radio technologies for 5g using an advanced photonic infrastructure for dense user environments

23
www.rapid5G.eu www.rapid5G.jp Radio Technologies for 5G using an Advanced Photonic Infrastructure for Dense User Environments Andreas Stöhr and Hiroshi Murata

Upload: ssk

Post on 12-Apr-2017

75 views

Category:

Technology


0 download

TRANSCRIPT

www.rapid5G.eu www.rapid5G.jp

Radio Technologies for 5G using an Advanced Photonic Infrastructure for Dense User Environments

Andreas Stöhr and Hiroshi Murata

G

RAPID‘s Vision

In RAPID, we propose to use a centralized radio access network (C‐RAN) architecture to support high‐capacity heterogeneous (3G, 4G and mm‐wave 5G) radio access technologies through low‐cost, but ultra‐high‐bandwidth photonic techniques for the fibre distribution 

To meet the requirement to transport the high‐frequency and wide‐bandwidth wireless signals at low‐cost, a novel coherent radio‐over‐fiber (CRoF) scheme is proposed and extremely low‐cost (<10€) integrated SiGe mm‐wave transceivers will be developed in RAPID. 

The radio resource management of the heterogeneous wireline/wireless network using the developed mm‐wave 5G and photonic technologies together with legacy 3G/4G wireless will be demonstrated in RAPID 

The developed hardware will be tested in life‐cycle assessments within different real life networks scenarios including a public stadium for the Olympic Games 2020 in Japan.

G

RAPID‘s Vision

G

RAPID‘s Heterogeneous WDM‐CRoF Network Architecture

G

RAPID‘s Ambitious Physical Layer Targets

G

RAPID‘s Life‐Cycle Tests

RAPID’s technology will be tested, e.g. by installing a RAPID system in the the fiber‐optic infrastructure of the Polish operator EXATEL

RAPID’s technology will be tested, e.g. by installing a RAPID system demonstrator  in the newly built OSAKA stadium

G

RAPID‘s European and Japanese Partners 

G

RAPID´s Consortium at a Glance

G

RAPID´s Management Structure

G

RAPID´s Execution Time Table at a Glance

G

Zero‐Touch Millimeter‐Wave Small Cell BS

RAPID partners observes the trend towards migrating the access BS to be a small, street level device installed on Lamp poles Building sides

Hub sites, often based on macro‐BS, are installed on roof‐tops Deployment scenarios are expected to change form hub & 

spoke to daisy‐chain A future challenge is seen in the installation of so‐called ‘zero‐

touch’ configuration BS Automatic antenna alignment Automatic configuration of access BS and related backhaul 

G

Millimeter‐Wave Single Cell Throughput of >75 Gb/s

Record > 75 Gb/s over > 1km Optical Fiber and 4m Wireless

6.88 m

7.50 m

Tables

>4 m

17 cm

5 cmRX2 RX1

TX2 TX1

G

Impact of 5G on In‐Building Networks

Major strain on mobile networks

Exacerbate coverage and capacity issues inside buildings, due to: High carrier frequencies Much smarter devices

Will reveal major deficiencies of current in‐building networks

Will require multiple levels of network integration – including: Wired/wireless, mixed signals 

(incl. digital & analog), mixed services, multiple transmission protocols, multiple RATs, etc.

Extensive network complexity will require centralized coordination and management

CellularRF from

an Operator’s Macro Network

Glass

Metal

Concrete  & Insulation

Major Coverage & Capacity Issues ‐

inbuilding

Major Coverage & Capacity Issues ‐

inbuilding

Mm‐wavesMm‐waves

G

RAPID‘s Centralized Radio Access Network Approach

• We see the C‐RAN paradigm as crucial for 5G to realize capacity, coverage, throughput and energy efficiency demands, but…

• The C‐RAN for 5G (even for 4G) places enormous demands on the fiber front‐haul. 

• Use of low‐cost coherent and non‐coherent approaches for analogue and multi‐level, ultra‐high bit‐rate digital transport

• Examining the functional split between BBU and RRH, to reduce bandwidth demands on fronthaul – examining how this affects functionality (virtual MIMO, beamforming weights)

• Use of ubiquitous technologies in fronthaul (e.g., Ethernet?)

• Timing/synchronisation requirements for C‐RAN transport, particularly for virtual MIMO/CoMP

• Multiplexing strategies: compatibility with PON approaches and with modulation/transport techniques

G

Network Capacity Increase by Deep Optical Fiber Penetration

FTTxMetropolitanCore

Long Haul Access

cell site

Edge

CATV

SubmarineUltra Long Haul

Premise

Fiber‐Wireless

Communication bottleneck  = EDGE of Network Low # of Users demands cost‐effective solutions

G

RoF Physical Physical Layer Concepts

Digital RoF (DRoF)

G

Cloud RAN with Fiber between Centralized BBU and RHH (DRoF)

17.10.2014

Fiber between BBU and remote radio head (RRH) known as Cloud RAN (CRAN). Figure was provided by Anna Pizzinat and Philippe Chanclou from Orange Labs Networks

CPRI=Common Public Radio Interface

G

RoF Physical Physical Layer Concepts

Digital RoF (DRoF)

Analog RoF (ARoF)

Coherent RoF (CRoF)

G

27 Gb/s ARoF 16‐QAM‐OFDM 60 GHz Wireless Transmission System

17.10.2014 www.uni‐due.deM. Weiß, A. Stöhr, F. Lecoche, B. Charbonnier, 27 Gbit/s Photonic Wireless 60 GHz Transmission System using 16‐QAM OFDM, International Topical Meeting on Microwave Photonics, MWP 2009, October 14‐16, Valencia, Spain, ISBN: 978‐1‐4244‐4788‐6, 2009, (post deadline paper) 

G

RoF Physical Physical Layer Concepts

Digital RoF (DRoF)

Analog RoF (ARoF)

Coherent RoF (CRoF)

G

Proposed System Concept based on CRoF

G

PtP Millimeter‐Wave Wireless Access for >2.7 km Distance

G

New Beam Forming EO Modulator (OSAKA Univ.)