raytheon ew quick guide

2
Q  RF Propagation RADAR HORIZON RF Propagation TARGETVISIBILITY Detection& EstimationProbability CRAMER RAO LOWER BOUND Detection& EstimationProbability MAXLIKELIHOOD ESTIMATION Detection& EstimationProbability BINOMIAL Antennas ANTENNA BEAMWIDTH Antennas ANTENNA DIRECTIVITY Antennas ANTENNA GAIN FourierRelationships CONTINUOUS-TIMEFOURIERTRANSFORMATION FourierRelationships FILTERING RadarProcessing RADAR CROSS SECTION FourierRelationships MODULATIONPROPERTY Detection& EstimationProbability RICIAN Detection& EstimationProbability ERROR FUNCTIONS Detection& EstimationProbability NORMAL Detection& EstimationProbability RAYLEIGH RF Propagation WAVELENGTH RF Propagation DOPPLER SHIFT P r  =P t Gt Gr 4πR λ 2 Pr:Received Power Pt:TransmitPower Gt:TransmitGain Gr:ReceiveGain R:Range c:Speed  f:Frequency H:Horizon Re:Earth Radius ~6,371km H:Horizon Re:Earth Radius ~6,371km x:Observations  p:Probabilitydistributionfunction(or joint) θ:Distributionparameters canbe vectors  p:Success probabilityof each trial k:Numberof successes n:Numberof trials λ:Wavelength d:AntennaDiameter θ1d :Half-powerbeamwidth inone principalplane (degrees) θ 2d :Half-powerbeamwidth inthe otherprincipalplane (degrees)  Ae:EffectiveApertureArea λ:Wavelength μ:Mean σ:Standard Difference  A:Distance betweenthe reference pointand the centerof the bivariate distribution I 0 :BesselFunction of the rstkind with or derzero μ:Mean σ:Standard Difference  A:Distance betweenthe reference pointand the centerof the bivariate distribution RF Propagation FRIIS TRANSMISSION EQUATION  Dh= 2HRe  λ =  f c  f d  = –2v r  / λ Target Height 2Re (Target Range - 2HRe) 2  = CRB = ∂θ  ln p(x, θ  ) [ ]  E ∂θ  ln p(x, θ  ) [ ] ( } T { ) -1  f(k; n,p)= Pr(X =k) = (  )  pk (1 p)nk k n  p(r)= {  r σ2  e r 2 2σ2 0 (r <0) (0r≤∞) 1.2 1 0.8 0.6 0.2 0.4 0 0 2 4 6  8 10 =0.5 =3 =1 =4 =2  p(r)= {  I 0  (  )  for (r <0)  for (A 0, r 0) σ 2 r e 0 2σ2 (r 2+ A2 ) σ2  Ar 0.6 0.5 0.4 0.3 0.1 0.2 0.0 0 2 4 6  8 v=0.0 v=2.0 v=0.5 v=4.0 v=1.0 =1.00 μ:Mean σ:Standard Difference  A:Distance betweenthe reference pointand the centerof the bivariate distribution 1 σ 2π   p(x) = (μz =0; σ x=1.0) e (x−μ) 2σ2 Standard NormalCurve  f(z) 0.4 0.1 0.2 0.3 -3 -2 -1 0 3 2 1 68.27% 95.45% 99.73% 3-2-1-z 1  2π z  2  2  e[ -  ]  JointDensity Function Π L( θ  ; x 1  ,..., x n )=  f (x 1  ,x 2  ,..., x n | θ)= f (x i | θ) n i=1 Likelihood Σ ln L ( θ  ; x 1  ,..., x n )= ln f (x i | θ) n i=1 Log-Likelihood xi :Observations n:Numberof Samples  f:Is one,or joint,probabilitydistribution(s) θ:Distributionparameters canbe vectors μ:Mean σ:Standard Difference  A:Distance betweenthe reference pointand the centerof the bivariate distribution erfc(z)=1erf(z)= 2 π  ∫ e -t 2 d t erfc(x) 2 1.5 0.5 -2 -4 -2 -4 4 2 1 z erf(z)= 2 π ∫ z 0 e -t 2 d t  ±1-σ:P (-1z 1)=0.6827 ±2-σ:P (-2z  2)=0.9545 ±3-σ:P (-3z 3)=0.9973  θBW 3dB  0.886 b Nd cos θ0 λ Phased Array,Radians θBW null   1.22 d λ d λ θBW 3dB   0.88 Parabolic,Radians  D   4π θ1d θ2d 180 π ( ) 2 40000 θ1d θ2d Gant  = λ 2 4π  Ae  s(  τ  ) = e  j2π(f c  τ+ b  τ2  )  ,-   τ 2  τ  p 2  τ  p 2 1 B p = b  τ p s():Transmitted SignalWaveform  f c :CenterFrequency  τ:Range Time (fasttime)  τ p:Pulse Length b:ChirpRate B p:Pulse Bandwidth γ:RangeFrequency * “u”stands for unabsorbed or under K;“a” stands for absorption region or above K Electronic Warfare NOISE JAMMING  Sidelobe  J self :Self ProtectJammerPower  J/S:Jam to SignalRatio atRadarReceiver S:RadarReceived SignalPower P t  jam:JammerTransmitPower Gt  jam:JammerTransmitGain R jr :Range betweenJammerand Radar R:Range betweenRadarTargetand Radar λ:JammerTransmitWavelength Gr radar :RadarReceiverGain Lr radar :RadarReceiverLosses P t radar :RadarTransmitPower Gt radar :RadarTransmitterGain σ:RadarTargetRadarCross Section BW Radar :RadarTransmitBandwidth BW  Jam:JammerTransmitBandwidth  J:JammerPower Rmax jammed :JammedRadarRange (BurnthroughRange) Rmax:Max RadarRange  J/N:Jammerto Noise Ratio  N:TotalNoise k:Boltzmann’s constant T s:ReceiverTemperature B N :ReceiverNoise Bandwidth SNR:RadarSignalto Noise Ratio  N  f :ReceiverNoise Figure (>1)  J S =  EIRP  jam  EIRP radar ( )  4πR 2 σ ( ) ( )  J S =  EIRP  jam  EIRP radar 4πR 2 σ ( )  BW radar ( ) BW  jam  P t  jam  Gt  jam ( ) 2  λ 4πR  jr  J self = Lr radar                   }  EIRP  jam If BW  jam BW radar 10 1 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 Reductionin RadarDetectionRange duetoJNR     N    o    r    m    a     l     i    z    e     d     M    a    x     i    m    u    m     R    a     d    a    r     R    a    n    g    e Range(km) 10 2 10 3   J S Burn-through rangefor SNR = 13 dB  J/N ~( ) 4 Rmax  jammed  Rmax   Assume:J>> N BW  Jam=BW Radar Rmax  jammed 4  = P t G' t G' r λ2 (4π  ) 3 (kT sBN N  f +J) * SNR * Lr * Lt Mainlobe Reduction in Normalized Rmax 1 0.8 0.6 0.4 0.2 Rmax RmaxJammed  Main Beam ↓   ReductioninRadarDetectionRangedueto JNR     N    o    r    m    a     l     i    z    e     d     M    a    x     i    m    u    m     R    a     d    a    r     R    a    n    g    e  Jammer toNoiseRatio (dB) 0 5 10 15 20 25 30 35 40  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1  x(t) X( ω ) 2π 1  x( t  ) =  ∫   X( ω  )e jωt  d ω +-Synthesis  X( ω  ) = ∫   x(t)e -jωt  dt  +-Analysis h( t  ) *  x( t  )  H( ω  ) X( ω  )  X( ω )  x(t) H( ω ) h(t) H( ω )X(t) h(t)* x(t) 1 δ(t) H( ω ) h(t) H( ω ) h(t) e   jωοt H( ω ) e   jωοt H( ωο ) H( ω ):FrequencyResponse :Convolutionoperation ConvolutionProperty Ideal Lowpass Filter  Differentiator  FourierRelationships PARSEVAL ’SRELATION 2π 1  ∫  |x(t)| 2 dt =  ∫  |X( ω  )| 2 d ω +-+- ∫ T o |x(t)| 2 dt =  |a k | 2 +k=-~ T o 1 H( ω ) -ωc ωc ω  y(t) = =>H( ω ) =jω dt dx(t) |H( ω )| ω  x(t-t o  )  e  -jωt o  X( ω ) Time Shifting Differentiation  jω X( ω ) dt dx(t)  jω 1  ∫ t  x(  τ )d  τ   X( ω ) +π X(0) δ( ω ) -Integration Linearity ax 1 (t)+bx 2 (t)aX 1 ( ω )+bX 2 ( ω ) Modulation DualityProperty 2π 1 s(t) p(t)[S( ω )P( ω )] Convolution h(t)* x(t)  H( ω )X( ω )   x(t) t 1/a 1 1 e -a a 1/a √ 2 1/a |X( ω )| ω      ↓ <X(  )  /2  /4  /4  /2 a  X(  ) -w w 1  X(  ) t T 1 sinT 1 2 2T 1  x(t) -T 1 T 1 t 1  x(t) t w w sinwt 2t 2 S∝σ ,range RadarCross Section (RCS,σ ) Scattering σ = = lim 4πr 2 Incident Power Density / 4π Reected Power to Receiver / Solid Angle |E i| 2 |E s| 2 ( ) P t P r or S σ RadarProcessing TYPICALVALUESOF RCS  RadarProcessing RADAR AMBIGUITY FUNCTION RadarProcessing NOISEPOWER RadarProcessing SPEEDOF LIGHT RadarProcessing MAXUNAMBIGUOUS RANGE RadarProcessing SIGNALTO NOISE RATIO S(t):Complex Baseband Pulse  τ:Time Delay  f:DopplerShift  x(  τ  ,t) = ∫ s(t)s(t-  τ  )e i2π ft  dt  −∞ = kT sBN N  f  Noise Power in Receiver  Speedof Light(approx)  3x10^8  300  1.62x10^5  1x10^9  1x10^3 Units m/sec m/usec NM/sec Ft/sec Ft/usec Rmax= c 2PRF PRF High  Mediu m Low PRF 100kHz  25kHz 10kHz Unambiguo usRange 1.5km 6km 15km Range  Ambiguo us  Ambiguo us Unambiguous Doppler Unambiguous  Ambigu ous  Ambigu ous c:Speed of Light PRF:Pulse RepetitionFrequency Pr:Received Power Pt:TransmitPower Gt:TransmitGain Gr: ReceiveGain R:Range  No:Noise Power L:Losses P R SNR= = P t Gt Gr σλ2G pL (4π  )3R4kBT sBnN  f N o ELECTRONIC WARF ARE QUICK REFERENCE GUIDE M tary Stan ar Ban s . . In ustr y S tan ar Ban s IEEE Ra ar Des gnat on HF VH L F S W a  M meter u Inter nat ona Stan ar Ban s M A G H F B 50 Frequency MHz Frequency GHz 20 30 1 00 200 300 500 400 300 00 100 0 0 40 30 20 15 10 8 6 1.5 12  1 110  HF VHF 9 UHF 10 SHF 12 11 EHF Band Designation HF VHF UHF L S C X Ku K Ka V W Frequency Range 3–30 MHz 30–300MHz 300–1,000 MHz 1–2 GHz 2–4 GHz 4–8 GHz 8–12 GHz 12–18 GHz 18–27 GHz 27–40 GHz 40–75 GHz 75–110GHz F   F   F   F   F   F   F   F   RF Propagati on Dete cti on& Est imat ionProbabi li ty Antenna s  f z (z)= -<x<RADIO Wavelength (Meters) Frequency (Hz) 10 3 10 4 10 8 10 12 10 15 MICROWAVE 10 -2 INFRARED 10 -5 VISIBLE 10 -6 ULTRAVIOLET 10 -8 X-RAY 10 -10 GAMMA RAY 10 -12 THE ELECTROMAGNETIC SPECTRUM 10 16 10 18 10 20  = ln L n 1  ( θ|x) = ln f (x i | θ) Σ n i=1 n 1 AverageLog-Likelihood  P t radar  Gt radar  Gr λ 2 S = (4π  )3 R 4                   }  EIRP radar σ Gr radar RadarProcessing LINEAR FMWAVEFORM σ  f (x 1  ,x 2  ,...,x n | θ)=  f (x 1 | θ) x f (x 2 | θ) x ... x f (x n | θ) .0001 -40 Ins ect s Bir ds Human Sma llCa r Fighter  Aircraft Bomber: Transport  Aircraft Ships -30 -20 -10 0 10 20 30 40  .0 01 .01 0. 1 1. 0 10 10 0 10 00 10 00 0   dBsm m2 El ect roni cWarf are Fouri erRel at ionshi ps RadarPro cessing  X-band 300m/s 0.03m  20kHz S-band 300m/s 0.1m 6kHz Wavelength 3.00m 0.10m 0.05m 0.03m  f 100MHz 3GHz 6GHz 10GHz Band VHF S C  X Velocity Wavelength DopplerShift kT s:= -174dBm K:Boltzmann’s constant=1.38*10 -23 J/K Bn:Noise Bandwidth T s:System Noise Temperat ure T susuallysetto T 0 =290K  N  f :Noise gure of receiver r K:Boltzmann’s constant=1.38*10 -23 J/K Bn:Noise Bandwidth T s:System Noise Tempera ture T susuallysetto T 0 =290K  N  f :Noise gure of receiver σ

Upload: alam77

Post on 18-Feb-2018

245 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Raytheon EW Quick Guide

7/23/2019 Raytheon EW Quick Guide

http://slidepdf.com/reader/full/raytheon-ew-quick-guide 1/2

Q

 

RF Propagation 

RADAR HORIZON

RF Propagation 

TARGETVISIBILITY

Detection& EstimationProbability 

CRAMER RAO LOWER BOUND

Detection& EstimationProbability 

MAXLIKELIHOOD ESTIMATION

Detection& EstimationProbability 

BINOMIAL

Antennas 

ANTENNA BEAMWIDTH

Antennas 

ANTENNA DIRECTIVITY

Antennas 

ANTENNA GAIN

FourierRelationships 

CONTINUOUS-TIME FOURIER TRANSFORMATION

FourierRelationships 

FILTERING

RadarProcessing 

RADAR CROSS SECTION

FourierRelationships 

MODULATION PROPERTY

Detection& EstimationProbability 

RICIAN

Detection& EstimationProbability 

ERROR FUNCTIONS

Detection& EstimationProbability 

NORMAL

Detection& EstimationProbability 

RAYLEIGH

RF Propagation 

WAVELENGTH

RF Propagation 

DOPPLER SHIFT

P r  =P t Gt Gr   4πR

λ2

Pr:Received Power Pt:TransmitPower Gt:TransmitGainGr:Receive Gain

R:Range

c:Speed  f:Frequency

H:HorizonRe:Earth Radius ~6,371km

H:HorizonRe:Earth Radius ~6,371km

x:Observations p:Probabilitydistributionfunction(or joint)

θ:Distributionparameters canbe vectors

 p:Success probabilityof each trial k:Numberof successes

n:Numberof trials

λ:Wavelengthd:AntennaDiameter 

θ1d :Half-powerbeamwidth inone principalplane (degrees)θ 2d :Half-powerbeamwidth inthe otherprincipalplane (degrees)

 Ae:Effective Aperture Areaλ:Wavelength

μ:Meanσ:Standard Difference

 A:Distance betweenthe reference pointandthe centerof the bivariate distribution

I 0 :BesselFunction of the firstkind with orderzero

μ:Meanσ:Standard Difference

 A:Distance betweenthe reference pointandthe centerof the bivariate distribution

RF Propagation 

FRIIS TRANSMISSION EQUATION

 Dh= 2HRe  

λ = f c 

 f d  = –2v r  / λ

TargetHeight  2Re (Target Range - 2HRe)

2

 =

CRB =∂θ

∂ ln p(x, θ )[ ] E ∂θ

∂ ln p(x, θ )[ ]( }T 

{ )-1

 f(k; n,p)= Pr(X =k) =(   ) pk (1− p)n−k kn  p(r)=

{ r 

σ2

 e

r 2

2σ2−

(r <0) (0≤r≤∞)

1.2

1

0.8

0.6 

0.2

0.4

0 0 2 4 6  8 10 

σ=0.5 

σ=3

σ=1

σ=4

σ=2

 p(r)={−  I 0  (  )

 for (r <0)

 for (A ≥0, r ≥0)σ2r  e 

2σ2

(r 2+ A2 )

σ2 Ar 

0.6 

0.5 

0.4

0.3

0.1

0.2

0.0 

0 2 4 6  8

v=0.0 

v=2.0 

v=0.5 

v=4.0 

v=1.0 

σ=1.00 

μ:Meanσ:Standard Difference

 A:Distance betweenthe reference pointandthe centerof the bivariate distribution

1

σ 2π  p(x)= (μz =0; σ x=1.0)e − 

(x−μ)

2σ2

Standard NormalCurve 

 f(z)

0.4

0.1

0.2

0.3

-3 -2 -1 0 32168.27%95.45%99.73%

3-σ

2-σ1-σ

1 2π

z  2

 2  e[ -  ]

 JointDensity Function 

ΠL( θ ; x1 ,..., x

n)=  f (x

1 ,x

2 ,..., x

n| θ)= f (x

i| θ)

n

i=1

Likelihood 

Σln L ( θ ; x1 ,..., x

n)= ln f (x

i| θ)

n

i=1

Log-Likelihood 

xi :Observationsn:Numberof Samples

 f:Is one,or joint,probabilitydistribution(s)θ:Distributionparameters canbe vectors

μ:Meanσ:Standard Difference

 A:Distance betweenthe reference pointandthe centerof the bivariate distribution

erfc(z)=1−erf(z)= 2

π ∫ ∞

e -t 2 d t 

erfc(x)

2

1.5 

0.5 

-2-4 -2-4 42

1

erf(z)= 2

π ∫ z 0 

e -t 2 d t 

 

±1-σ:P (-1 ≤ z ≤ 1)=0.6827 ±2-σ:P (-2 ≤ z ≤ 2)=0.9545 ±3-σ:P (-3 ≤ z ≤ 3)=0.9973

 θBW 3dB∼ 0.886 b

Nd cos θ0 

λPhased Array,Radians 

θBW null  ∼ 1.22

d λ

d λθBW 3dB

 ∼ 0.88Parabolic,Radians 

 D ≈ 4π ≈

θ1d θ2d 

180

π(  )2 40000 

θ1d θ2d Gant  = λ2

4π Ae 

 

s(  τ ) = e j2π(f 

 τ+ b τ2 )

 ,- ≤  τ ≤2

 τ p

2

 τ p

2

1

B p = b τ p

s():Transmitted SignalWaveform f 

c :CenterFrequency

 τ:Range Time (fasttime) τ

 p:Pulse Length

b:ChirpRateB

 p:Pulse Bandwidth

γ:Range Frequency

* “u”stands for unabsorbed or under K;“a” stands for absorption region or above K 

Electronic Warfare 

NOISE JAMMING

 

Sidelobe 

 J self :Self ProtectJammerPower  J/S:Jam to SignalRatio atRadarReceiver 

S:RadarReceived SignalPower P t  jam

:JammerTransmitPower Gt  jam

:JammerTransmitGainR

 jr :Range betweenJammerand Radar 

R:Range betweenRadarTargetand Radar λ:JammerTransmitWavelength

Gr radar :RadarReceiverGain

Lr radar :RadarReceiverLossesP t radar 

:RadarTransmitPower Gt radar 

:RadarTransmitterGainσ:RadarTargetRadarCross SectionBW 

Radar :RadarTransmitBandwidth

BW  Jam

:JammerTransmitBandwidth J:JammerPower 

Rmax jammed :Jammed RadarRange(BurnthroughRange)

Rmax:Max RadarRange J/N:Jammerto Noise Ratio

 N:TotalNoisek:Boltzmann’s constant T s:ReceiverTemperature

B N :ReceiverNoise BandwidthSNR:RadarSignalto Noise Ratio N  f :ReceiverNoise Figure (>1)

 J S

= EIRP  jam EIRP radar ( )   4πR2

σ( )

( ) J S

= EIRP  jam EIRP radar 

4πR2

σ( )

  BW radar ( )BW  jam

 P t  jam Gt  jam

( )2 

λ4πR jr 

 J self = Lr radar 

                  } EIRP  jam

If BW  jam ≥ BW radar 

10 1-150 

-140 

-130 

-120 

-110 

-100 

-90 

-80 

-70 

-60 Reductionin RadarDetectionRange duetoJNR

    N   o   r   m   a    l    i   z   e    d    M   a   x    i   m   u   m    R   a    d   a   r    R   a   n   g   e

Range(km)10 2 10 3

 

 J 

S

Burn-throughrangefor SNR =

13 dB

 J/N ~( )4Rmax

 jammed 

 Rmax

 

 Assume:J>> N BW  Jam=BW Radar 

Rmax jammed 

4  = 

P t G' t G' r λ2

(4π )3(kT sBN N  f +J)*SNR*Lr *Lt

Mainlobe 

Reduction in Normalized Rmax

1

0.8

0.6 

0.4

0.2

Rmax

RmaxJammed 

 Main

Beam↓   

ReductioninRadarDetectionRangedueto JNR

    N   o   r   m   a    l    i   z   e    d    M   a   x    i   m   u   m    R   a    d   a   r    R   a   n   g   e

 Jammer toNoiseRatio (dB)0 5 10 15 20 25 30 35 40  

0.1

0.2

0.3

0.4

0.5 

0.6 

0.7 

0.8

0.9 

  1

 x(t)↔ X( ω )

2π1 x( t  ) =  ∫   X( ω )e  jωt  d ω

+∞

-∞

Synthesis 

 X( ω ) =  ∫   x(t)e -jωt  dt  +∞

-∞

Analysis 

h( t  )* x( t  ) ↔ H( ω )  X( ω )

 X( ω ) x(t)

H( ω )

h(t)

H( ω )X(t)

h(t)* x(t) 1

δ(t)H( ω )

h(t)

H( ω )h(t)

e   jωοt 

H( ω )e   jωοt 

H( ωο )

H( ω ):FrequencyResponse:Convolutionoperation

ConvolutionProperty

Ideal Lowpass Filter    Differentiator 

  FourierRelationships 

PARSEVAL’SRELATION

2π1

 ∫  |x(t)|

2 dt =  ∫ 

 |X( ω )|

2 d ω

+∞

-∞

+∞

-∞

 ∫ T o|x(t)|2 dt = ∑ |ak|2

+∞

k=-∞

~

T o1

H( ω )

-ωc ωc ω

 y(t) = =>H( ω ) =j ωdt 

dx(t)

|H( ω )|

ω

 x(t-t o ) ↔ e  -jωt o  X( ω )

Time Shifting 

Differentiation 

↔ jω X( ω )dt 

dx(t)

 jω1 ∫ t  x(  τ )d  τ↔

 

 X( ω ) +π X(0)δ( ω )-∞

Integration 

Linearity 

ax1(t)+bx

2(t)↔aX 

1( ω )+bX 

2( ω )

Modulation 

DualityProperty

2π1s(t) p(t)↔ [S( ω )P( ω )]

Convolution 

h(t)* x(t) ↔ H( ω )X( ω )

  x(t)

t 1/a

1

1

-a a

1/a √ 2

1/a|X( ω )|

ω

     ↓ 

<X( ω )

π /2

π /4

−π /4

−π /2

ω−

a

 X( ω )

-w  w ω

1

 X( ω )

t π

T 1

sinωT 1

ω2

2T 1

 x(t)

-T 1 T 1t 

1

 x(t)

t π

π

sinwt 

2πt 2

S∝σ ,range  RadarCross Section (RCS, σ )Scattering 

σ = = lim 4πr 2Incident Power Density / 4π

Reflected Power to Receiver / Solid Angle 

|E i|2

|E s|2

( )

P t 

P r 

or S

σ

RadarProcessing 

TYPICALVALUESOF RCS

 

RadarProcessing 

RADAR AMBIGUITY FUNCTION

RadarProcessing 

NOISEPOWER

RadarProcessing 

SPEEDOF LIGHT

RadarProcessing 

MAXUNAMBIGUOUS RANGE

RadarProcessing 

SIGNALTO NOISE RATIO

S(t):Complex Baseband Pulse τ:Time Delay f:DopplerShift 

 x(  τ ,t) = ∫ ∞s(t)s*(t- τ )e i2π ft  dt  

−∞

= kT sBN N  f  Noise Power in Receiver 

  Speedof Light(approx)

  3x10^8  300 

  1.62x10^5 

  1x10^9 

  1x10^3

Units

m/sec m/usec 

NM/sec 

Ft/sec 

Ft/usec 

Rmax= c 2PRF 

PRF 

High

 Medium

Low 

PRF 

100kHz 

 25kHz 

10kHz 

UnambiguousRange 

1.5km

6km

15km

Range 

 Ambiguous

 Ambiguous

Unambiguous

Doppler 

Unambiguous

 Ambiguous

 Ambiguous

c:Speed of Light PRF:Pulse RepetitionFrequency

Pr:Received Power Pt:TransmitPower Gt:TransmitGainGr: Receive Gain

R:Range No:Noise Power 

L:Losses

P RSNR= = P t Gt Gr σλ2G pL

(4π )3

R4

kBT sBnN  f N 

o

ELECTRONIC WARFARE QUICK REFERENCE GUIDE

M tary Stan ar Ban s

. . In ustry Stan ar Ban sIEEE Ra ar Des gnat on

HF VH LF S Wa

  M meteru

Internat ona Stan ar Ban s

MA G H

F

B

50

Frequency MHz Frequency GHz

20 30 1 00 200 300 500 40030000100004030201510861.512   1

110

  HF VHF 9 UHF 10 SHF 1211 EHF

BandDesignation

HF

VHF

UHF

L

S

C

X

Ku

K

Ka

V

W

FrequencyRange3–30 MHz

30–300 MHz

300–1,000 MHz

1–2 GHz

2–4 GHz

4–8 GHz

8–12 GHz

12–18 GHz

18–27 GHz

27–40 GHz

40–75 GHz

75–110 GHz

F   

F   

F   

F   

F   

F   

F   

F   

R F Pr op ag at io n D et ec t io n & Es ti ma ti on P r ob ab il it y A nt en n as  

 f z (z)= -∞<x<∞

RADIO

Wavelength (Meters)

Frequency (Hz)

103

104

108

1012

1015

MICROWAVE

10-2

INFRARED

10-5

VISIBLE

10-6

ULTRAVIOLET

10-8

X-RAY

10-10

GAMMA RAY

10-12

THE ELECTROMAGNETIC SPECTRUM

1016

1018

1020

  = ln Ln1

  =( θ|x) = ln f (xi| θ) Σ

n

i=1n1

Average Log-Likelihood 

 P t radar 

 Gt radar 

 Gr λ2

S =(4π )3 R

4

                  }

 EIRP radar 

σ

Gr radar 

RadarProcessing 

LINEAR FMWAVEFORM

σ

 f (x1 ,x

2 ,...,x

n|θ)=  f (x

1|θ) x f (x

2| θ) x ... x f (x

n|θ) 

.0001

-40 

I n se c ts B i rd s H u ma n S m al l C ar  

Fighter  Aircraft 

Bomber:Transport  Aircraft 

Ships

-30 -20 -10 0 10 20 30 40  

. 00 1 . 0 1 0 .1 1 .0 1 0 1 00 1 00 0 1 00 00  

  dBsm

m2

E le c tr on ic W ar fa re F ou r ie r Re la ti on sh ip s R ad ar P r oc es si ng  

 X-band 

300m/s

0.03m

 20kHz 

S-band 

300m/s

0.1m

6kHz 

Wavelength

3.00m

0.10m

0.05m

0.03m

  f 

100MHz 

3GHz 

6GHz 

10GHz 

Band 

VHF 

S

 X 

Velocity 

Wavelength

DopplerShift 

kT s:= -174dBmK:Boltzmann’s constant=1.38*10 -23 J/K 

Bn:Noise Bandwidth

T s:System Noise TemperatureT 

susuallysetto T 

0 =290K 

 N  f

:Noise figure of receiver 

r ∞

K:Boltzmann’s constant=1.38*10 -23 J/K Bn:Noise Bandwidth

T s:System Noise TemperatureT s usuallysetto T 0 =290K  N  f :Noise figure of receiver 

σ

Page 2: Raytheon EW Quick Guide

7/23/2019 Raytheon EW Quick Guide

http://slidepdf.com/reader/full/raytheon-ew-quick-guide 2/2

THE ELECTRONIC WARFARE

QUICK REFERENCE GUIDE

Raytheon is a proud sponsor ofthe Association of Old Crows.To download a digital copy of this poster,please visit www.raytheon.com/ew