real-time rendering paper presentation logarithmic perspective shadow maps

42
Real-Time Rendering Paper Presentation Logarithmic Perspective Shadow Maps Brandon Lloyd Naga Govindaraju Cory Quammen Steve Molnar Dinesh Manocha Slides refer to Brandon Lloyd’s Presented by Bo-Yin Yao 2010.3.11 1

Upload: holmes-adkins

Post on 02-Jan-2016

23 views

Category:

Documents


1 download

DESCRIPTION

Real-Time Rendering Paper Presentation Logarithmic Perspective Shadow Maps. Brandon Lloyd Naga Govindaraju Cory Quammen Steve Molnar Dinesh Manocha Slides refer to Brandon Lloyd’s Presented by Bo-Yin Yao 2010.3.11. Outlines. Introduction Related work - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

1

Real-Time Rendering Paper Presentation

Logarithmic Perspective Shadow Maps

Brandon LloydNaga Govindaraju

Cory QuammenSteve Molnar

Dinesh Manocha

Slides refer to Brandon Lloyd’s

Presented by Bo-Yin Yao

2010.3.11

Page 2: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

2

Outlines

Introduction Related work Logarithmic perspective warping Error analysis Results Conclusion

Page 3: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

3

Outlines

Introduction Related work Logarithmic perspective warping Error analysis Results Conclusion

Page 4: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

4

Standard Shadow Map

aliasing undersampled

Page 5: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

5

Perspective Warping

aliasing

Page 6: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

6

Logarithmic perspective shadow maps (LogPSMs)

Warp the shadow map using a perspective transformation with an additional logarithmic warping

Reduce maximum error to levels that are nearly optimal for scene-independent algorithms

Similar performance to PSM with less error

Similar error to PSM with less texture resolution

Page 7: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

7

Logarithmic Perspective Warping

Page 8: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

8

Outlines

Introduction Related work Logarithmic perspective warping Error analysis Results Conclusion

Page 9: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

9

Single shadow map warping

Perspective shadow maps (PSMs) [Stamminger and Drettakis 2002]

Page 10: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

10

Single shadow map warping

Light-space perspective shadow maps (LiSPSMs) [Wimmer et al. 2004]

Trapezoidal shadow maps [Martin and Tan 2004]

Page 11: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

11

Face partitioning

Perspective warped cube maps[Kozlov 2004]

Page 12: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

12

z-partitioning

Cascaded shadow maps [Engel 2007] Parallel split shadow maps [Zhang et al. 2006]

Separating-plane shadow maps[Mikkelsen 2007]

z

Page 13: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

13

Adaptive partitioning Adaptive shadow maps

[Fernando et al. 2001] Queried virtual shadow maps

[Geigl and Wimmer 2007] Fitted virtual shadow maps

[Geigl and Wimmer 2007] Resolution matched shadow maps

[Lefohn et al. 2007] Tiled shadow maps

[Arvo 2004] Multiple shadow frusta

[Forsyth 2006]

Page 14: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

14

Irregular z-buffer

GPU implementations [Arvo 2006; Sintorn et al. 2008]

Hardware architecture[Johnson et al. 2005]

Page 15: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

15

Sampling modified methods

Scene-independent Methods

Single SM warping Face partitioning z-partitioning

Benefit Lower, nearly constant cost

Drawback Higher error

Scene-dependent Adaptive Irregular

Page 16: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

16

Sampling modified methods

Scene-dependent Methods

Adaptive Irregular

Benefit Lower error

Drawback Higher, variable cost

Page 17: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

17

Filtering methods

Percentage closer filtering[Reeves et al. 1987]

Variance shadow maps[Donnely and Lauritzen 2006; Lauritzen and McCool 2008]

Convolution shadow maps[Annen et al. 2007]

Exponential shadow maps[Salvi 2008; Annen et al. 2008]

Page 18: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

18

Outlines

Introduction Related work Logarithmic perspective warping Error analysis Results Conclusion

Page 19: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

19

Perspective warping

PSM Tight fit to the view frustum Low error in x, but high error along y

LiSPSMs Relax the warping to reduce the error in y, but this

increases the error in xPSM LiSPSM

high

err

or

low error

mod

erat

e er

ror

moderate error

y

x

Page 20: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

20

Logarithmic + perspective warping

Starts with perspective projection similar to PSMs

Then applies a logarithmic transformation to correct for the high error in y

Page 21: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

21

Logarithmic + perspective warping

Perspectiveprojection

Logarithmictransform

high

err

or

low

err

or

y

x

Page 22: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

22

Logarithmic + perspective warping

Causes planar primitives to become curved

→ need a specialized rasterization to render

Page 23: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

23

Logarithmic rasterization

Brute-force rasterization Use a fragment program Slower than standard rasterization

disables optimizations z-culling double-speed z-only rendering

breaks linear depth compression schemes

Page 24: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

24

Outlines

Introduction Related work Logarithmic perspective warping Error analysis Results Conclusion

Page 25: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

25

Combinations of algorithms

single SMStandardPLogP

z-partitioningZPZP+PZP+LogP

P - Perspective warpingLogP - Logarithmic perspective warpingZP - z-partitioning FP - face partitioning

face-partitioning-FP+PFP+LogP

Page 26: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

26

Quantifying aliasing error

light

Page 27: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

27

Quantifying aliasing error

light

light imageplane

shadow map

eye imageplane

Page 28: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

28

Quantifying aliasing error

Maximum error: over a light ray over the frustum over all light positions

light

Page 29: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

29

Scene-independent maximum error

Standard FP+P ZP5+P FP+LogP

Page 30: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

30

Near optimal, scene-independent warping

Minimizes maximum error over a face Too complicated for practical use Used as a baseline

Page 31: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

31

Maximum error over all light positions

Param. End face Side face - s Side face - t Side face - combined

Uniform

Perspective

Log+Persp.

Near optimal

Page 32: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

32

Error distribution along a face

0 0.5 10

5

10

15

20

v

e Mp;s

0 0.5 10

5

10

15

20

ve M

p;t

max

err

or in

s

max

err

or in

tnear near farfar

UniformLiSPSMPSMLogPSM

Uniform LiSPSM PSM LogPSM

Page 33: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

33

Maximum error for varying light directions with z-partitioning

view direction

direction to light

Page 34: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

34

Outlines

Introduction Related work Logarithmic perspective warping Error analysis Results Conclusion

Page 35: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

35

Single shadow map LogPSM

LogPSMs have lower maximum error more uniform error

LiSPSM

LogPSMLiSPSM

LogPSM

>107.753.2511113.257.7510< >107.753.2511113.257.7510<

Error color mapping

Page 36: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

36

Partitioning schemes

Standard FP+P ZP5+P FP+LogP

Page 37: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

37

Point lights

Page 38: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

38

Demo video

Page 39: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

39

Outlines

Introduction Related work Logarithmic perspective warping Error analysis Results Conclusion

Page 40: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

40

Benefits of LogPSMs

LogPSMs are close to optimal for scene-independent algorithms

LogPSMs achieve low error with few shadow maps

Can replace perspective warping in scene-independent directly single shadow map z-partitioning face partitioning

Page 41: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

41

Limitations of LogPSMs

Not currently supported in hardware

Share problems as other warping algorithms: Do not handle aliasing error due to surface orientation Face partitioning needed for most benefit

Not as simple as z-partitioning Can exhibit shearing artifacts

Page 42: Real-Time Rendering Paper Presentation  Logarithmic Perspective Shadow Maps

42

Thanks For Your Participation!