discretization phase transitions and wilson dirac...

60
Discretization Phase Transitions and Wilson Dirac Spectra Jacobus Verbaarschot [email protected] Stony Brook University Benasque, June 2013 Discretization Phase Transitions – p. 1/5

Upload: others

Post on 30-Jun-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Discretization Phase Transitions and WilsonDirac Spectra

Jacobus Verbaarschot

[email protected]

Stony Brook University

Benasque, June 2013

Discretization Phase Transitions – p. 1/55

Page 2: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Acknowledgments

Collaborators: Gernot Akemann (Bielefeld)Poul Damgaard (NBIA)Mario Kieburg (Bielefeld)Kim Splittorff (NBI)Savvas Zafeiropoulos (Stony Brook)

Discretization Phase Transitions – p. 2/55

Page 3: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Relevant Papers

P.H. Damgaard, K. Splittorff and J. J. M. Verbaarschot, Microscopic Spectrum of the Wilson DiracOperator, Phys. Rev. Lett.

G. Akemann, P.H. Damgaard, K. Splittorff and J. J. M. Verbaarschot, Spectrum of the WilsonDirac Operator at Finite Lattice Spacing, to be published.

P.H. Damgaard, K. Splittorff and J. J. M. Verbaarschot, Microscopic Spectrum of the Wilson DiracOperator, arXiv:1001.2937 [hep-th].

K. Splittorff and J. J. M. Verbaarschot, The Wilson Dirac Spectrum for QCD with DynamicalQuarks, Phys. Rev. D 84 (2011) 065031 [arXiv:1104.6229 [hep-lat]].

K. Splittorff and J. J. M. Verbaarschot, The Microscopic Twisted Mass Dirac Spectrum, Phys.Rev. D8 5 (2012) 105008, arXiv:1201.1361 [hep-lat].

M. Kieburg, J. J. M. Verbaarschot, S. Zafeiropoulos Eigenvalue Density of the Non-HermitianWilson Dirac Operator„ Phys. Rev. Lett. 108 (2012) 022001 arXiv:1109.0656 [hep-lat].

M. Kieburg, K. Splittorff and J. J. M. Verbaarschot, The Realization of the Sharpe-SingletonScenario, Phys. Rev. D85(2012) 094011 [arXiv:1202.0620 [hep-lat]].

M. Kieburg, K. Splittorff and J. J. M. Verbaarschot, to be published.

Discretization Phase Transitions – p. 3/55

Page 4: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Contents

I. Motivation

II. Wilson Dirac Operator and Chiral Lagrangian

III. Sign of Low Energy Constants

IV. Wilson Random Matrix Theory

V. Mean Field Theory

VI. Spectra and Phases

VII. Determining the Low Energy Constants

VIII. Overlap Dirac Operator

IX. Conclusions

Discretization Phase Transitions – p. 4/55

Page 5: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

I. Motivation

Wilson Dirac Spectra

Discretization Phase Transitions – p. 5/55

Page 6: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Motivation

0

0.1

0.2 B1

0 20 40 60 80µ [MeV]

0

0.1

0.2 B2

Distribution of the smallest eigenvalue ofthe Hermitian Wilson Dirac operator ona 64× 323 lattice for two different valuesof the quark mass.Del Debbio-Giusti-Lüscher-Petronzio-Tantalo-

2005

A1 A2 A3 A4 B1 B2 C1 D10.4

0.6

0.8

1

1.2

1.4

1.6

1.8

σ√ V/a

Scaling of the width of the distribution.Del Debbio-Giusti-Lüscher-Petronzio-Tantalo-

2005

Can we understand this scaling behavior?

Discretization Phase Transitions – p. 6/55

Page 7: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

First Order Behavior

1/(2κ)

aµ = 0.008

aµ = 0.010aµ = 0.013

β = 5.3

β = 5.2β = 5.1

〈P 〉

3.043.002.962.922.882.842.80

0.56

0.54

0.52

0.50

0.48

0.46

Plaquette expectation value showing two first order minima.

Farchioni-et-al-0506025

Discretization Phase Transitions – p. 7/55

Page 8: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

I. Wilson Dirac Operator

Wilson Dirac Operator

γ5 -Hermiticity

Chiral Lagrangian

ǫ -Expansion

Discretization Phase Transitions – p. 8/55

Page 9: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Wilson Dirac operator

Wilson introduced the Wilson term to eliminate doublers

DW =1

2γµ(∇µ + ∇∗

µ) − 1

2a∇∗

µ∇µ ≡ D +W.

{DW , γ5} 6= 0.

DW = γ5D†Wγ5.

Block structure

DW =

(

aA id

id† aB

)

with A† = A, B† = B.

W8a2

m

DW

D5 ≡ γ5(DW +m) = D†5.

A transition to the Aoki phase takesplace when the gap closes, or when m

hits the strip of eigenvalues.

3/2

λ0

ρ (λ)5

D5

m2

(1−(8Wa /m) )2/3

Discretization Phase Transitions – p. 9/55

Page 10: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

γ5 -Hermiticity

D†W = γ5DWγ5 ������������������

����

����

����

����

� Two complex eigenvalues can collide and turn into a pair of realeigenvalues with opposite chirality. The number of real eigenvaluesdoes not change under small deformations of the operator.

� Unpaired real eigenvalues cannot move in the complex plane, andthe net chirality is equal to the index of the Dirac operator.

� What is the distribution of the real eigenvalues?

� Diagonalization of DW violates γ5 -Hermiticity. DW can only be

brought in the pseudo-diagonal form

x y

−y x

.

Discretization Phase Transitions – p. 10/55

Page 11: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Chiral Lagrangian

Chiral Lagrangian for Wilson Fermions

− L =1

2mV ΣTr(U + U †) − F 2

π

4Tr∂µU∂µU

−a2VW6[Tr(U + U †)]2 − a2VW7[Tr(U − U †)]2 − a2VW8Tr(U2 + U−2).

Sharpe-Singleton-1998, Rupak-Shoresh-2002, Bär-Rupak-Shoresh-

2004,Damgaard-Splittorff-JV- 2011

� Partition function for fixed index

Zν =

U∈U(Nf )

dUdetνe−R

d4xL

� For twisted mass fermions the mass term is replaced by

i

2µV ΣTrτ3(U − U †).

Discretization Phase Transitions – p. 11/55

Page 12: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

The ǫ Expansion

Expansion of the chiral Lagrangian with

p ∼ 1

L, m ∼ 1

V, λ =

1

V, a ∼ 1√

V.

To leading order the partition function factorizes into a zero momentumpart and a nonzero momentum part.

The thermodynamic limit with mV , λV and a2V fixed is known asthe microscopic limit of QCD.

The zero momentum part is equivalent to a random matrix theory withthe same global symmetries.

Although the physical quark mass is not in the microscopic domain,eigenvalues of the Dirac operator are in the microscopic domain.

Discretization Phase Transitions – p. 12/55

Page 13: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

III. Sign of Low Energy Constants

Positivity Requirements

Collective Eigenvalue Fluctuation and Trace SquaredTerms

Signs of Low Energy Constants

Discretization Phase Transitions – p. 13/55

Page 14: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Positivity Requirements

� γ5(DW +m) is Hermitian so that the QCD partition function ispositive definite for an even number of flavors and fixed index.

The corresponding chiral partition function should have the samepositivity requirements. In particular, this is the case in the ǫ domain.

This puts constraints on the parameters of the chiral Lagrangian.

Discretization Phase Transitions – p. 14/55

Page 15: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Mass Dependence of Partition Function

By changing variables U → iU it follows that

Zχ Nfν (0, 0,W8) = (i)Nf νZ

χ Nfν (0, 0,−W8).

Positivity for all ν requires W8 > 0. From the small a -expansion ofthe partition function one obtains

W8 −W6 −W7 > 0.

Akemann-Damgaard-Splittorff-JV-2010Discretization Phase Transitions – p. 15/55

Page 16: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Eigenvalue Fluctuations and Low EnergyConstants

� Since the QCD partition function is the average of a determinant,eigenvalue fluctuations determine the low-energy constants.

� We have seen that the broadening of the Dirac spectrum in thecomplex plane determines the value of W8 .

� Which spectral fluctuations are responsible for W6 and W7 ?

Discretization Phase Transitions – p. 16/55

Page 17: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Trace Squared Terms

� Trace squared terms can be linearized at the expense of aGaussian integral and then can be added to the mass term.

� This random mass can interpreted in terms collective fluctuationsof Dirac eigenvalues.

� Collective spectral fluctuations must be consistent with thesymmetries of the QCD Dirac operator.

Discretization Phase Transitions – p. 17/55

Page 18: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Collective Eigenvalue Fluctuations andW6

For W6 < 0 we have

e−a2V W6Tr2(U+U−1) ∼∫

dye−y2/(16V |W6|a2)− 1

2yTr(U+U−1)

The partition function can be written as

Z(m;W6,W8) =

dye−y2/16V |W6|a2

Z(m− y;W6 = 0,W8)

=

dye−y2/a6V |W6|a2〈∏

k

(m− y − λk)〉.

A negative W6 therefore corresponds to collective fluctuations of thestrip of eigenvalues.

A positive W6 would correspond to collective eigenvalues fluctuationsin the imaginary direction which is not possible. This suggests thatW6 < 0 . Kieburg-Splittorff-JV-2012

Discretization Phase Transitions – p. 18/55

Page 19: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Collective Spectral Fluctuations of DW

7

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x xx

W6

Wx

Collective fluctuations consistent with complex conjugation.

What is the source of these fluctuations in terms of gauge fieldfluctuations? Kieburg-Splittorff-JV-2013

Discretization Phase Transitions – p. 19/55

Page 20: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Collective Fluctuations in Terms of D5

X XXXXX XX X XX

W

W7

6

Collective spectral fluctuations of D5

.

Discretization Phase Transitions – p. 20/55

Page 21: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Signs of Low-Energy Constants

� W8 > 0 independent of the value of W6 and W7 .Akemann-Damgaard-Splittorf-JV-2010,Hansen-Sharpe-2011

� Positivity of the QCD partition function requires thatW8 −W6 −W7 > 0 .

� Interpretation in terms of eigenvalue fluctuations requires thatW6 < 0 , W7 < 0 .

� Twisted mass Wilson fermions lattice simulations find mPS0 < mPS

±

mPS0

2− m

PS±

2=

16a2(W8 + 2W6)

F 2π

Münster-2004, Sharpe-Wu-2004

W ′6 W ′

8

Iwasaki 0.0049(38) –0.0119(17)

tlSym 0.0082(34) –0.0138(22)Herdoiza-etal-2013

Extrapolation to the chiral limit

Discretization Phase Transitions – p. 21/55

Page 22: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Sign of Low Energy Constants

A consistent picture emerges if

W8 > 0, W6 < 0, W7 < 0,

W8 + 2W6 < 0.

Kieburg-Splittorff-JV-2012,Hansen-Sharpe-2011

Discretization Phase Transitions – p. 22/55

Page 23: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

IV. Wilson Random Matrix Theory

Random Matrix Theory

Chiral Symmetry Breaking

Discretization Phase Transitions – p. 23/55

Page 24: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Random Matrix Theory for the Wilson DiracOperator

Since the chiral Lagrangian is determined uniquely by symmetries, inthe microscopic domain it also can be obtained from a random matrixtheory with the same symmetries. In the sector of index ν the randommatrix partition function is given by

ZνNf

=

dAdBdW detNf (DW +m+ zγ5) P (DW ),

with

DW =

aA C + aD

−C† + aD† aB

and A† = A, B† = B.

A is a square matrix of size n× n , and B is a square matrix of size(n+ ν) × (n+ ν) . The matrices C and D are complex n× (n+ ν)

matrices. Damgaard-Splittorff-JV-2010

Discretization Phase Transitions – p. 24/55

Page 25: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Chiral Symmetry Breaking

As a function of a this random matrix ensemble is a transition from theChiral Unitary Ensemble to the Unitary Ensemble.

The Chiral Unitary Ensemble is equivalent to QCD in the microscopicdomain with chiral symmetry breaking patternU(Nf ) × U(Nf ) → U(Nf )

The Unitary Ensemble is Equivalent to QCD in 3 dimensions withsymmetry breaking pattern U(Nf ) → U(Nf/2) × U(Nf/2) .

For two flavors this gives two massless pions.

Discretization Phase Transitions – p. 25/55

Page 26: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

V. Phase Diagram

Mean Field Limit

Aoki Phase

First Order Scenario

Discretization Phase Transitions – p. 26/55

Page 27: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Chiral Lagrangian

Chiral Lagrangian for Wilson Fermions in the microscopic domain

− L =1

2mV ΣTr(U + U †)

−a2VW6[Tr(U + U †)]2 − a2VW7[Tr(U − U †)]2 − a2VW8Tr(U2 + U−2).

This is also the Lagrangian for the mean field calculation.

Sharpe-Singleton-1998, Sharpe-Wu-2004, Golterman-Sharpe-Singleton-2005

Discretization Phase Transitions – p. 27/55

Page 28: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Mean Field Limit

U = V

eiθ1 0

0 eiθ2

V −1 Z =

dθ1dθ2 sin2 θ1 − θ22

e−S

− S = mV Σ(cos θ1 + cos θ2) − 4a2W6((cos θ1 + cos θ2)2 + 4a2W7(sin θ1 + sin

−4a2W8(cos2 θ1 + cos2 θ2).

Normal Phase: cos θ1 = cos θ2 = sign(m) .

Aoki phase: cos θ1 = cos θ2 = mΣ8a2W8

Because of the Haar measure: sin θ1 = − sin θ2 =(

1 − (mΣ)2

(8a2W8)2

)1/2

Discretization Phase Transitions – p. 28/55

Page 29: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Aoki Phase

U = cos θ + i sin θV τ3V†.

If θ 6= 0 , V contains two directions of U than remain massless. Thisis the Aoki phase.

The second term gives rise to an isoscalar pseudoscalar condensate.

Discretization Phase Transitions – p. 29/55

Page 30: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

First Order Scenario

B

ΦΦ

Φ ΦV( )V( )

m

A

Effetive potential for the order parameter. In the first order scenario(left) there is an effective potential potential between the two minimawhile in the usual case the effective potential is only slightly tilted bythe quark mass.

In terms of the chiral Lagrangian a first order scenario takes place if2W6 +W8 > 0 when there is a potential barrier between the minimawith cos θ1 = cos θ2 = ±1 .

Discretization Phase Transitions – p. 30/55

Page 31: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Phase Diagram

m

8 68a (W +2W )2

1st order Sharpe−Singleton

2nd

Aoki

2nd Aoki

Aoki phase

spinodal

spin

odal

Splittorff-Lattice 2012

Discretization Phase Transitions – p. 31/55

Page 32: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

VI. Spectra and Phases

Chiral Condensate

First Order Scenario and Dirac Spectra

Microscopic Spectral Density of DW

Mean Field Calculation of the spectral density

Predictions

Discretization Phase Transitions – p. 32/55

Page 33: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Spectra and Phases

� A phase transition takes place when the gap closes. This happenswhen we enter the Aoki phase.

� For the nonhermitian Dirac operator this happens when the cloudof eigenvalues hits the quark mass.

� The transition to the Aoki phase is continuous.

� How can we understand the first order behavior in terms ofcollective fluctuations of Dirac eigenvalues?

Discretization Phase Transitions – p. 33/55

Page 34: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

First Order Scenario and Dirac Spectra

2

Σ( )m

1/V ma

Mass Dependence of the Chi-ral Condensate in a First Or-der Scenario (green) and for theAoki phase (red).

� Banks-Casher Relation

Σ(m) = lim1

V

k

2m

λ2k +m2

Discretization Phase Transitions – p. 34/55

Page 35: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

First Order Scenario and Dirac Spectra

� Because the Wilson Dirac operator in neither Hermitian noranti-Hermitian its eigenvalues can move.

� Because of the fermion determinant they will be repelled from thequark mass.

� The finite jump of the Dirac spectrum results in a first order phasetransition.

m

Minimum A Minimum B

m

The fuzzy string of eigenvalues is repelled from the mass, m , whichresults in a first order phase transition.

Discretization Phase Transitions – p. 35/55

Page 36: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Spectral Density of DW

The spectral density of the complex eigenvalues of the Wilson Dirac operator is given byKieburg-JV-Zafeiropoulos-2011

ρc(z, z∗) = |z − z∗|2ZNf =−2(z, z∗; a∗)ZNf =2(z, z∗; a8).

For two dynamical quarks with mass m the spectral density is given by

ρNf =2(z, z∗) =|z − z∗|2(z − m2)(z∗ − m)2ZNf =−2(z, z∗; a8)ZNf =4(m, m, z, z∗.; a8)

ZNf =2(m, m; a8)

-10

0

10

Re z0

2

4

6

8

Im z0

5.´10-6

0.00001

0.000015

Kieburg-Splittorf-JV-2012

Discretization Phase Transitions – p. 36/55

Page 37: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Density of Complex Eigenvalues

ρνc,Nf

(z, z∗, m; a6, a8) =

R

dye− y2V

16|W6|a2 ZνNf

(m − y; 0, a8)ρνc,Nf =2(z − y, z∗ − y, m − y; 0, a8)

ZνNf

(m; a6, a8)

We work this out for mV Σ ≫ 1 and a2WkV ≫ 1 . Then we can use a mean fieldapproximation. The Dirac spectrum is inside a strip

ρν,MFTc,Nf =2(z, z∗, m; 0, a8) = θ(8a2

8 − xΣ).

The mean field limit of the partition function is given by

ZMF2 (m; 0, a8) = e2mV Σ−4V a2

8 + e−2mV Σ−4V a2

8 + θ(8a28 − |mΣ|)eV m2Σ2/8a2

8+4V a2

8 .

Kieburg-Splittorff-JV-2012

Discretization Phase Transitions – p. 37/55

Page 38: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

The First Order Scenario at Work

-400 -200 0 200 400

xΣV0

0.2

0.4

0.6

0.8

1

ρ cMF

Nf=

2(x,m

,a6,a

8)

m= +5, a6=i3, a8=3

-400 -200 0 200 400

xΣV0

0.2

0.4

0.6

0.8

1

ρ cMF

Nf=

2(x,m

,a6,a

8)

m= -5, a6=i3, a8=3

Spectral density of Wilson Diracoperator for m = 5 , a2

6V = −9

, a28V = 9 .

Spectral density of Wilson Diracoperator for m = −5 , a2

6V =

−9 , a28V = 9 .

The strip of eigenvalues is repelled from the quark mass. The distancebetween the quark mass and the strip of eigenvalues is given by

|m|V − 8(a8 + 2a6)V/Σ.

Discretization Phase Transitions – p. 38/55

Page 39: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Predictions

� Pion mass Sharpe-Singleton-2004, Münster-2004

m2π =

2|m|Σ − 16(W8 + 2W6)a2

F 2π

.

When W8 + 2W6 < 0 we havea minimum pion mass. Thishas been observed in latticesimulations with twisted massfermions. Jansen-etal-2005

highlow

amPCACχ

(amPS)2

0.040.030.020.010-0.01-0.02-0.03-0.04

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

The minimum pion mass is O(a) .

� The first order scenario has only been observed for dynamicalWilson quarks, whereas the Aoki phase has been found both in thequenched case and in the case with dynamical Wilson quarks.

Discretization Phase Transitions – p. 39/55

Page 40: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

IV. Other Phases

� Lattice simulations show the existence of a phase with

〈ψ̄γ5ψ〉 6= 0.

Azcoiti-Di Carlo-Follana-Vaquero-2013

� In terms of eigenvalues of γ5DW it is given by

1

V

k

1

λk

.

� What is the source of the asymmetry in the average Diracspectrum?

� Can we reconcile this phase with Wilson chiral perturbationtheory?

Discretization Phase Transitions – p. 40/55

Page 41: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

VII. Determining the Low Energy Constants

Exact Results

Comparison to Lattice Data

Simple Relations for the Small a -Limit

Discretization Phase Transitions – p. 41/55

Page 42: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Exact Results

� Low Energy Constants can be obtained by fitting analytical resultsto lattice data

� We will use exact results for Dirac spectral to do so:

⋆ Density of complex eigenvalues: ρc(z)

⋆ Density of the right handed modes: ρr(x)

⋆ Density of the left handed modes: ρl(x)

⋆ The chirality distribution: ρχ(x) ≡ ρr(x) − ρl(x)

⋆ The eigenvalue density of γ5DW : ρ5(x)

Damgaard-Splittorff-JV-2010,Akemann-Nagao-2011,Larssen-2012,Kieburg-

JV-Zafeiropoulos-2011,Splittorff-JV-2011,Kieburg-Splittorff-JV-2012

Discretization Phase Transitions – p. 42/55

Page 43: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

More Quenched Lattice Dirac Spectra at fixedν

The spectrum of the Hermitian Wilson Dirac operator for ν = 0 (top) and ν = 1

(bottom). The blue curve is the WRMT result with W8 6= 0 and W6 = W7 = 0 while forthe red curve they are nonzero. Deuzeman-Wenger-Wuilloud-2011

Discretization Phase Transitions – p. 43/55

Page 44: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Additional Real Modes

àààà

à

à

àà

ààà

ææ

ææ

æ

æ

æ

æ

æ

æ

æ

æ ò

ò

òòòòòòòò

òò

ò

ò

0.1 0.25 0.5 1 2 4a`

10-5

10-4

0.001

0.01

0.1

1

Nadd

ò Ν=2æ Ν=1à Ν=0Ν=2Ν=1Ν=0

Additional number real modes of the Wilson Dirac operator. In the left figure we show theanalytical result compared to random matrix simulations (Kieburg-JV-Zafeiropoulos-2011)and in the right figure we show lattice result of (Deuzeman-Wenger-Wuilloud-2011) for twodifferent lattice spacings. The lattice data are consistent with a logarithmic a

-dependence.

Discretization Phase Transitions – p. 44/55

Page 45: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Eigenvalue Density ofγ5(DW + m)

-10 -8 -6 -4 -2 0 2 4 6 8 10

λ5

0

0.5

1

1.5

2

2.5

3

ρ 5ν=1 (λ

5 ,m=

2.3,

a)

Ev_279_20_HYPclov_Q1andQm1_m027m=2.3 a

6=i0.0 a

8=0.06 ν=1

m=2.3 a6=i0.06 a

8=0.0 ν=1

The microscopic spectrum of γ5(DW + m) for ν = 1 Damgaard-Heller-Splittorff-2012.

The red and blue curves represents the analytical result for the resolvent Splittorff-JV-2011

Gν(m, z; a) =1

16a2π

Z

dsdt

t − ise−[(s+iz)2+(t−z′)2]/16a2 (m − is)ν

(m − t)νZ̃ν

1|1(p

m2 + s2,p

m2 − t2; a = 0)

where

Z̃ν1|1(x, y; a = 0) =

xν[yKν+1(y)Iν(x) + xKν(y)Iν+1(x)]

The width of the topological peak behaves as ∼ a/√

V .

Discretization Phase Transitions – p. 45/55

Page 46: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Observables in the smalla Limit

� The density of the projection of the eigenvalues of DW on theimaginary axis. According to the Banks-Casher formula we have

∆ =π

ΣV.

� The average number of the additional real modes for ν = 0 :

Nν=0add

a≪1= 2V a2(W8 − 2W7).

� The width of the Gaussian shaped strip of complex eigenvalues:

σ2

(∆)2a≪1=

4

π2a2V (W8 − 2W6).

Discretization Phase Transitions – p. 46/55

Page 47: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Observables in the smalla Limit

� The variance of the distribution of chirality over the realeigenvalues:

〈x2〉ρνχ

∆2

a≪1=

8

π2V a2(νW8 −W6 −W7), ν > 0.

There are linear dependencies between the relations. This results inthe consistency condition

〈x2〉ν=1ρχ

∆2=σ2

∆2+

2

π2Nν=0

add .

Kieburg-JV-Zafeiropoulos-2013

Discretization Phase Transitions – p. 47/55

Page 48: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

VIII. Overlap Dirac Operator

Random Matrix Overlap Dirac Operator

Aoki Phase for the Overlap Dirac Operator

Discretization Phase Transitions – p. 48/55

Page 49: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Overlap Dirac Operator at a = 0

The overlap Dirac operator

Dov = 1 + γ5Usign(D5)U−1, D5 = DW +mγ5

� Looks drastic to replace the eigenvalues by their sign, but at zerolattice spacing this is actually exact.

� The eigenvectors contain the information on the eigenvalues.

D5 =

u 0

0 v

m λ

λ −m

u−1 0

0 v−1

� Complete diagonalization by addition rotation with tan 2φk = λk/m

.

Discretization Phase Transitions – p. 49/55

Page 50: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Overlap Dirac Operator at a = 0

� The projected eigenvalues are given by λk/m .

� At nonzero lattice spacing overlap eigenvalues are expected tohave correlations that different by O(a) or O(a2) terms

� What happens to eigenvalue correlation of when the Wilson Diracoperator is in the Aoki phase?

Discretization Phase Transitions – p. 50/55

Page 51: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Overlap Dirac Operator at a 6= 0

0.0 0.2 0.4 0.6 0.8 1.00.00

0.02

0.04

0.06

0.08

0.10

The spectral density of the projected overlap Dirac operator for a = 0.3 ,

m = 100 and index ν = 0 and ν = 1 . The black curve shows the analytical

result and the red and blue curve the result from the computed eigenvalues.

Discretization Phase Transitions – p. 51/55

Page 52: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Overlap Dirac Operator at a 6= 0

0.0 0.2 0.4 0.6 0.8 1.0x0.00

0.02

0.04

0.06

0.08

0.10·HxL

The spectral density of the projected overlap Dirac spectra for m =0.2 and

a = 0.05, a = 0.15, a = 0.24, a = 0.35, a = 0.45, a = 0.55 (from top to

bottom). The critical value for the transition to the Aoki phase is a = 0.35

(green curve). The curves have been rescaled to have the same small x

behavior, separately for the normal phase and the Aoki phase.

Discretization Phase Transitions – p. 52/55

Page 53: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Overlap Dirac Operator at a 6= 0

0.0 0.2 0.4 0.6 0.8 1.0x0.00

0.02

0.04

0.06

0.08

0.10·HxL

0.0 0.2 0.4 0.6 0.8 1.0x0.00

0.02

0.04

0.06

0.08

0.10·HxL

Comparison of the spectral density of the overlap Dirac operator for a = 0.15

and m = 0.2 and the analytical chiral random matrix theory result.The

unfolded eigenvalues are shown right.

Discretization Phase Transitions – p. 53/55

Page 54: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

Overlap Dirac Operator at a 6= 0

0.0 0.5 1.0 1.5 2.0 2.5x0.0

0.2

0.4

0.6

0.8

1.0·HxL

Global behavior of the spectral density of the projected overlap Dirac operator

for same set of parameters as in Fig. 1.

Discretization Phase Transitions – p. 54/55

Page 55: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

IX. Conclusions

� We have obtained positivity constraints on the low energyconstants of Wilson chiral perturbation theory.

Discretization Phase Transitions – p. 55/55

Page 56: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

IX. Conclusions

� We have obtained positivity constraints on the low energyconstants of Wilson chiral perturbation theory.

� Collective spectral fluctuations drive the first order scenario.

Discretization Phase Transitions – p. 55/55

Page 57: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

IX. Conclusions

� We have obtained positivity constraints on the low energyconstants of Wilson chiral perturbation theory.

� Collective spectral fluctuations drive the first order scenario.

� In the quenched case a transition to the Aoki phase takes place inthe approach to the chiral limit at fixed a . A first order scenario isnot possible.

Discretization Phase Transitions – p. 55/55

Page 58: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

IX. Conclusions

� We have obtained positivity constraints on the low energyconstants of Wilson chiral perturbation theory.

� Collective spectral fluctuations drive the first order scenario.

� In the quenched case a transition to the Aoki phase takes place inthe approach to the chiral limit at fixed a . A first order scenario isnot possible.

� For dynamical quarks both a transition to the Aoki phase and a firstorder scenario are possible in the approach to the chiral limit. Afirst order scenario is consistent with the constraints of the the lowenergy constants and is favored by current lattice simulations.

Discretization Phase Transitions – p. 55/55

Page 59: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

IX. Conclusions

� We have obtained positivity constraints on the low energyconstants of Wilson chiral perturbation theory.

� Collective spectral fluctuations drive the first order scenario.

� In the quenched case a transition to the Aoki phase takes place inthe approach to the chiral limit at fixed a . A first order scenario isnot possible.

� For dynamical quarks both a transition to the Aoki phase and a firstorder scenario are possible in the approach to the chiral limit. Afirst order scenario is consistent with the constraints of the the lowenergy constants and is favored by current lattice simulations.

� Lattice simulations that show a phase with an isoscalarpseudoscalar condensate should be understood.

Discretization Phase Transitions – p. 55/55

Page 60: Discretization Phase Transitions and Wilson Dirac Spectrabenasque.org/2013fermions/talks_contr/194_benasque-jv.pdf · Discretization Phase Transitions – p. 4/55. I. Motivation Wilson

IX. Conclusions

� We have obtained positivity constraints on the low energyconstants of Wilson chiral perturbation theory.

� Collective spectral fluctuations drive the first order scenario.

� In the quenched case a transition to the Aoki phase takes place inthe approach to the chiral limit at fixed a . A first order scenario isnot possible.

� For dynamical quarks both a transition to the Aoki phase and a firstorder scenario are possible in the approach to the chiral limit. Afirst order scenario is consistent with the constraints of the the lowenergy constants and is favored by current lattice simulations.

� Lattice simulations that show a phase with an isoscalarpseudoscalar condensate should be understood.

� The overlap operator is in a different phase when the Wilson Diracoperator is in the Aoki phase, but is very robust outside this phase.

Discretization Phase Transitions – p. 55/55