raghunath(sahoo( indian(instute(of(technology(indore,(india(

24
Raghunath Sahoo Indian Ins/tute of Technology Indore, India arXiv:1507.08434 + arXiv:1511. + arXiv:1511.

Upload: others

Post on 28-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Raghunath  Sahoo  Indian  Ins/tute  of  Technology  Indore,  India  

arXiv:1507.08434    +  

arXiv:1511.  +  

arXiv:1511.  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   3  

The  Mo'va'on  Hagedorn:    !           StaGsGcal  descripGon  of  momentum  spectra  !           ExponenGal  decay  of  differenGal  cross-­‐secGon:   E

d

3�

dp

3= A.exp(

�pT

T

)

Experimental  Data:  

High  pT-­‐tail  deviates  from  exponenGal  (equilibrium  Boltzmann  staGsGcs).    

Hagedorn’s  proposal:  

QCD-­‐inspired  empirical  formula,  that  describes  the  spectra  over  wide  pT-­‐range:  

Ed3�

d3p= A.

✓1 +

pTp0

◆�n

�! exp

✓�npT

p0

◆for pT ! 0,

�!✓p0pT

◆n

for pT ! 1.

A,  n  and  p0  are  fiZng  parameters.  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   4  

The  Mo'va'on  "  In  an  equilibrated  staGsGcal  ensemble  T  is  associated  with  <pT>.  

" When  the  system  shows  deviaGon  from  equilibrium,  the  above  may  not  be  correct.  

"  Either  T    fluctuates  event-­‐by-­‐event  or  within  the  same  event.                                                                                                                                                        (See  presentaGon  by  me  on  7th  Nov.)  

"  Such  a  system  could  be  described  by  non-­‐extensive  generalizaGon  of  staGsGcal  mechanics:  

f(pT ) = Cq.h1 + (q � 1)

pTT

i� 1q�1

q  is  the  non-­‐extensive  parameter  and  a  measure  of  degree  of  deviaGon  from  Boltzmann  staGsGcs.  In  the  limit  q  #  1,  we  get  back  to  Boltzmann  staGsGcs.  

The  Tsallis  non-­‐extensive  staGsGcs  #  

For n =

1

q � 1

, and p0 =

T

q � 1

the  QCD-­‐inspired  formula  and  Tsallis  distribuGon  funcGon  coincide  with  each  other.    M.  Rybczynski,  Z.  Wlodarczyk  and  G.  Wilk,  JPG  39  (2012)  095004  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   5  

Makes  sense  to  use  Nonextensive  Sta's'cs  at  High-­‐energies  

PHENIX:  Phys.  Rev.  83,  064903  (2011)    Experiments  at  RHIC  and  LHC  use  non-­‐extensive  staGsGcs  to  describe  parGcle  spectra:  STAR:  Phys.  Rev.  75,  064901  (2007)-­‐  Strange  parGcle  yields:  pp  @  200  GeV  PHENIX:  Phys.  Rev.  83,  064903  (2011)  –IdenGfied  parGcles  pp  @  200  GeV  CMS:  Eur.  Phys.  J.  C  72,  2164  (2012)–IdenGfied  parGcles  pp  @  0.9,  2.76,  and  7  TeV  ALICE:  Eur.  Phys.  J.  C  71,  1655  (2011)–IdenGfied  parGcles  pp  @  900  GeV                          Physics  LeFers  B  712,  309  (2012)-­‐MulG-­‐strange  parGcles  pp@  7  TeV    Heavy-­‐Ion  data:  TBW  or  Tsallis  with  radial  flow  in  a  relaGvisGc  approach:                              (PRC  79  (2009)  051901(R)  &  1507.08434).  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   6  

The  Tsallis  Distribu'on    

Pros  and  Cons:  

$  Experimental  data  at  high  energies  follow  Tsallis  distribuGon.  

$  A  secGon  of  theoreGcians  believe  it  as  “SuperstaGsGcs”.  

$  Another  secGon  of  theoreGcians  say:  

!  No  convincing,  rigorous  derivaGon  of  Tsallis  distribuGon  from  fundamental  microscopic  physics.  

!  No  theoreGcally  derived  or  even  physically  moGvated  transport  equaGon  for  which  the  Tsallis  distribuGon  is  a  soluGon.  

We  need  more  theoreGcal  helps  in  this  direcGon……..  

$  Analysis  of  identified particle spectra with nonextensive  staGsGcs.      $  Taylor  expansion  in  (q-­‐1)  and  study  of  degree  of  deviaGon  from  non-­‐extensivity.  

$  AnalyGc  inclusion  of  radial  flow  in  Tsallis  distribuGon  and  heavy-­‐ion  spectra.    $  Mass  ordering  of    T,  V  and  β  for  idenGfied  parGcles:  Indica/on  of  differen/al  freeze-­‐out.    $  Speed  of  sound  for  physical  hadron  gas  in  nonextensive  staGsGcs.  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   7  

I  am  going  to  discuss  on…..  

The  thermodynamical  quanGGes    are:      

where  “V”  is  the  volume  and  “g”  is  the  degeneracy  factor.  The  q-­‐logarithm  is  defined  as  ,  

These  equaGons  are  thermodynamically  consistent.  

The  Tsallis-­‐Boltzmann  distribuGon  funcGon    is  given  by,  

f =

1 + (q � 1)E�µ

T

�� 1q�1

(q  =  1)   e�E�µT

s = �gvR d3p

(2⇡)3

fqlnqf � f

N = gvR d3p

(2⇡)3 fq

✏ = gRE d3p

(2⇡)3 fq

P = gR d3p

(2⇡)3p2

3E fq

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   8  

The  Non-­‐extensive  Sta's'cs  

T =@✏

@s

����n

µ =@✏

@n

����s

n =@P

����T

s =@P

@T

����µ

Meaning:  

s  =  S/V  (entropy  density),  n  =  N/V  (parGcle  number  density)    

Assuming   q   ≈   1,   as   is   to   be   the   case   in   high   energy   physics   (1   <   q   <   1.2),   the   Tsallis  distribuGon,   appearing   in   the   expressions   for   the   thermodynamic   quanGGes   can   be  expanded  in  a  Taylor  series:    

The  first  term  is  a  Boltzmann  distribu'on  and  other  terms  are  higher  order  in  (q-­‐1).  

1 + (q � 1)

E � µ

T

�� qq�1

' e�E�µT

(1 + (q � 1)

1

2

E � µ

T(�2 +

E � µ

T)

+O⇥(q � 1)2

⇤+O

⇥(q � 1)3

⇤+ ....

)

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   9  

Taylor  expansion  in  (q-­‐1)  

Using Taylor expansion, transverse momentum distribution is given by,

where  (q-­‐1)  ≅  x  and  (E-­‐μ)/T  =  Φ    

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   10  

The  Transverse  Momentum  Distribu'on  

For  details  on  derivaGon:  arXiv:  1507.08434  

0.01

0.1

1

d2 N/d

p Tdy (

GeV

/c)-1

0 0.5 1 1.5 2 2.5 3pT (GeV/c)

-0.2

0

0.2

(M- E

)/M

Tsallis  distribu'on  without  Taylor  expansion  

Fits  to  the  normalized  differenGal  charged  parGcle  yields,  measured  by  the    ALICE  experiment  in  p+p  collisions  at  √s  =  0.9  TeV.    

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   11  

pT-­‐Distribu'on  (ALICE  p+p@  0.9  TeV)  

The    final  expression  for    transverse  momentum  distribuGon    up  to  first  order  in  (q-­‐1)  is  given  by,  

1

pT

dN

dpT dy=

gV

(2⇡)2

⇢2T [rI0(s)K1(r)� sI1(s)K0(r)]� (q � 1)Tr2I0(s)[K0(r) +K2(r)]

+4(q � 1) TrsI1(s)K1(r)� (q � 1)Ts2K0(r)[I0(s) + I2(s)] +(q � 1)

4Tr3I0(s)[K3(r) + 3K1(r)]

�3(q � 1)

2Tr2s[K2(r) +K0(r)]I1(s) +

3(q � 1)

2Ts2r[I0(s) + I2(s)]K1(r)

� (q � 1)

4Ts3[I3(s) + 3I1(s)]K0(r)

p

µ = (mT coshy, pT cos�, pT sin�,mT sinhy)

To  include  flow  in  Tsallis  Boltzmann  distribuGon  funcGon  with  Taylor  expansion,  we  have  taken  the  cylindrical  symmetry  in  which  it  has  a  explicit  dependence  on  flow  parameter  v.  Here,  we  have    replaced  f(E)  by  f(pμuμ),  where  pμuμ  is  a  Lorentz  invariant  quanGty  and      

uµ = (�cosh⇠, �vcos↵, �vsin↵, �sinh⇠)

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   12  

Inclusion  of  Radial  Flow  to  order  (q-­‐1)  

0.01

0.1

1

10

100

1000

1/N

1/2πp

T d2 N

/dp Tdy

(G

eV/c

)-20 0.5 1 1.5 2 2.5 3

pT (GeV/c)

-0.4-0.2

00.2

(M-E

)/M

0.1

1

10

100

1000

10000

1/N

1/2πp

T d2 N

/dp Tdy

(G

eV/c

)-2

0 0.5 1 1.5 2 2.5 3 3.5pT (GeV/c)

-1-0.5

00.5

(M-E

)/M

where  

Without  flow   With  flow  

FiZng  parameters:  T  =  146  MeV,  q  =  1.030,  β  =  0.609,  r  =  29.8  fm  

In(s)  and  Kn(r)  are  the  modified  Bessel  funcGons  of  the  first  and  second  kind.  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   13  

pT-­‐Distribu'on  (ALICE  Pb+Pb@  2.76  TeV)  

Without  radial-­‐flow  

μ≠0  

E d3Ndp3 = gV mT

(2⇡)3

1 + (q � 1)mT�µ

T

�� qq�1

With  radial-­‐flow  

μ=0  

Radial-­‐flow  using  Taylor  expansion  

E d3Ndp3 = gV mT

(2⇡)3

1 + (q � 1)mT

T

�� qq�1

1

pT

dN

dpT dy=

gV

(2⇡)2

⇢2T [rI0(s)K1(r)� sI1(s)K0(r)]

�(q � 1)Tr2I0(s)[K0(r) +K2(r)]

+4(q � 1) TrsI1(s)K1(r)� (q � 1)

Ts2K0(r)[I0(s) + I2(s)] +(q � 1)

4Tr3I0(s)

[K3(r) + 3K1(r)]�3(q � 1)

2Tr2s

[K2(r) +K0(r)]I1(s) +3(q � 1)

2Ts2r

[I0(s) + I2(s)]K1(r)�(q � 1)

4Ts3

[I3(s) + 3I1(s)]K0(r)

Tsallis  StaGsGcs  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   14  

pT-­‐Spectra  and  Tsallis  Func'on  

" We   have   fixed   Tsallis   distribuGon   to   the   pT-­‐spectra  for  p+p  and  A+A  collisions  at  RHIC  and  LHC  energies.  

 "  It   gives   bexer   χ2/ndf   for   peripheral   heavy-­‐ion  

collisions  than  central  collisions.    

(GeV/c)T

p0 0.5 1 1.5 2 2.5 3

-2 (G

eV/c

)dy T

dp TpN2 d

Nπ21

5−10

4−10

3−10

2−10

1−101

10

210

310

410

510

610

Au+Au 200GeV(Most Central)

(GeV/c)T

p0.5 1 1.5 2 2.5 3

-2 (G

eV/c

)dy T

dp TpN2 d

Nπ21

5−10

4−10

3−10

2−10

1−101

10

210

310

410

510

610

Au+Au 200GeV(Most Peripheral)

90.5)×(+π 72.5)×(+ K

3.5)× p( 0.12)×(φ

Λ

Particle

/ndf

2 χ

0

1

2

3

4

+π +K p φ Λ

Au+Au Peripheral Particle Antiparticle

Particle

/ndf

2 χ

0

1

2

3

4

+π +K p φ Λ

Au+Au Central Particle Antiparticle

"  The  χ2/ndf  value  is  around  2.5  for  K+  and  for  parGcles  like  π  ,  p  and  Φ,  the  χ2/ndf    ~  1.    

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   15  

pT-­‐Spectra  &  Tsallis+Radial  Flow    

Mass (MeV)200 400 600 800 1000 1200

3Vo

lum

e (fm

)

1−10

1

10

210

310

410

510

(most peripheral)Au+Au 200GeV

Mass (MeV)200 400 600 800 1000 1200

Tem

pera

ture

(GeV

)

0.2

0.4

0.6

0.8

p+p 200GeV

Mass (MeV)200 400 600 800 1000 1200

β

0

0.2

0.4

0.6

0.8

Mass (MeV)200 400 600 800 1000 1200

q

0.9

0.95

1

1.05

1.1

1.15

1.2

(GeV/c)T

p0 0.5 1 1.5 2 2.5 3

-2 (

GeV

/c)

dyT

dpTp

N2 d Nπ21

5−10

4−10

3−10

2−10

1−101

10

210

310

410

510

610

Au+Au 200GeV(Most Central)

(GeV/c)T

p0.5 1 1.5 2 2.5 3

-2 (

GeV

/c)

dyT

dpTp

N2 d

Nπ21

5−10

4−10

3−10

2−10

1−101

10

210

310

410

510

610

Au+Au 200GeV(Most Peripheral)

90.5)×(+π 72.5)×(+ K

3.2)× p( 0.12)×(φ

Λ

"  There  is  a  mass  ordering  of    T,  β  and  V:              picture  of  differenGal  freeze-­‐out.    "  Trend  of  parameters    in  p+p  and  Au+Au  

peripheral  collisions  are  the  same:  formaGon  of  similar  thermodynamic  systems.  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   16  

Possible  mass  ordering  in  T,  β  and  V@RHIC    

Mass (MeV)200 400 600 800 1000 1200

3Vo

lum

e (fm

)

10

210

310

410

510

(most peripheral)Pb+Pb 2.76TeV

Mass (MeV)200 400 600 800 1000 1200

Tem

pera

ture

(GeV

)

0.2

0.4

0.6

0.8

p+p 2.76TeV

Mass (MeV)200 400 600 800 1000 1200

β

0

0.2

0.4

0.6

0.8

Mass (MeV)200 400 600 800 1000 1200

q

0.7

0.8

0.9

1

1.1

1.2

%  The  heavier  parGcles  freeze-­‐    out  early  as  compared  to  lighter  parGcles  and  freeze-­‐out  surfaces  are  different  for  different  parGcles,    which  shows  a  mass  ordering    of    T  ,  β  and  V.  

%  Again  ,  there  is  a  similar  trend  of  parameters  in  p+p    and  Pb+Pb  peripheral  collisions  at  2.76  TeV:  indicaGon  of  a  similar  thermodynamic  system.  

                   

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   17  

Possible  mass  ordering  in  T,  β  and  V@LHC    

The  Number  Density  

The  parGcle  density  calculated    to  first  order  in  (q-­‐1)  normalized  to  parGcle    density    in  Boltzmann  gas.      

The  parGcle  density  calculated    to  first  order  in  (q-­‐1)  normalized  to  parGcle    density    in  Tsallis  gas.  

"   As  we  increase  the  q-­‐values  the  contribu'on  to  the  number  density  from  the  first                order  in  the  expansion  increases.  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   18  

Degree  of  devia'on  from  Boltzmannian    

The  Energy  Density  

The  energy  density  calculated    to  first  order  in  (q-­‐1)  normalized  to  energy  density    in  Boltzmann  gas.  

The  energy  density  calculated    to  first  order  in  (q-­‐1)  normalized  to    energy  density    in  Tsallis  gas.    

"  As  we  increase  the  q-­‐values    the  contribu'on  to  the  energy  density  from  the  first      order  in  the  expansion  increases.  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   19  

Degree  of  devia'on  from  Boltzmannian    

The  Pressure  

The  pressure  density  calculated    to  first  order  in  (q-­‐1)  normalized  to  pressure  density    in  Boltzmann  gas.  

The  pressure  density  calculated    to  first  order  in  (q-­‐1)  normalized  to  pressure  density    in  Tsallis  gas.    

"  As  we  increase  the  q-­‐values    the  contribu'on  to  the  pressure  from  the  first      order  in  the  expansion  increases.  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   20  

Degree  of  devia'on  from  Boltzmannian    

Mass Cut-off (GeV)0 0.5 1 1.5 2 2.5

2 sC

0.1

0.15

0.2

0.25

0.3 q = 1.006 q = 1.05 q = 1.1 q = 1.15

"  The  speed  of  sound  depends  on  the  non-­‐extensive  parameter  q:  higher  is  the  non-­‐extensivity,  higher  is  the  cs2.  

"  Given  q-­‐value,  the  cs2  is  independent  of  mass  cut-­‐off  taken  in  the  system  above  2  GeV.        Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  

3-­‐7  Nov.  2015   21  

Speed  of  Sound  for  HG  using  Non-­‐extensive  Sta's'cs  

c2s(T ) =

✓@P

@✏

V

=s(T )

CV (T )

HT/T0 0.2 0.4 0.6 0.8 1

2 sC

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ideal Pion Gas

Tsallis-Boltzmann Pion Gas (q=1.15)

Tsallis-Bose Pion Gas (q=1.15)

cT/T0 0.2 0.4 0.6 0.8 1

2 sC

0.1

0.15

0.2

0.25

0.3 Pion Gas

M < 0.5 GeV

M < 1 GeV

M < 1.5 GeV

M < 2.5 GeV

q = 1.05

&  Speed  of  sound  for  different  values  of  q  and  different  mass  cut-­‐offs.    &  As  we  include  more  and  more  resonances  the  speed  of  sound  decreases  significantly.    &  q-­‐dependent  cri'cality  poin'ng  to  so^ening  of  EoS.    &  As  we  increase  the  q  value,  the  minimum  for  cs2    shi|s  towards  le|.  

HT/T0 0.2 0.4 0.6 0.8 1

2 sC

0.1

0.15

0.2

0.25

0.3 Pion Gas

M < 0.5 GeV

M < 1 GeV

M < 1.5 GeV

M < 2.5 GeV

q = 1.005

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   22  

Speed  of  Sound  for  HG  using  Non-­‐extensive  Sta's'cs  

&  Taylor   approximaGon   in   (q-­‐1):   study   the   degree   of   deviaGon   from   a   thermalized  Boltzmann  distribuGon.    

&  Inclusion  of  radial  flow  in  Tsallis  distribuGon  gives  an  analyGcal  way  in  describing  the  pT-­‐spectra  up  to  3  GeV  in  Pb+Pb  collisions  at  √sNN=  2.76  TeV  .  

&  Using  different  versions  of  Tsallis  staGsGcs  for  pT-­‐spectra  fit,  we  found  a  similar  trend  for   Tsallis   parameters   as   a   funcGon   of   parGcle   mass   in   p+p   and   A+A   peripheral  collisions  at  RHIC  and  LHC  energies,  which  shows  that  a  similar  system  formaGon  in  both  the  cases.  

&  Possible  mass  ordering  in  V  ,  T  and  β:  evidence  of  differen/al  freeze-­‐out.  &  For   physical   hadron   resonance   gas,   a   small   deviaGon   in   q   values   from   1,   gives   a  

significant  change  in  speed  of  sound.    &  There  is  a  q-­‐dependent  cri/cality  in  speed  of  sound.    &  Above  2  GeV,  the  speed  of  sound  is  independent  of  mass  cut-­‐off  for  a  physical                                resonance  gas.    

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   23  

Summary  

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   24  

This  work  is  done  in  collaboraGon  with:          Prof.  J.  Cleymans  (UCT,  South  Africa)            IIT  Indore:          Dr.  Trambak  Bhaxacharyya  (Postdoc)          Dr.  Prakhar  Garg  (Postdoc)          Arvind  KhunGa,  Dhananjay  Thakur,  Sushant  Tripathy,              Pooja  Pareek  and  PragaG  Sahoo  (Ph.D.  Students)  

Acknowledgement    

Raghunath  Sahoo,  WPCF-­‐2015,  Warsaw,  Poland,  3-­‐7  Nov.  2015   25  

Backups    

Sq(A,B)  =  Sq(A)  +  Sq(B)  +  (1-­‐q)Sq(A)  Sq(B)  

The  parameter  |1-­‐q|  is  a  measure  of  the  departure  from  addiGvity.    In  the  limit  when  q  =  1,    S(A,B)  =  S(A)  +  S(B):  entropy  of  an  addiGve  system/extensive  system.  

Tsallis  entropy  is  given  by  

The  Tsallis  form  of  Fermi-­‐Dirac  and  Bose-­‐Einstein  distribuGon  is:  

fT (E) ⌘ 1

expq

⇣E�µT

⌘⌥ 1

expq(x) ⌘[1 + (q � 1)x]1/(q�1) if x > 0

[1 + (1� q)x]1/(1�q) if x 0