raman x download - eth z...raman spectroscopy visible uv x-ray gamma infrared microwave radio energy...

39
Raman Spectroscopy Kalachakra Mandala of Tibetian Buddhism Dr. Davide Ferri Paul Scherrer Institut 056 310 27 81 [email protected]

Upload: others

Post on 10-Mar-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman Spectroscopy

Kalachakra Mandala of Tibetian Buddhism

Dr. Davide FerriPaul Scherrer Institut 056 310 27 81 [email protected]

Page 2: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman spectroscopy

Literature:M.A. Banares, Raman Spectroscopy, in In situ spectroscopy of catalysts (Ed. B.M. Weckhuysen), ASP, Stevenson Ranch, CA, 2004, pp. 59-104Ingle, Crouch, Spectrochemical Analysis, Prenctice Hall 1988Handbook of Spectroscopy (Ed. Gauglitz, Vo-Dinh), Wiley, Vol. 1http://www.kosi.com/raman/resources/tutorial/index.html

Chandrasekhara Venkata Raman (1888 – 1970)

February 28, 1928: discovery of the Raman effect

Nobel Prize Physics 1930 “for his work on the scattering of light and for the discovery of the effect named after him”

Page 3: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman spectroscopy

Visible UV

X-Ray

Gamma

Infrared

Microwave

Radio

Energy

nanometers

2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 106 eV

Wavelength 5 x 109 10000 500 250 0.5 5 x 10-4

Raman

FIR

MIR NIR

Page 4: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

0 200 400 600 800 1000 1200

EPR

UV-Vis

XAFS

NMR

Raman

IR

Number of publications

Number of publications containing in situ, catalysis, and respective methodSource: ISI Web of Knowledge (Sept. 2008)

Importance of Raman spec. in catalysis

Page 5: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman spectroscopy

elastic scattering = Rayleigh scatteringinelastic scattering = Raman scattering (ca. 1 over 107 photons)

Evib = E0 – E

incident light

scattered light

sample

E0 E

Raman shift

Page 6: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Classic mechanics approach

Electric field of exciting radiation:

Induced dipole:

StokesAnti-Stokes

E = E0cos(20t)in = E = E0cos(20t)

cosx·cosy = 1/2 [cos(x+y)+cos(x–y)]

= 0 + cos(2vibt)

in = E = [0 + cos(2vibt)]E0cos(20t)

in = 0E0cos(20t) + E0cos(2vibt)cos(20t)

Induced change of :

and in = 0E0cos(20t) + /2E0cos[2(0+vib)t] + /2E0cos[20-vib)t]}

Rayleigh

Page 7: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Quantum mechanics approach

virtual level

v = 0 (initial)

v = 1 (final)

Stokes Anti-Stokes Raman shift (cm-1)

Rayleigh

Stokes Anti-StokesR

aman

inte

nsity

electronic level

vibrational levels

Rayleigh00– 0+

vib vib

Raman spectrum

1

106

h0 h0

h0

h0 h(0+vib)

h(0-vib)

hvib

Same information contained in Stokes and Anti-Stokes signals Same distance from Rayleigh line whatever 0

Page 8: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Classical theory inadequate: same intensity for Anti-Stokes and Stokes lines is predicted

Measure of Temperature:

Quantum mechanics theory

excited populationrelaxed population

= e-E/kT

Stokes lines more intense than Anti-Stokes lines (factor 100)

I (Anti-Stokes)

I (Stokes)

0+vib

0–vib

= e-hvib/kT4

Page 9: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman effect

Change in polarizability, Intensity of Raman signals depends on

E0 = incident beam irradiance = polarizability of the particle (ease of distortion of the electron cloud) = wavelength of the incident radiation = angle between incident and scattered ray

More scattering at low wavelength (at higher frequency)

Esc =2 (1+cos2)

4E0

Page 10: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman effect

Polarizability,

- properties of molecules- strength/nature of bonds

Esc =2 (1+cos2)

4E0

covalent bond STRONG Raman signals

ionic bond WEAK Raman signals

Page 11: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman vs. Infrared

Inelastic scattering of lightAbsorption of IR light

Infrared Raman

Page 12: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman vs. Infrared

high absorption for polar bonds (C=O, H2O, NH, etc.)

high absorption for easily polarizable bonds large electron clouds not polar

H2O is a very weak Raman scatterer

C=C double bonds strong Raman scatterers

∂∂Q

2

≠ 0∂∂Q

2

≠ 0

Selection rules

Page 13: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman vs. Infrared

+- -

as

s

degenerate modes

1340 cm-1

2349 cm-1

667 cm-1

Raman active

CO2

667 cm-1

Page 14: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman vs. Infrared

(C-H)

(C=O)(CH3)

(C-H)

Raman shift (cm-1)

Inte

nsity

Acetone

Page 15: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman vs. Infrared

O

Cl

Cl

Page 16: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Metal oxides

<700 cm-1: covalent bond character, strong signals in Raman >100 cm-1: low polarizability of light elements (Si, Al, O) and ionic character:

weak signals in Raman Raman more suitable than IR in low wavenumber range (M-O-M) but

complementary in high wavenumber range (M=O)

Raman vs. Infrared

Wachs, Catal. Today 27 (1996) 437

Page 17: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman vs. InfraredH-ZSM-5

Transmission FTIR

Raman

courtesy by M. Signorile, UniTO

IR– suitable for M-OH vibrational

modes

Raman– characterization of bulk (i.e.

framework modes) → structural information– possibility to exploit resonances→ moiety selective

Both applicable in a wide range of conditions→ suitable for in situ studies

Page 18: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Raman vs. Infrared

Simple optics Versatile design of cells (quartz & glass allowed) Fiber optics Almost no limitation in temperature Very small amount (picog) of sample possibleWater no problem Sensitive to microcrystals (< 4 nm) Sample of phase not critical Spatial resolution (1 m) No contribution from gas phase

Relatively expensive instruments Low spectral resolution (UV and Vis) Difficult quantification (limited to heterogeneous catalysis) Structure of analyte affected by high energy of laser (e.g. UV Raman) Fluorescence

Adv

anta

ges

Dis

adva

ntag

es

Page 19: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Fluorescence and Raman signals

UV Vis NIR

Vis Raman FT RamanUV Raman

excitation line

Raman signals

frequency/energy

Fluorescence Emission of visible light during a time posterior to the sample

irradiation

Esc proportional to 4

Fluorescence proportional to

107 stronger than Raman scattering

IR excitation UV excitation Pulsed Lasers

Solution

Page 20: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Fluorescence and Raman signals

Fan et al., Acc. Chem. Res. 43 (2009) 378

Page 21: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

Aqueous solutions Environmental chemistry & trace

analysis Semiconductor technology Biochemical and biomedical Pharmaceutical industry Heterogeneous catalysis Forensic science Polymer science Food science Art conservation Reaction monitoring

785 nm

1064 nm

500100015002000250030003500

Raman shift (cm-1)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Inte

nsity

Page 22: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

UV-Raman No fluorescence(only few molecules fluoresce below 260 nm)

Stair et al., J. Vacuum Technol. A 15 (1997) 1679

Rh/Al2O3, coked 500°C in naphtha

5 mW, 257 nm

400 800 1200 1600 20000

inte

nsity

Raman shift (cm-1)

100 mW, 514.5 nm

400 800 1200 1600 20000

inte

nsity

Raman shift (cm-1)

Page 23: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Resonance Raman spectroscopy

Raman scattering is strongly enhanced (factor 106 !) if the excited state is not virtual, but an electronically excited state

Vibrations related to an electronic transition are excited This can be tuned by changing the laser wavelength

Example organic molecules: resonance with a π→π* transition enhances stretching modes of the π-bonds involved with the transition, while the other modes remain unaffected

Page 24: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Resonance Raman spectroscopy

• 244 nm → perfect sites• 266 nm → defect sites, perfect sites + ligands• 1064 nm (out of resonance) → SiO2 framework, bulk TiO2

Multiwavelength approach to achieve different resonances

perfect defective highly defective

244 nm

266 nm

1064 nm

highlydefective

perfectTi4+-O

defective

UV-vis

Raman

1

2

33

21

courtesy of M. Signorile, UniTO

TS-1

Page 25: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

Li et al., Angew. Chemie 38 (1999) 2220

UV resonance

Additional detailed structural information not available upon vis irradiation

TiO

Si

X X

325

488

s

as

Page 26: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

MOx/M’OX used in a number of industrial chemical processes (dehydrogenation, oxidation, amoxidation…)

Question: nature of MOx and the role in catalysis?

Applications

Page 27: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

Monolayer (monomeric) & polymeric species

M

O

OOO

M

OO

OOM

OO

OO

MOx

1030-990 cm-1

950-750 cm-1

monomers

950-750 cm-1

M

OO

OO

M

O

O

O

950-750 cm-1

M

OO

OO

M

O

O

O

crystalline phase+ ev. polymers

MOx

polymers

MOxνas = 900 cm-1

νs = 600 cm-1

δ = 200 cm-1

M

O

OO

O M

OO

OM

O

O

O

O

MO

O

O

M

O

M

O

OO

O M

OO

OM

O

O

O

O

MO

O

O

M

O950-750 cm-1

M

O

O

OO

M

O

O

O

950-750 cm-1

M

O

O

OO

M

O

O

O

surface species

Page 28: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

815

665 280

crystalline MoO3

1002

940

300

870

surface MoO3

MoO3/Al2O3dehydrated at 500°C

Very weak signals from support oxides as SiO2 and Al2O3 at 800–1100 cm-1

Advantage over IR

Wachs, Catal. Today 27 (1996) 437

Monomeric & polymeric species

Page 29: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

Monomeric & polymeric species

Wu et al., J. Phys. Chem. B 109 (2005) 2793

γ-Al2O3

14.2

84.41.20.160.030.01

V2O5

14.2

γ-Al2O3

8

4.41.2

0.16

V2O5

UV-laser244 nm

vis-laser488 nm

Page 30: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

M/MOX (M= Pd, Pt, Rh; MOx= Al2O3, ZrO2, CeO2…) used for total and partial oxidation reactions

Question: what is the state of Pd during reaction?

Examples: Pd for CH4 combustionRh for CH4 partial oxidation

Examples for in situ studies

Page 31: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

Resonance Raman – State of the metal in Pd/Al2O3

inte

nsity

Raman shift (cm-1)

1200200 600 1000400 800

inte

nsity

Raman shift (cm-1)

1200200 600 1000400 800

300°C, O2

300°C, H2

as prepared+300°C3 min O2

431

624

624

273

400°C, O2

400°C, He

2 wt.% Pd/Al2O3, red. 400°C (3 h) + calcined 600°C (3 h)

Demoulin et al., PCCP 5 (2003) 4394

Page 32: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

Demoulin et al., PCCP 5 (2003) 4394

Resonance Raman – Methane oxidation over Pd/Al2O3

inte

nsity

Raman shift (cm-1)

1200200 600 1000400 800

400°C, H2

400°C

425°C

450°C

500°C 24 %

15 %

4 %

2 %

PdO

CH4 conv.

reduced Pd

feed

CH

4/O2 (1

:10)

inout

objective+532 nm

near PdO mode

CH4 + 2O2 → CO2 + 2H2O

PdO↑

Pd(0)

Page 33: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

Resonance Raman – Methane oxidation over Pd/ZrO2

1 vol% CH4/4 vol.% O2/He10 wt.% Pd/ZrO2

200 400 600 800 1000 120020000

30000

40000

50000

60000

70000

80000

90000

70200300400500600700800860

Raman shift (cm-1)

Inte

nsity

T (°C)

514 nm reactor cellinlet

outlet

oven

PdO→Pd

gas-phase combustion

Pd→PdO

650→630 cm-1

change in PdO stoichiometry ?

Page 34: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

(Polyaromatic) Coke formation and characterization (Polyaromatic) Coke formation and characterization

UV

H-MFI

CrOx/Al2O3

Coke from:H-MFI: methanol-to-hydrocarbons (MTH)CrOx/Al2O3: C3H8 dehydrogenation (ODH)

Coke classification1D topology, chain-like2D topology, sheet-like

Stair, Adv. Catal. 51 (2007) 75

G-band

D-band

Page 35: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Applications

(Polyaromatic) Coke formation and characterization (Polyaromatic) Coke formation and characterization

Coke from:H-MFI: methanol-to-hydrocarbons (MTH)CrOx/Al2O3: C3H8 dehydrogenation (ODH)

Coke classification1D topology, chain-like2D topology, sheet-like

Stair, Adv. Catal. 51 (2007) 75

Page 36: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Chua et al., J. Catal. 196 (2000) 66

Applications Fluidized bed reactor cell

Page 37: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

MoS2, 6 minfull power, FB

MoS2, 6 minfull power

MoS2, 1 minfull power

MoS2, 6 min1/8 power

* -MoO3

hydrodesulfurization

Beato et al., Catal. Today 205 (2013) 128

Applications Fluidized bed reactor cell

Page 38: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Beato et al., Catal. Today 205 (2013) 128

CH3OH steam reforming (r.t.) on H-ZSM5= 244 nm

Laser induced CH3OH decomposition

FB

FB off

CH3OH

zeoliteCH3OH CH3OH

Sulfuric acid V2O5/pyrosulfate catalyst= 514 nm

active species: mono- & dimeric V5+

oxosulfate species

V-O-S

V-O-V

no conv.(V4+O)3(SO4)5

4-

ca. 30%conv.

SO42-

V5+

polym. species

Applications Fluidized bed reactor cell

Page 39: Raman x download - ETH Z...Raman spectroscopy Visible UV X-Ray Gamma Infrared Microwave Radio Energy nanometers 2.48 x 10-7 0.124 2.48 4.96 2480 2.45 x 10 6 eV Wavelength 5 x 109 10000

Geske et al., Catal. Sci. Technol. 3 (2013) 169

ethane ODH on MoOx/Al2O31 mm Al2O3 spheres

full O2 conv.max. C2H4 conc. monitoring of reaction in fixed bed

reactor (Raman/MS) partial reduction MoO3→MoO2with decreasing O2 content MoO3 vanishes when no O2 is present (point , 19 mm)

fiber optics; spatial resolution, 1 mmviolet/MoO2

yellow/MoO3

Applications Fixed bed reactor