ramesh raskar - mit media...

60
1 Mitsubishi Electric Research Laboratories Raskar 2007 Mitsubishi Electric Research Labs (MERL) Cambridge, MA Less is More: Less is More: Coded Computational Photography Coded Computational Photography Ramesh Raskar Projector Tags Pos=0 Pos=255 Larval Larval Trematode Trematode Worm Worm Simplest Visual Organs Simplest Visual Organs Single Pixel’ Camera Single Pixel’ Camera

Upload: others

Post on 16-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

1

Mitsubishi Electric Research Laboratories Raskar 2007

Mitsubishi Electric Research Labs (MERL)Cambridge, MA

Less is More:Less is More:

Coded Computational PhotographyCoded Computational Photography

Ramesh Raskar

Projector

Tags

Pos=0

Pos=255

Larval Larval TrematodeTrematode WormWorm

Simplest Visual OrgansSimplest Visual Organs

‘‘Single Pixel’ CameraSingle Pixel’ Camera

Page 2: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

2

Larval Larval TrematodeTrematode WormWorm

Simplest Visual OrgansSimplest Visual Organs

‘‘Single Pixel’ CameraSingle Pixel’ Camera

Larval Larval TrematodeTrematode WormWorm

Simplest Visual OrgansSimplest Visual Organs

?

Page 3: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

3

Special ApertureSpecial Aperture

Larval Larval TrematodeTrematode WormWorm

?

Special ApertureSpecial Aperture

The aperture of a 100 mm lens is modified

Rest of the camera is unmodified

Insert a coded mask with chosen binary pattern

Page 4: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

4

In Focus Photo

LED

Out of Focus Photo: Open Aperture

Page 5: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

5

Out of Focus Photo: Coded Aperture

Bokeh

Page 6: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

6

Page 7: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

7

Out of Focus Photo: Coded Aperture

Captured Blurred Photo

Page 8: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

8

Refocused on Person

Blurred Photos

Coded Aperture, 7 * 7 MaskOpen Aperture

Page 9: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

9

After Removing De-Focus Blur

Open Aperture Coded Aperture, 7 * 7 Mask

Motion Blurred Photo

Page 10: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

10

Short Exposure Traditional MURA

Deblurred Result

Captured SinglePhoto

Shutter

Banding Artifacts and some spatial frequencies

are lost

Dark and noisy

Page 11: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

11

Blurring == Convolution

Traditional Camera: Shutter is OPEN: Box Filter

PSF == Sinc Function

ω

Sharp Photo Blurred Photo

Fourier Transform

Flutter Shutter: Shutter is OPEN and CLOSED

Preserves High Spatial Frequencies

Sharp Photo Blurred Photo

PSF == Broadband Function

Fourier Transform

Page 12: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

12

Flutter Shutter CameraFlutter Shutter CameraRaskar, Agrawal, Tumblin [Siggraph2006]

LCD opacity switched in coded sequence

Traditional Coded Exposure

Image of Static Object

Deblurred Image

Deblurred Image

Page 13: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

13

Deblurred ImagesDeblurred Images

Page 14: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

14

×

Page 15: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

15

Application: Aerial ImagingApplication: Aerial Imaging

Long Exposure: Short Explosure:

Sharp image with sufficient brightness

Sharpness versus Image Pixel Brightness

Time

Shutter Open

Shutter ClosedFlutter Shutter

T = 0T=100ms

Motion Blur Defocus Blur

Page 16: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

16

Coded Exposure

Temporal 1-D broadband code: Motion Deblurring

Coded Aperture

Spatial 2-D broadband mask: Focus Deblurring

Less is MoreLess is More

Blocking Light == More InformationBlocking Light == More Information

Coding in Time Coding in Time Coding in SpaceCoding in Space

Page 17: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

17

Codes at WorkCodes at Work

• Imaging– Aperture Modification

• Without Lens– Astronomy [Fenimore and Gotterson, ’89, Skinner, ’88]

– Nuclear Medicine Imaging [Zhang et al.’99]

– Lensless Imaging, [Zomet & Nayar, CVPR’06]

• With Lens– Range Imaging, [Johnson et al.’00, Hiura and Matsuyama’98, Farid and Simoncelli’98]

– Wavefront Coding, CDM Optics– Levin et al. Siggraph’07

• Illumination– Global Direct Separation , [Nayar, Guru, Grossberg, Raskar, Sig’06]

– Veiling Glare Removal , [Talvala, Adams, Levoy, Sig’07]

• Audio– Reverberation Analysis

• Radar– Chirps for ranging

Larval Larval TrematodeTrematode WormWorm

Page 18: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

18

Coded Aperture in Nature ?Coded Aperture in Nature ?

Larval Larval TrematodeTrematode WormWorm TurbellarianTurbellarian WormWorm

Less is More ..Less is More ..

• Coded Exposure– Motion Deblurring

• Coded Aperture– Focus Deblurring

• Optical Heterodyning– Light Field Capture

• Coded Illumination– Motion Capture– Multi-flash: Cartoons

Projector

Tags

Pos=0

Pos=255

Page 19: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

19

Computational PhotographyComputational Photography

1. Epsilon Photography– Multi-photos by perturbing camera parameters– HDR, panorama– ‘Ultimate camera’: (Photo-editors)

2. Coded Photography– Single/few snapshot– Reversible encoding of data– Additional sensors/optics/illum– ‘Scene analysis’ : (Consumer software?)

3. Impossible Photos– Beyond single view/illum– Not mimic human eye– ‘New art form’

Flash Result Reflection LayerNo-flash

[ Agrawal, Raskar, Nayar, Li Siggraph05 ]

Gradient Vector Projection

Page 20: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

20

Computational PhotographyComputational Photography

1. Epsilon Photography– Multiphotos by varying camera parameters– HDR, panorama– ‘Ultimate camera’: (Photo-editor)

2. Coded Photography– Single/few snapshot– Reversible encoding of data– Additional sensors/optics/illum– ‘Scene analysis’ : (Next software?)

3. Impossible Photos– Not mimic human eye– Beyond single view/illum– ‘New artform’

Computational PhotographyComputational Photography

1. Epsilon Photography– Multiphotos by varying camera parameters– HDR, panorama– ‘Ultimate camera’: (Photo-editor)

2. Coded Photography– Single/few snapshot– Reversible encoding of data– Additional sensors/optics/illum– ‘Scene analysis’ : (Next software?)

3. Impossible Photos– Not mimic human eye– Beyond single view/illum– ‘New artform’

Page 21: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

21

Mask? Sensor

MaskSensorMask? Sensor

MaskSensor

Mask? Sensor

4D Light Field from 2D Photo:

Heterodyne Light Field Camera

Full Resolution Digital Refocusing:

Coded Aperture Camera

Capturing Light Field Inside a CameraCapturing Light Field Inside a Camera

Page 22: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

22

LensletLenslet--based Light Field camerabased Light Field camera

[Adelson and Wang, 1992, Ng et al. 2005 ]

Capturing Light Field Inside a CameraCapturing Light Field Inside a Camera

Stanford Plenoptic Camera Stanford Plenoptic Camera [Ng et al 2005][Ng et al 2005]

4000 × 4000 pixels ÷ 292 × 292 lenses = 14 × 14 pixels per lens

Contax medium format camera Kodak 16-megapixel sensor

Adaptive Optics microlens array 125μ square-sided microlenses

Page 23: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

23

Digital RefocusingDigital Refocusing

[Ng et al 2005][Ng et al 2005]

Can we achieve this with a Can we achieve this with a MaskMask alone?alone?

Heterodyne Light Field Camera

Scanner sensor

Mask

MaskSensor

Page 24: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

24

How to Capture 4D Light Field with

2D Sensor ?

What should be the pattern of the mask ?

Optical HeterodyningOptical Heterodyning

Baseband Audio Signal

Receiver: DemodulationHigh Freq Carrier

100 MHz

ReferenceCarrier

Incoming Signal

Photographic Signal

(Light Field)

Carrier Incident Modulated

SignalReference

Carrier

Main LensObject Mask Sensor

RecoveredLight Field

Software Demodulation

99 MHz

Page 25: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

25

Captured 2D Photo

Encoding due to Cosine Mask

Traditional Camera Traditional Camera vsvs Heterodyne CameraHeterodyne Camera

2D FFT

Traditional Camera Photo

Heterodyne Camera Photo

Magnitude of 2D FFT

2D FFT

Magnitude of 2D FFT

Page 26: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

26

Computing 4D Light Field

2D Sensor Photo, 1800*1800 2D Fourier Transform, 1800*1800

2D FFT

Rearrange 2D tiles into 4D planes200*200*9*94D IFFT

4D Light Field

9*9=81 spectral copies

200*200*9*9

A Theory of MaskA Theory of Mask--Enhanced CameraEnhanced Camera

Main LensObject Mask Sensor

•Mask == Light Field Modulator

•Intensity of ray gets multiplied by Mask

•Convolution in Frequency domain

Page 27: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

27

Related WorkRelated Work

• Light Field Capture– Gortler et al., Levoy & Hanrahan, SIG’96, Isaksen et al.‘SIG00

– Light Field Microscopy: Levoy et al. SIG’06

– Integral Photography• Lippman’08, Ives’30, Georgeiv et al. EGSR’06, Okano et.al’97

– Camera arrays: Wilburn et al. SIG’05

– Flatbed Scanner + Lenslet array: Yang, 2000

– Light Field Video Camera: Wilburn et.al'02

– Programmable Aperture: Liang et. al ICIP 2007

– Plenoptic Camera• Wang and Adelson’92• Ng et al.’05

fx

fθ0

fx0

Band-limited Light Field

Sensor Slice – Fourier Slice Theorem

Photo = Slice of Light Field in Fourier Domain [Ren Ng, SIGGRAPH

2005]

Page 28: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

28

How to Capture 2D Light Field with 1D Sensor ?

fx

fθ0

fx0

Band-limited Light Field

Sensor Slice

Fourier Light Field Space

Extra sensor bandwidth cannot capture extra dimension of the light field

fx

fθ0

fx0

Sensor Slice

Extra sensor bandwidth

Page 29: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

29

fx

??????

??? ???

Solution: Modulation Theorem

Make spectral copies of 2D light field

fx

fθ0

fx0

Modulation Function

Page 30: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

30

Modulated Light Field

fx

fθ0

fx0

Modulation Function

Sensor Slice captures entire Light Field

Demodulation to recover Light Field

fx

Reshape 1D Fourier Transform into 2D

1D Fourier Transform of Sensor Signal

Page 31: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

31

fx

fθ0

fx0

Modulation Function == Sum of Impulses

Physical Mask = Sum of Cosines

1/f0

Mask Tile

Cosine Mask Used

Page 32: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

32

Where to place the Mask?

Mask

Sensor

Mask

Sensor

Mask Modulation Function Mask Modulation

Function

fx

Mask Sensor

Where to place the Mask?

Mask Modulation Functionfx

Page 33: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

33

Mask

Sensor

dv

αα = (d/v) (π/2)

Where to place the Mask?

Mask Modulation Function

Captured 2D Photo

Encoding due to Cosine Mask

Page 34: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

34

Computing 4D Light Field2D Sensor Photo, 1800*1800 2D Fourier Transform

2D FFT

Rearrange 2D tiles into 4D planes200*200*9*94D IFFT

4D Light Field

9*9=81 spectral copies

200*200*9*9

Digital Refocusing

Only cone in focus

Captured Photo

Page 35: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

35

Full resolution 2D image of Focused Scene Parts

Captured 2D Photo

Image of White Lambertian Plane

divide

MERL Mask-Enhanced Cameras: Heterodyned Light Fields & Coded Aperture Veeraraghavan, Raskar, Agrawal, Mohan & Tumblin

Differences with Differences with PlenopticPlenoptic CameraCamera

• Micro-lens array

• Samples individual rays

• Needs high alignment precision

• Wasted pixels

• Narrowband Cosine Mask

• Samples coded combination of rays

• More flexible

• No wastage

Mask

Sensor

Microlensarray

Sensor

Plenoptic Camera Heterodyne Camera

Page 36: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

36

Coding and Modulation in Camera Using MasksCoding and Modulation in Camera Using MasksMask? Sensor

MaskSensor

MaskSensor

Coded Aperture for Full Resolution

Digital Refocusing

Heterodyne Light Field Camera

Coded ImagingCoded Imaging

• Coded Exposure– Motion Deblurring

• Coded Aperture– Focus Deblurring

• Optical Heterodyning– Light Field Capture

• Coded Illumination– Motion Capture– Multi-flash: Cartoons

Projector

Tags

Pos=0

Pos=255

Page 37: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

37

CurvedPlanar Non-planar

SingleProjector

MultipleProjectors

Projector

jUser : T

?

Pocket-ProjObjects

ProjectorProjector--based Displaysbased Displays

2000

2000 2002

2001

1999

2002

20031999

1998

ViconOpticalMotion Capture

High-speed IR Camera

Body-worn markers

Medical Rehabilitation Athlete Analysis

Performance Capture Biomechanical Analysis

Page 38: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

38

Coded Illumination Coded Illumination High Speed Motion CaptureHigh Speed Motion Capture

- To increase tracking speedCode position: Non-colocated emitters

- To work in Ambient LightCode time: 455KHz modulation

- InvisibleCode wavelength: Infrared

Projector

Tags

Pos=0

Pos=255

Light MetersLight Meters

-- Distributed, wirelessDistributed, wireless-- RealReal--time locationtime location-- Incident light readingIncident light reading

-- Annotate Event PhotosAnnotate Event Photos-- Coded IlluminationCoded Illumination-- Capture image location of imperceptible tagsCapture image location of imperceptible tags-- Works in ambient light, 500 HzWorks in ambient light, 500 Hz

Projector

Tags

Pos=0

Pos=255

Page 39: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

39

Labeling SpaceLabeling Space

Each location receives a unique

temporal code

Projector

Tags

Pos=0

Pos=255

But 60Hz video projector

is too slow

Fixed Masks + Blinking LEDs

Fast Switching usingFast Switching usingNonNon--colocatedcolocated Emitters for Structured LightEmitters for Structured Light

Time multiplex, Freq or CDMA ?

Tag

Page 40: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

40

Fast Switching usingFast Switching usingNonNon--colocatedcolocated Emitters for Structured LightEmitters for Structured Light

How Labeling WorksHow Labeling WorksLight

source

GrayCode Mask

Optics Screen

Light source blink one by one and each position on the screen has different light pattern.

4 light make 4 bit position resolution

pos=0 pos=15

Page 41: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

41

Labeling Space Labeling Space

LED

GrayCode Mask

Optics Screen

1 LED for 1 Bit pattern

pos=0 pos=15

Labeling Space Labeling Space

LED

GrayCode Mask

Optics Screen

1 LED for 1 Bit pattern

pos=0 pos=15

Page 42: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

42

Labeling Space Labeling Space

LED

GrayCode Mask

Optics Screen

1 LED for 1 Bit pattern

pos=0 pos=15

Labeling Space Labeling Space

LED

GrayCode Mask

Optics Screen

1 LED for 1 Bit pattern

pos=0 pos=15

Page 43: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

43

Coded Illumination ProjectorCoded Illumination Projector

The Gray code pattern

Focusing Optics

Gray code Slide

Condensing Optics Light Source

Photosensing TagPhotosensing Tag

Page 44: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

44

2D Location 3D Location

Y data

X data

Y data

X dataX2 data

OpticalMotionCapture

Emitt

er C

ompl

exity

Receiver Complexity

Page 45: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

45

Imperceptible tags, Ambient Lighting, Id per marker

Prakash [Raskar, Nii, Summet et al Siggraph 2007]

High Speed TrackingHigh Speed Tracking

Page 46: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

46

Lightmeters: Realistic Editing + Blurring

Page 47: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

47

Coded Illumination Coded Illumination for for Motion CaptureMotion Capture

• 500 Hz Tracking• Id for each Marker Tag• Capture in Natural Environment

– Visually imperceptible tags– Photosensing Tag can be hidden under clothes– Ambient lighting is ok

• Unlimited Number of Tags Allowed• Base station and tags only a few 10’s $

AcknowledgementsAcknowledgements

• Amit Agrawal, MERL• Jack Tumblin, Northwestern U.• Shree Nayar, Columbia U.

• MERL– Jay Thornton, Keisuke Kojima

• Mitsubishi Electric Japan– Kazuhiko Sumi, Haruhisa Okuda

• Coded Aperture and Light Field– Ashok Veerarghavan, Ankit Mohan

• Prakash, Motion Capture– Masahiko Inami, Hideaki Nii, Yuki Hashimoto, Jay Summet, Erich Bruns,

Paul Dietz, Bert de Decker, Philippe Bekaert

• Prof Yagi, Prof Ikeuchi and ACCV Organizers

Page 48: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

48

Future of Coding LightFuture of Coding Light

• How to block light in other ways?– Time, Space, Illumination .. Wavelength? On Sensor?

• What other blockers?– Dynamic masks (LCDs), non-planar or colored masks?

• Applications– Estimate params in presence of low pass convolution– Light Field Applications: lens aberration, microscopy

Coded PhotographyCoded Photography

• Coded Exposure– Motion Deblurring

• Coded Aperture– Focus Deblurring

• Optical Heterodyning– Light Field Capture

• Coded Illumination– Motion Capture– Multi-flash: Shape Contours

• Epsilon->Coded->Impossible Photos

Projector

Tags

Pos=0

Pos=255

Page 49: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

49

Blind CameraBlind Camera

Sascha Pohflepp, U of the Art, Berlin, 2006

Page 50: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

50

Coded PhotographyCoded Photography

• Coded Exposure– Motion Deblurring

• Coded Aperture– Focus Deblurring

• Optical Heterodyning– Light Field Capture

• Coded Illumination– Motion Capture– Multi-flash: Shape Contours

• Epsilon->Coded->Impossible Photos

Projector

Tags

Pos=0

Pos=255

Page 51: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

51

Multi-flash Camera for Detecting Depth Edges

Depth Edges

Left Top Right Bottom

Depth EdgesCanny Edges

Page 52: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

52

Car Manuals

Page 53: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

53

What are the problems with ‘real’ photo in conveying information ?

Why do we hire artists to draw what can be photographed ?

Shadows

Clutter

Many Colors

Highlight Shape Edges

Mark moving parts

Basic colors

Page 54: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

54

Shadows

Clutter

Many Colors

Highlight Edges

Mark moving parts

Basic colors

A New ProblemA New Problem

GesturesGestures

Input Photo Canny Edges Depth Edges

Page 55: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

55

Depth Edges with Depth Edges with MultiFlashMultiFlashRaskar, Tan, Feris, Jingyi Yu, Turk – ACM SIGGRAPH 2004

Page 56: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

56

Page 57: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

57

Depth Discontinuities

Internal and externalShape boundaries, Occluding contour, Silhouettes

Page 58: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

58

Depth Edges

Our MethodCanny

Page 59: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

59

Canny Intensity Edge Detection

Our Method

Photo Result

Page 60: Ramesh Raskar - MIT Media Labweb.media.mit.edu/~raskar/.../AllSlidesraskarCodedPhotographyACCV2007.pdf · Computing 4D Light Field 2D Sensor Photo, 1800*1800 2D Fourier Transform,

60