ray matrix approach for the real time control of …ray matrix approach for the real time control of...

19
Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International Workshop on Laser Ranging San Fernando, Spain 7-11 June 2004

Upload: others

Post on 28-Jun-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Ray Matrix Approach for the Real TimeControl of SLR2000 Optical Elements

John J. Degnan

Sigma Space Corporation

14th International Workshop on Laser Ranging

San Fernando, Spain

7-11 June 2004

Page 2: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Basic 1D & 2D Ray Matrices*

d

1 d

0 1

Propagationover distance dx

Optic Axis

Thin Lensof FocalLength, f

1 0

-1/f 1

Optic Axis

Mirror Surfacewith Curvature R

1 0

-2/R 1

Optic Axis

Dielectric Interface

Optic Axis

n21 0

0 n1/n2n1

αx

I

dII

0

1D 2D

IIf

I1

0

IIR

I2

0

In

nI

2

10

0

α

x

10

01=I

y

x

y

x

α

α

*Valid only for a linear optical system. We need to perform a coordinatetransformation whenever the beam changes direction

Page 3: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Example of Coordinate SystemChange: Canted Mirror

mirror

Optical axis

Optical axisOff-axis

Ray

αpi+1

αpi’

S-vector into page

di

di+1

pi+1

pi'

( )

s

p

s

p

iii

ii

i

iiii

x

x

sdp

sdp

ddss

α

α

θ

1000

0100

0010

0001

ˆˆˆ

'ˆˆ'ˆ

2sin

ˆˆ'ˆˆ

111

1

11

×=

×=

×==

+++

++

Page 4: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Simplified SLR2000 Transceiver*

Automated Devices•Star CCD cameraperiodically updates mountmodel•3x telescope compensates forthermal drift in maintelescope focus•Beam magnifier controlslaser spot size and divergenceat exit aperture•Risley prism pair controlstransmitter point-ahead•Variable iris controls receiverfield of view (FOV)•Quadrant detector providesfine pointing corrections

*Planned modifications in red

CCDCamera

0.4 m

0.088 m5.4XBeam

Reducer

0.04 m

0.025 m

CCDSplitter

QUADMirror Transmitter

CompensatorBlock

TelescopePit Mirror

FaradayIsolator

0.080 m

0.070 m

Polarizers

Polarizer

0.085 m 0.105 m 0.350 m

0.070 m

“Zero”Wedge

Day/NightFilters

3-elementTelephoto

Lensf=0. 85 m

0.130 m

LaserTransmitter

0.213 m

Risley Prisms

Computer-controlled

Diaphragm/Spatial Filter

(Min. Range : 0.5to 6 mm diameter)

QuadrantRangingDetector

0.200 m0.051 m

3 X Telescope

f1 = -0.1 m

0.099 m

NORTH(α = 0o)

α0 = 67.4o

f2 =0.3 m

d1

d2

d3(out of page)

f1 = 0.108 m

f2 = -0.02 m

f = .025 m

d1

p1

d1

p1

d1

p1

d2

p2

Vector out of page

Vector into page

p3

s3

d2

s2'

0.250 mWorkingDistance

0.258 m

SpecialOptics2x-8xBeam

Expander

Translation Stage

Page 5: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Transceiver Bench Matrices

01

10 −=Λ

Λ

ΛΛ=

333.00

267.231aMTransmitter

Quadrant Detector

Star Camera0469.2

405.0559.351 Λ−

ΛΛ−=cM

General Form

ΛΛ

ΛΛ=

xx

xxx dc

baM1

Λ−Λ−

ΛΛ=

101.0392.0

57.2079.01bM

Page 6: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Coude Mount Matrix

C1

C2

C3Telescope

TurningMirror

FromTelescopePit Mirror

AzimuthAxis

ElevationAxis

Coude TrackingMount (not to scale)

s-Vector out of page

s -Vector into page

d4

p4

d5

p5

d6

p6

d5

p5'

d4

p4'

d4

d5

d6To Telescope

d3

d3

p3'

0.64 m

0.792 m

0.31 m

InstantaneousAzimuth

out of page

γγ

γγ

cossin

sincos

−−=Γ

εααγ −−= 0

Γ

ΓΓ=02

CdM

α= mount azimuth angleε = mount elevation angleα0 = azimuth angle of transceiver axis at the Coude pit mirror = 67.4o (SLR2000)dC = Coude path length = 1.742 m

Page 7: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Telescope Assembly Matrix

1.2819 m

1.2192 m

0.4 m

Rp = 3.048 m

Rs = - .8128 m

SecondaryMirror

Primary Mirror

TelescopeTurning Mirror

Window

ft = - 0.6 m0.6214 m 0.1905 m

From CoudeTrackingMount

SLR2000TELESCOPE

(NOT TO SCALE)

0.211 m

9.97o

s-Vector out of page

s -Vector into page

d9

p9

d8

p8

d8

p8'

Elevation Axis

d7

p7d7

p7'

d9

+ Az

+ El s9

Im

IdImM

T

TT

103 =

mT = telescope magnification = 10.16dT = 5.758 m

Page 8: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Total SLR2000 System Matrix

( )( )

t

xx

t

xx

xTxCxtx

xTxCxtx

xx

xxxx

m

dD

m

cC

ddddbmB

cdcdamA

DC

BAMMMM

=

=

++=

++=

−−

−=Γ

ΓΓ

ΓΓ==

γγ

γγ

sincos

cossin'

''

''123

Outgoing Rays Incoming Rays

γγ

γγ

sincos

cossin'

''

''1

−−=Γ

ΓΓ−

Γ−Γ=−

T

Tx

Tx

Tx

Tx

xAC

BDM

x = a Transmitter b Quadrant Detector c Star Camera

ΛΛ

ΛΛ=

xx

xxx dc

baM1

Page 9: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Star Calibrations

p-axis

s-axis

Optical Bench

Looking throughrear of Star Camera

p-axis

s-axis

Looking throughtelescope window

s sc

psc

αs9

Mount Elevation Axis

To Ground

αp9

CCD array

s

p

n

n

pixel

arcγγ

γεγε

ε

α

sincos

cossecsinsecsec5.0 −=

Δ

Δ

Δα = star azimuth offsetΔε = star elevation offsetnp = CCD pixel columnns = CCD pixel row

εααγ −−= 0

Page 10: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Quadrant Pointing Correction

p-axis

s-axis

Optical Bench

Looking throughrear of quadrant PMT

p-axis

s-axis

Looking throughtelescope window

sqd

pqd

αp9

αs9

Mount Elevation Axis

To Ground

Satellite

Q1Q2

Q3 Q4

c

c

s

p

mm

arcγγ

γεγε

ε

α

sincos

cossecsinsecsec5.10 −=

Δ

Δ

Δα = azimuth pointing correctionΔε = elevation pointing correctionpc = horizontal centroid coordinatesc = vertical centroid coordinate

εααγ −−= 0

Page 11: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Receiver Field of View

Da = iris diameterFOV = Full Receiver Field of View

in arcsec

FOVarc

mmDa sec

125.0=

Da

TTaTaa

TT

a

T

T

TT

T

a

a

arc

mm

rad

mxxx

rad

mx

xx

αα

α

αα

sec

125.0908.25

'908.25

'387.24'039.0

'908.250

===

Γ−=

Γ−Γ

Γ−=

rr

rr

r

r

r

r

Stepper-controlled Iris

Page 12: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Transmitter Point-Ahead

Optical Bench

p-axis

s-axis

Looking throughtelescope window

αs9

Mount Elevation Axis

To Ground

αp9

“Apparent”Position

(receiver axis)

Future Position(transmitter

axis)

ActualSatellitePosition

p-axis

s-axis

Wedge 1

Wedge 2

Looking through RisleyPrisms toward

telescope

ξ1ξ2

Δξε

α

γεγ

γεγτ

α

α

&

&

sincoscos

coscossin

−−= rT

rp

rp ms

p

αprp =Risley prism output angleprojected into p planeαsrp = Risley prism output angleprojected into s planemT = post-Risley magnification of transmitter =30.48τr = pulse roundtrip time of flight

ε

α = azimuth rate

= elevation rate

εααγ −−= 0

Page 13: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Computing Risley Prism Orientations

r

rT

rp

rp ms

p

τε

τα

γεγ

γεγ

ξδξδ

ξδξδα

α

&

&

sincoscos

coscossin

sinsin

coscos

2211

2211

−−=

+

+=

δ1 = half cone angle traced by wedge 1δ2 = half cone angle traced by wedge 2ξ1 = wedge 1 angle relative to home positionξ2 = wedge 2 angle relative to home position

( ) ( ) ( )( ) ( )( )[ ]( )ξδδδδ

ξγδγδτεξγδγδεταξ

Δ++

Δ−++Δ−+−=

cos2

cos(cossinsincoscos

2122

21

21211

rrTm &&

( ) ( )( ) ( ) ( )( )[ ]( )ξδδδδ

ξγδγδτεξγδγδεταξ

Δ++

Δ−+−Δ−+=

cos2

sinsincoscoscos.)sin(

2122

21

21211

rrTm &&

( )[ ] ( )

+−+

=−≡Δ −

21

22

21

2221

12 2

)cos(cos

δδδδτεετα

ξξξ rrTm &&

Solve above two equations for two unknown Risley orientations ξ1 and ξ2:

ξ2 = ξ1 + Δξ

Page 14: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Simulated LAGEOS Pass

440 460 480 500 520174.5

175

175.5Differential Wedge Angle vs Time

Δξii

deg

PCA

tii

min

440 460 480 500 520180

90

0

90

180

270

360Risley Orientations vs Time

ξ1ii

deg

ξ2ii

deg

PCA

tii

mina( ) b( )

440 460 480 500 5200.001

5 .104

0

5 .104

0.001Differential Angular Rate vs Time

Time (min)

Differential Angular Rate (deg/sec)

PCA

440 460 480 500 5200.05

0.025

0

0.025

0.05Risley Angular Rates vs Time

Time (min)

Wedge Angular Rates (deg/sec)

PCA

c( ) d( )

Page 15: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Azimuth- Elevation Offsets & Beam Centering

40 20 0 20 4040

20

0

20

40Transmitter Point-Ahead

Azimuth Offset (arcsec)

Elevation Offset (arcsec)

4 2 0 2 44

2

0

2

4Central Ray Trajectory on Exit Window

p-axis (increasing azimuth), cm

s-axis (increasing elevation), cm

a( ) b( )

Page 16: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Ray Matrices and Gaussian Beams

Paraxial ray matrix theory can be applied to gaussian beampropagation if we define the following complex parameter:

( ) ( )zj

zRzq 2)(

11

πωλ

−=

If propagation from a point z0 to z can be described by the ray matrix

DC

BAM =

then the gaussian beam properties at z are given by

( )

( )0

0

1

1

)(

1

zqBA

zqDC

zq +

+=

Page 17: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Controlling Beam Divergence

The ray matrix which takes the transmitter beam from theRisley Prism output to the far field is of the form

'1

0

''

'1

0

''

0lim

Γ

ΓΓ=Γ

ΓΓ=

∞→

t

tt

t

tt

r

m

m

rm

m

dm

I

rIIFF

where mt is the total transmitter magnification. From our gaussian parameter, we obtain the following for the full beam divergence

( )( )

( )( )

( )( )

2

0

02

min

2

0

02

0

112

2

+=

+==

zR

z

zR

z

zmr

r

tt λ

πωθ

λπω

ωπλω

θ

where ω(z0) and R(z0) are the beam radius and phasefront radius of curvature out of the computer-controlled telescope in the transmit path. To first order, beam divergence varies linearly withthe lens displacement from perfect focus.

Page 18: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Beam Divergence vs Phase FrontCurvature at Risleys

Radius of SLR2000 primary, a = 20 cmOptimum spot radius at window*,ωopt = a/1.12 = 17.9 cmPost-Risley magnification, mt = 30.48Optimum beam radius at Risley,ω(zo) = ωopt /mt = 5.9 mmMinimum Divergence,θmin = 0.388 arcsec

0 0.1 0.2 0.3 0.4 0.50

10

20

30

40

Inverse Phase Front Curvature, m^-1

Full Beam Divergence, arcsec

θ jj θmin 1π ω0

2⋅

λRinv

jj⋅

2

+⋅:=

Page 19: Ray Matrix Approach for the Real Time Control of …Ray Matrix Approach for the Real Time Control of SLR2000 Optical Elements John J. Degnan Sigma Space Corporation 14th International

Summary• Ray matrix approach provides us with the

mathematical tools to calculate in real time:– Scale factor and angular rotation for converting star

image offsets from center in the CCD camera toazimuth and elevation biases

– Scale factor and angular rotation for convertingquadrant centroid position to satellite pointingcorrection in az-el space

– Transmitter point ahead as a function of round triptime-of-flight and the instantaneous azimuthal andelevation angular rates

– Iris diameter (spatial filter) setting for a given receiverFOV

– Transmitter beam size divergence as a function oftransmit telescope defocus