random ordinary differential equations (rode) · pdf filetechnische universit¨at munc¨...

20
Technische Universit¨ at M ¨ unchen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel , A. Parra, C. Riesinger, F. Rupp Technische Universit¨ at M ¨ unchen March 14, 2016 Tobias Neckel: Random Ordinary Differential Equations (RODE) HIGH TEA @ SCIENCE, March 14, 2016 1

Upload: doantuyen

Post on 07-Feb-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

HIGH TEA @ SCIENCE

Random Ordinary Differential Equations (RODE)

F. Menhorn, T. Neckel, A. Parra, C. Riesinger, F. RuppTechnische Universitat Munchen

March 14, 2016

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 1

Page 2: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Motivation

• goal: efficient tools for numerical simulation of random effects

• RODE as an alternative setting for SODE⇒ massive simulations of pathes

• approach:1. HPC aspects of RODE simulations: parallelisation2. math aspects: relation of RODE to classical UQ

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 2

Page 3: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Motivation

• goal: efficient tools for numerical simulation of random effects• RODE as an alternative setting for SODE⇒ massive simulations of pathes

• approach:1. HPC aspects of RODE simulations: parallelisation2. math aspects: relation of RODE to classical UQ

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 2

Page 4: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Motivation

• goal: efficient tools for numerical simulation of random effects• RODE as an alternative setting for SODE⇒ massive simulations of pathes

• approach:1. HPC aspects of RODE simulations: parallelisation2. math aspects: relation of RODE to classical UQ

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 2

Page 5: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Outline

Motivation

Random Differential Equations (RODEs)Definition of RODEsProperties of RODEsApplication Example: Kanai-Tajimi Earthquake Model

Solving RODEs on GPU clusters

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 3

Page 6: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Definition of RODEs

Assumptions• X : I × Ω→ Rm: stochastic process (continuous sample paths)• f : Rd × I × Ω→ Rd continuous

DefinitionRODE on Rd

dXt

dt= f (Xt (·), t , ω) , Xt (·) ∈ Rd (1)

is a non-autonomous ordinary differential equation

x =dxdt

= Fω(x , t) , x := Xt (ω) ∈ Rd (2)

for almost all pathes ω ∈ Ω.[Bun72]

⇒ path-wise solutions!

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 4

Page 7: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

RODE vs. SODE

SODEdXt = a(Xt , t)︸ ︷︷ ︸

drift

dt + b(Xt , t)︸ ︷︷ ︸diffusion

dWt .

typically: considerable mathematical effort (Ito’s calculus etc.)

Doss-Sussmann/Imkeller-Schmalfuss correspondence (DSIS)

Under sufficient regularity conditions [IS01]:

SODEs and RODEs are conjugate!

⇒ rewrite SODE as RODE by changing the driving stochastic process:

typically: white noise stationary Ornstein-Uhlenbeck (OU) process

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 5

Page 8: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

RODE vs. SODE

SODEdXt = a(Xt , t)︸ ︷︷ ︸

drift

dt + b(Xt , t)︸ ︷︷ ︸diffusion

dWt .

typically: considerable mathematical effort (Ito’s calculus etc.)

Doss-Sussmann/Imkeller-Schmalfuss correspondence (DSIS)

Under sufficient regularity conditions [IS01]:

SODEs and RODEs are conjugate!

⇒ rewrite SODE as RODE by changing the driving stochastic process:

typically: white noise stationary Ornstein-Uhlenbeck (OU) process

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 5

Page 9: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Application Example: Kanai-Tajimi Earthquake Model

4-storey wireframe building

ug ⇐⇒

u + Cu + Ku = F (t) ,

Kanai-Tajimi excitation & storeydisplacements

0 5 10 15 20−20

0

20ug

t

0 5 10 15 20−0.2

0

0.2

u1

0 5 10 15 20−0.2

0

0.2

u2

0 5 10 15 20−0.2

0

0.2

u3

0 5 10 15 20−0.5

0

0.5

u4

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 6

Page 10: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Kanai-Tajimi Earthquake Model as RODE

SODEug = xg + ξt = −2ζgωg xg − ω2

gxg

xg + 2ζgωg xg + ω2gxg = −ξt , xg(0) = xg(0) = 0

ξt : white noise

ζg , ωg : model parameters (e.g. ζg = 0.64, ωg = 15.56[rad/s])

SODE in vector form

d

(xy

)=

(−y

−2ζgωgy + ω2gx

)dt +

(01

)dWt

RODE (DSIS correspondence)

(z1

z2

)=

(−(z2 + Ot )

−2ζgωg(z2 + Ot ) + ω2gz1 + Ot

)

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 7

Page 11: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Kanai-Tajimi Earthquake Model as RODE

SODEug = xg + ξt = −2ζgωg xg − ω2

gxg

xg + 2ζgωg xg + ω2gxg = −ξt , xg(0) = xg(0) = 0

ξt : white noise

ζg , ωg : model parameters (e.g. ζg = 0.64, ωg = 15.56[rad/s])

SODE in vector form

d

(xy

)=

(−y

−2ζgωgy + ω2gx

)dt +

(01

)dWt

RODE (DSIS correspondence)

(z1

z2

)=

(−(z2 + Ot )

−2ζgωg(z2 + Ot ) + ω2gz1 + Ot

)

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 7

Page 12: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Kanai-Tajimi Earthquake Model as RODE

SODEug = xg + ξt = −2ζgωg xg − ω2

gxg

xg + 2ζgωg xg + ω2gxg = −ξt , xg(0) = xg(0) = 0

ξt : white noise

ζg , ωg : model parameters (e.g. ζg = 0.64, ωg = 15.56[rad/s])

SODE in vector form

d

(xy

)=

(−y

−2ζgωgy + ω2gx

)dt +

(01

)dWt

RODE (DSIS correspondence)

(z1

z2

)=

(−(z2 + Ot )

−2ζgωg(z2 + Ot ) + ω2gz1 + Ot

)Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 7

Page 13: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Kanai-Tajimi Earthquake Model: OU Process

Definition of Ornstein-Uhlenbeck process:

dOt = θ(µ−Ot )dt + σdWt

Numerical scheme (exact integration [Gil96])

Ot+h = µx Ot + σx n1

with• h: timestep size• µx = e−h·θ

• σ2x := σ2

2θ (1− e−h·2θ)

• n1: sample value of N (0, 1)

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 8

Page 14: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Kanai-Tajimi Earthquake Model: OU Process

Definition of Ornstein-Uhlenbeck process:

dOt = θ(µ−Ot )dt + σdWt

Numerical scheme (exact integration [Gil96])

Ot+h = µx Ot + σx n1

with• h: timestep size• µx = e−h·θ

• σ2x := σ2

2θ (1− e−h·2θ)

• n1: sample value of N (0, 1)

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 8

Page 15: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Numerical Schemes for RODEs

Specific methods to achieve order of convergence [GK01, KJ07, NR13]:

• Averaged Euler• Averaged Heun• K -RODE Taylor schemes

h

︸ ︷︷ ︸

︷ ︸︸ ︷δtn tn+1

0 1 2 3 4 5−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

x−po

sitio

n

Averaging a sample path of an OU Process (step size h = 1)

image courtesy: A. Parra

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 9

Page 16: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Numerical Schemes for RODEs II

For an RODE in the following form

dXdt

= G(t) + g(t)H(X ),

use averaged values for g(t) on δ:

g(1)h,δ(t) =

1N

N−1∑j=0

g(t + jδ),

=⇒ averaged Euler scheme (timestep h for xn → xn+1)same averaging procedure for G(t):

xn+1 =1N

N−1∑j=0

xn + hG(tn + jδ) + hg(tn + jδ)H(xn)

= xn +1N

N−1∑j=0

hG(tn + jδ) +H(xn)

N

N−1∑j=0

hg(tn + jδ) .

=⇒ global discretisation error of order 1

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 10

Page 17: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Numerical Schemes for RODEs II

For an RODE in the following form

dXdt

= G(t) + g(t)H(X ),

use averaged values for g(t) on δ:

g(1)h,δ(t) =

1N

N−1∑j=0

g(t + jδ),

=⇒ averaged Euler scheme (timestep h for xn → xn+1)same averaging procedure for G(t):

xn+1 =1N

N−1∑j=0

xn + hG(tn + jδ) + hg(tn + jδ)H(xn)

= xn +1N

N−1∑j=0

hG(tn + jδ) +H(xn)

N

N−1∑j=0

hg(tn + jδ) .

=⇒ global discretisation error of order 1Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 10

Page 18: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Solving RODEs on GPU clusters

and now let’s switch to the dark side: Computer Science ;-)

http://bgr.com/2015/11/19/darth-vader-daily-life-photos/

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 11

Page 19: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Literature I

H. Bunke.

Gewohnliche Differentialgleichungen mit zufalligen Parametern.Akademie-Verlag, Berlin, 1972.

D. T. Gillespie.

Exact numerical simulation of the ornstein-uhlenbeck process and its integral.Physical Review E, 54(2):2084–2091, 1996.

L. Grune and P. E. Kloeden.

Pathwise approximation of random ordinary differential equations.BIT Numerical Mathematics, 41(4):711–721, 2001.

P. Imkeller and B. Schmalfuss.

The conjugacy of stochastic and random differential equations and the existenceof global attractors.Journal of Dynamics and Differential Equations, 13(2):215–249, 2001.

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 12

Page 20: Random Ordinary Differential Equations (RODE) · PDF fileTechnische Universit¨at Munc¨ hen HIGH TEA @ SCIENCE Random Ordinary Differential Equations (RODE) F. Menhorn, T. Neckel,

Technische Universitat Munchen

Literature II

P. Kloeden and A. Jentzen.

Pathwise convergent higher order numerical schemes for random ordinarydifferential equations.Proc. R. Soc. A, 463:2929–2944, 2007.

T. Neckel and F. Rupp.

Random Differential Equations in Scientific Computing.Versita, De Gruyter publishing group, Warsaw, 2013.open access.

Tobias Neckel: Random Ordinary Differential Equations (RODE)

HIGH TEA @ SCIENCE, March 14, 2016 13