raymond fonck- fusion energy sciences update

Upload: imsaa4

Post on 06-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Raymond Fonck- Fusion Energy Sciences Update

    1/24

    U.S. Department of Energy

    Office of Science

    Raymond FonckAssociate Director

    of Fusion Energy Sciences

    Fusion Energy Sciences Update

    Presented to

    NRC Board on Physics and AstronomyApril 25, 2008

    www.science.doe.gov/ofes

  • 8/3/2019 Raymond Fonck- Fusion Energy Sciences Update

    2/24

    Questions to Address

    Agency Specific

    Response to Plasma 2010 (& other NRC) Reports ITER: status and US Contributions, funding

    Priorities for the US domestic fusion research program

    General

    Most significant issues over the next year

    Volatility in funding process and effects on program

    Where can Academy add value

  • 8/3/2019 Raymond Fonck- Fusion Energy Sciences Update

    3/24

    Mission: Generate the knowledge needed for fusion

    energy sources, and understand general plasma science

    Program Elements:

    Magnetic Fusion Energy Sciences: Burning Plasma Science Theory and Computation Advanced Tokamak Physics Plasma and Fusion Technologies Toroidal Confinement Physics Diagnostics ITER Project and Program Fusion Materials

    Plasma Sciences: Fundamental Properties of Plasmas Electromagnetic Confinement High Energy Density Laboratory Physics Low-Temperature Plasmas Atomic Processes

    National/Shared Facilities:

    DIII-D Advanced Tokamak (GA) MST Reverse Field Pinch (CMSO - WI) C-Mod Advanced Tokamak (MIT) Large Area Plasma Device (UCLA)

    NSTX Spherical Torus (Princeton)

    NCSX Stellarator (Princeton under construction)

  • 8/3/2019 Raymond Fonck- Fusion Energy Sciences Update

    4/24

    Apply ing 3D fieldsprod uces Stoc hasticreg ion leading tostab ilization o f edg einstabilities

    Magnetic Fusion Sciences:

    Controlling Instability @ Plasma Edge

    Critical Edge Instability Controlled by Purposefully Degrading Magnetic Surfaces

    Unstable with high edge pressure gradients:sharp spikes in heat loss

    Stable with relaxed edge pressure gradients

    DIII-D Advanced Tokamak (General Atomics)

  • 8/3/2019 Raymond Fonck- Fusion Energy Sciences Update

    5/24

    MFES: Understanding an Effective Disruption

    Mitigation Technique

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

    Z(m)

    R (m) R (m) R (m) R (m)

    0 0.5 1.51.0 2.0 2.5 3.0 3.5 4.0

    Ti (keV)

    time

    unmitigated

    He Ne Ar Kr

    20

    0

    40

    60

    80

    100

    1 10 20 502 5

    Radiated energy fraction

    increases with Zgas,

    reaching ~80-90%

    Ihalo/Ip

    0.20

    0.25

    0.15

    0.10

    0.0He Ne Ar Kr

    1 10 20 502 5

    Halo currents reduced ~50%

    He Ne Ar Kr

    0

    40

    80

    120

    Tsurface

    (0K)after0.2s

    1 10 20 502 5

    Divertor tile heating

    reduced ~60%

    Wrad/W

    (%)

    ZGas

    ZGas

    ZGas

    3-D MHD Numerical Model(NIMROD + Radiation Package)gives quantitative agreementwith detailed experimentalresults.

    Injection of massive gas puff dissipates energy through radiation:

    Fully 3-D simulation shows rapid destruction of flux surfaces:

    Alcator C-Mod (MIT)

  • 8/3/2019 Raymond Fonck- Fusion Energy Sciences Update

    6/24

    MFES: Similarity Experiments Enable

    Development of a Detailed Physics Basis for ITER

    Baseline (ITER Scena rio 2) Referenc e operating c ase Q10 opera tion a t fullc urrent (15 MA)

    Advanced Inductive (AI) High fusion g a in sc enario Q>10 at full current (15 MA)

    Hybrid (ITER Scena rio 3) Long pulse, high fluenc e mission Q10 a t red ucedc urrent (~12 MA)

    Steady-state (ITER Scenario 4) Advanc ed Tokamak (AT)

    sc ena rio ta rgets

    stea dy-sta te ob jec tive Above no-wa ll p ressure limit Q5 a t red uced c urrent (~9 MA)

    Broad experimental currentprofiles (low li) impac t ITER c oildesign

    DIII-D can simulate ITER scena rios In the ITER shap eand aspec t ratio

    DIII-D Advanced Tokamak (General Atomics)

  • 8/3/2019 Raymond Fonck- Fusion Energy Sciences Update

    7/24

    Dynamo Experiment: self-generation of magnetic

    fields in turbulent flows of liquid metal

    Intermittently excited

    magnetic eigenmode

    has structure similar to

    that predicted for the

    mean-flow, self-

    generated dynamo

    The Madison Dynamo Experiment

    (WI)

    300 gallons of liquid sodium

    150 kW of mechanical power

    Rm/Re=10-5 (always turbulent)

    Confinement is simple, and conductivity

    is uniform

    Predicted:

    Observed:

  • 8/3/2019 Raymond Fonck- Fusion Energy Sciences Update

    8/24

    0

    0.004

    -1000 -500 0 500 1000Y (m)

    Protonfluence

    (m-2)

    MC-simulationwith B=1300T

    Measurement

    Coilshadow

    Simulated proton density map (Ekin