. H.; Shi, B. F. Org. Lett. 2015, 17, 2784.(168) Liang, S.; Liu, N. W.; Manolikakes, G. Adv. Synth. Catal. 2016, 358,

159.(169) Rao, W. H.; Zhan, B. B.; Chen, K.; Ling, P. X.; Zhang, Z. Z.; Shi, B. F.

Org. Lett. 2015, 17, 3552.(170) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew.

Chem. Int. Ed. 2014, 53, 4205.(171) Kamijo, S.; Hirota, M.; Tao, K.; Watanabe, M.; Murafuji, T. Tetra-

hedron Lett. 2014, 55, 5551.(172) Sun, K.; Chen, X. L.; Li, X.; Qu, L. B.; Bi, W. Z.; Chen, X.; Ma, H. L.;

Zhang, S. T.; Han, B. W.; Zhao, Y. F.; Li, C. J. Chem. Commun. 2015,51, 12111.

(173) (a) Xiao, F.; Chen, H.; Xie, H.; Chen, S.; Yang, L.; Deng, G. J. Org.Lett. 2014, 16, 50. (b) Katrun, P.; Mueangkaew, C.; Pohmakotr,M.; Reutrakul, V.; Jaipetch, T.; Soorukram, D.; Kuhakarn, C.J. Org. Chem. 2014, 79, 1778.

(174) Nassoy, A. C. M.; Raubo, P.; Harrity, J. P. Chem. Commun. 2015,51, 5914.

(175) Qiu, J. K.; Hao, W. J.; Wang, D. C.; Wei, P.; Sun, J.; Jiang, B.; Tu, S. J.Chem. Commun. 2014, 50, 14782.

(176) Xiao, F.; Chen, S.; Chen, Y.; Huang, H.; Deng, G. J. Chem.Commun. 2015, 51, 652.

(177) (a) Deeming, A. S.; Emmett, E. J.; Richards-Taylor, C. S.; Willis, M.C. Synthesis 2014, 46, 2701. (b) Emmett, E. J.; Willis, M. C. AsianJ. Org. Chem. 2015, 4, 602. (c) Liu, G.; Fan, C.; Wu, J. Org. Biomol.Chem. 2015, 13, 1592. (d) Vogel, P.; Turks, M.; Bouchez, L.;Markovic, D.; Varela-Álvarez, A.; Sordo, J. Á. Acc. Chem. Res.2007, 40, 931. (e) Floriańczyk, Z.; Raducha, D. Pol. J. Chem. 1995,69, 481.

(178) (a) Burke, S. D. In Encyclopedia of Reagents for Organic Synthesis;John Wiley & Sons: Chichester, 2001. (b) Pelzer, G.; Herwig, J.;Keim, W.; Goddard, R. Russ. Chem. Bull. 1998, 47, 904.(c) Hoffman, R. V. Org. Synth. 1981, 60, 121. (d) Malet-Sanz, L.;Madrzak, J.; Ley, S. V.; Baxendale, I. R. Org. Biomol. Chem. 2010,8, 5324.

(179) (a) Hoffmann, H. M. R. Angew. Chem. Int. Ed. 1969, 8, 556.(b) Rogic, M. M.; Masilamani, D. J. Am. Chem. Soc. 1977, 99, 5219.(c) Markovic, D.; Varela-Alvarez, A.; Sordo, J. A.; Vogel, P. J. Am.Chem. Soc. 2006, 128, 7782.

(180) Wojcinski, L. M.; Boyer, M. T.; Sen, A. Inorg. Chim. Acta 1998,270, 8.

(181) Bouchez, L.; Vogel, P. Synthesis 2002, 225.(182) Marković, D.; Volla, C. M.; Vogel, P.; Varela-Álvarez, A.; Sordo, J.

A. Chem. Eur. J. 2010, 16, 5969.

(183) (a) Deguin, B.; Roulet, J. M.; Vogel, P. Tetrahedron Lett. 1997, 38,6197. (b) Bouchez, L. C.; Turks, M.; Dubbaka, S. R.; Fonquerne,F.; Craita, C.; Laclef, S.; Vogel, P. Tetrahedron 2005, 61, 11473.(c) Bouchez, L. C.; Dubbaka, S. R.; Turks, M.; Vogel, P. J. Org.Chem. 2004, 69, 6413. (d) Exner, C. J.; Laclef, S.; Poli, F.; Turks,M.; Vogel, P. J. Org. Chem. 2011, 76, 840. (e) Huang, X. G.; Vogel,P. Synthesis 2002, 232.

(184) (a) Bouchez, L. C.; Vogel, P. Chem. Eur. J. 2005, 11, 4609.(b) Turks, M.; Huang, X.; Vogel, P. Chem. Eur. J. 2005, 11, 465.(c) Turks, M.; Fonquerne, F.; Vogel, P. Org. Lett. 2004, 6, 1053.(d) Narkevitch, V.; Vogel, P.; Schenk, K. Helv. Chim. Acta 2002, 85,1674. (e) Huang, X. G.; Craita, C.; Vogel, P. J. Org. Chem. 2004, 69,4272. (f) Craita, C.; Didier, C.; Vogel, P. Chem. Commun. 2007,2411.

(185) (a) Schlosser, M. Organometallics in Synthesis. Third Manual;Wiley: Hoboken, 2013. (b) Knochel, P. Handbook of Functional-ized Organometallics. Application and Synthesis; Wiley-VCH:Weinheim, 2005.

(186) Wu, J. P.; Emeigh, J.; Su, X.-P. Org. Lett. 2005, 7, 1223.(187) (a) Margraf, N.; Manolikakes, G. J. Org. Chem. 2015, 80, 2582.

(b) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 4972.(188) Shavnya, A.; Coffey, S. B.; Smith, A. C.; Mascitti, V. Org. Lett.

2013, 15, 6226.(189) Shavnya, A.; Hesp, K. D.; Mascitti, V.; Smith, A. C. Angew. Chem.

Int. Ed. 2015, 54, 13571.(190) Johnson, M. W.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.;

Mascitti, V.; Toste, F. D. Angew. Chem. Int. Ed. 2014, 53, 4404.(191) Woolven, H.; González-Rodríguez, C.; Marco, I.; Thompson, A.

L.; Willis, M. C. Org. Lett. 2011, 13, 4876.(192) Deeming, A. S.; Russell, C. J.; Hennessy, A. J.; Willis, M. C. Org.

Lett. 2014, 16, 150.(193) Rocke, B. N.; Bahnck, K. B.; Herr, M.; Lavergne, S.; Mascitti, V.;

Perreault, C.; Polivkova, J.; Shavnya, A. Org. Lett. 2014, 16, 154.(194) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem. Int. Ed.

2013, 52, 12679.(195) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem. Int. Ed.

2014, 53, 10204.(196) Chen, C. C.; Waser, J. Org. Lett. 2015, 17, 736.(197) (a) Nguyen, B.; Emmett, E. J.; Willis, M. C. J. Am. Chem. Soc. 2010,

132, 16372. (b) Emmett, E. J.; Richards-Taylor, C. S.; Nguyen, B.;Garcia-Rubia, A.; Hayter, B. R.; Willis, M. C. Org. Biomol. Chem.2012, 10, 4007.

(198) Richards-Taylor, C. S.; Blakemore, D. C.; Willis, M. C. Chem. Sci.2014, 5, 222.

(199) Liu, X.; Li, W.; Zheng, D.; Fan, X.; Wu, J. Tetrahedron 2015, 71,3359.

(200) Zheng, D.; An, Y.; Li, Z.; Wu, J. Angew. Chem. Int. Ed. 2014, 53,2451.

(201) Fan, W.; Su, J.; Shi, D.; Feng, B. Tetrahedron 2015, 71, 6740.(202) Ovenden, S. P. B.; Capon, R. J. J. Nat. Prod. 1999, 62, 1246.(203) Baunach, M.; Ding, L.; Willing, K.; Hertweck, C. Angew. Chem.

Int. Ed. 2015, 54, 13279.(204) Wendt, E. C. In The Medical Record; Vol. 33; Shrady, G. F.;

Stedman, T. L., Eds.; W. Wood: New York, 1888, 597.

© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 1939–1973