raindrop impact on saturated sediment

15
Raindrop Impact on Saturated Soil Mohsen Cheraghi, D. A. Barry Ecole polytechnique fédérale de Lausanne, Faculté de l’environnement naturel, architectural et construit, Institut d’ingénierie de l’environnement, Lausanne, Switzerland mohsen.cheraghi@epfl.ch andrew.barry@epfl.ch 9th OpenFOAM® Workshop 23-26 June 2014 in Zagreb, Croatia

Upload: mohsen-cheraghi

Post on 11-Jan-2017

89 views

Category:

Engineering


5 download

TRANSCRIPT

Page 1: Raindrop impact on saturated sediment

Raindrop Impact on Saturated Soil

Mohsen Cheraghi, D. A. Barry

Ecole polytechnique fédérale de Lausanne, Faculté de l’environnement naturel, architectural et construit, Institut d’ingénierie de l’environnement, Lausanne, Switzerland

 [email protected]

[email protected]

9th OpenFOAM® Workshop23-26 June 2014 in Zagreb, Croatia

Page 2: Raindrop impact on saturated sediment

Contents

IntroductionProblem DefinitionNumerical ParametersSimulation ResultsConclusions

1/14

Page 3: Raindrop impact on saturated sediment

Introduction

Water Erosion

http://www.montcalm.org/media/planningeduc/tn_raindrp.jpg http://intechweb.wordpress.com/2011/11/30/soil-erosion-raising-awareness-on-current-environmental-issues/

http://www.geo.uu.nl/landdegradation/Fieldwork.htm

Splash Erosion Rill Erosion Gully Erosion

2/14

Page 4: Raindrop impact on saturated sediment

Problem Definition

Dd = 2 mm

Dd = 4 mm

Vt = 2.36 ms-1

Terminal Velocity of Raindrop (Vt)

Vt = 7.65 ms-1

3/14

D. Andrew Barry
Use of italics should be consistent
Page 5: Raindrop impact on saturated sediment

Numerical Parameters

Discrete phase methodParticle size: 1 mmCohesion force: 0youngsModulus 40e6;poissonsRatio 0.35;

Drag model: ErgunWenYuDrag

Collesion Model: pairSpringSliderDashpotCoeffs { useEquivalentSize no; alpha 0.02; b 1.5; mu 0.10; cohesionEnergyDensity 0.0; collisionResolutionSteps 12; };

Wall Model:wallSpringSliderDashpotCoeffs { useEquivalentSize no; collisionResolutionSteps 12; youngsModulus 1e8; poissonsRatio 0.23; alpha 0.01; b 1.5; mu 0.09; cohesionEnergyDensity 0; };

4/14

Page 6: Raindrop impact on saturated sediment

Numerical Parameters

Volume of Fluid methodphases( water { transportModel Newtonian; nu nu [ 0 2 -1 0 0 0 0 ] 1e-06; rho rho [ 1 -3 0 0 0 0 0 ] 1000; }

air { transportModel Newtonian; nu nu [ 0 2 -1 0 0 0 0 ] 1.48e-05; rho rho [ 1 -3 0 0 0 0 0 ] 1; });

Sigma ( surface tension)( (air water) 0.07197);

5/14

Page 7: Raindrop impact on saturated sediment

Simulation: outline

+

Velocity profile of section A is implemented as a boundary condition on surface B

A B

VOF DPM

6/14

Page 8: Raindrop impact on saturated sediment

Velocity profile along cross section A

A

3.5 cm

Simulation: VOF

7/14

Page 9: Raindrop impact on saturated sediment

Simulation: VOF

V(x, t) = V0(x) f(t)

V0 (x) = Velocity Profile at the moment of collision

-0.00999999999999999 0.01 0.03 0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

V0 (x)

x (m)

V0

8/14

Page 10: Raindrop impact on saturated sediment

Simulation: VOF

V(x, t) = V0(x) f(t)

V0 (x): Velocity Profile at collision instant-0.00999999999999999 0.01 0.03 0.05

-0.15

-0.1

-0.05

0

0.05

0.1

x (m)

V (m

s-1)

V0 (x)

V (x)

V0max (x)

Vmax (x)

0 0.01 0.02 0.03 0.04 0.05 0.06

-10

0

10

20

30

40

50

t (s)

Vmax

/ V0

max

9/14

Page 11: Raindrop impact on saturated sediment

Simulation: VOF

V(x,t) = f(t)V0(x)

0 0.01 0.02 0.03 0.04 0.05 0.06

-10

0

10

20

30

40

50

t (s)

Vmax

/ V0

max

f(t) = -366443498336t6 + 63529957792t5 - 4342637831t4 + 150446928t3 -2829761t2 + 25048t – 23

R² = 0.999

f(t) = -305662395148t6 + 52347905525t5 3496475928t4 + 114043721t3 - 1846164t2 + 12209t + 13

R² = 0.986

0 0.01 0.02 0.03 0.04 0.05 0.06

-60

-40

-20

0

20

40

60

80

t (s)

Vmax

/ V0

max

2-mm Droplet:

4-mm Droplet:

10/14

Page 12: Raindrop impact on saturated sediment

Results

Droplet size: 2 mm (Vt = 2.36 ms-1) Particle size: 1 mm

*Simulation for 50 ms splash

11/14

t = 0.00

t = 50 ms

Page 13: Raindrop impact on saturated sediment

Results

Droplet size: 4 mm (Vt = 7.65 ms-1) Particle size: 1 mm

*Simulation is for 50 ms splash

12/14

t = 0.00

t = 50 ms

Page 14: Raindrop impact on saturated sediment

Conclusions:

DPM method is able to simulate dense particles with the ErgunWenYu drag model

Simulation of random droplets (as in rainfall) demands coupling of the DPM and VOF solvers

This simulation was not verified or validated and a more precise VOF and LES simulation is needed in the future

13/14

Page 15: Raindrop impact on saturated sediment

Thank You

Questions?