radiative corrections for muon physics · 2016. 5. 17. · muon physics robert szafron precision...

45
Radiative corrections for muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson Lab 1

Upload: others

Post on 26-Aug-2020

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Radiative corrections for muon physics

Robert Szafron

Precision Radiative Corrections for Next Generation Experiments Workshop

May 16-19, 2016 Jefferson Lab

1

Page 2: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Motivation

• Muon physics is a great place for developing tools and methods that can be used elsewhere

• Muons serve well as a QED laboratory

• Clean theoretical framework — perturbative and well measured

• Easy to test complicated QCD objects/EFT

2

Page 3: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Results and methods2 loops muon decay spin asymmetry (F. Caola, A. Czarnecki, Y. Liang, K. Melnikov, R.S.)

Bound muon decay spectrum in the shape function region (A. Czarnecki, M. Dowling, X. Garcia i Tormo, W. J. Marciano, R.S.)

Bound muon decay spectrum close to the endpoint (R.S., A. Czarnecki)

✦ Structure function

✦ Perturbative fragmentation function

✦ Shape function

✦ HQEFT

✦ Sector decomposition

✦ Jet algorithm

✦ Region expansion

3

Page 4: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Part I Muon spin asymmetry

or What we can learn from QCD about asymmetry?

4

Page 5: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

e-

N+

N�

A ⇠ N+ �N�N+ +N�

⌫̄e⌫µ

µ

Muon asymmetry

5

Page 6: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Muon decay asymmetry• Measured in TWIST experiment in TRIUMF (2011)

• NLO with electron mass dependence calculated in 2001 by Arbuzov

• Note that the NNLO correction to the total decay width was known since 1999 (van Ritbergen, Stuart)

• Useful to study V-A structure of interaction

6

Page 7: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

NNLO asymmetry• We used method developed in pQCD to extract

soft and collinear divergences in a systematic way.

• sector decomposition

• phase-space partitioning

• There is an intrinsic ambiguity in the spin asymmetry at the NNLO

• The ambiguity is related to the pair production

Czakon, 2010

e+e�

7

Page 8: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Some technical remarks• Amplitudes were calculated using spinor helicity

formalism

• Subtraction terms are lower order amplitudes with appropriate splitting function (or eikonal factors)

• Framework developed for fully differential decays of heavy quarks was used

Brucherseifer, Caola, Melnikov, 2013

8

Page 9: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

NNLO ambiguity

• Electron positron pair is indistinguishable from a photon in a collinear limit

• Which electron should define the muon quantization axis?

• Similar issue: the forward-backward asymmetry and possibly other spin-depend observables.

Weinzierl, 2007

µ

e

⌫̄e

⌫µ

e+e�

9

Page 10: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

e-

N+

N�

⌫̄e⌫µ

�e-

µ

Electron positron pair is indistinguishable

from a photon in a collinear limit

e+

10

Page 11: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

e-

N+

N�

A ⇠ N+ �N�N+ +N�

⌫̄e⌫µ

e+

e-µ

Which electron should we count?

11

Page 12: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

e-

N+

N�

A ⇠ N+ �N�N+ +N�

⌫̄e⌫µ

e+

e-µ

If this one, then OK

12

Page 13: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

e-

N+

N�

A ⇠ N+ �N�N+ +N�

⌫̄e⌫µ

e+

e-µ

If the one which is collinear with the positron…

13

Page 14: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

e-

N+

N�

⌫̄e⌫µ

�µ

… then the asymmetry is calculated with respect to photon momentum…

14

Page 15: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

e-

N+

N�

⌫̄e⌫µ

�µ

… then the asymmetry is calculated with respect to photon momentum…

…while in the virtual part there is always one electron and therefore no ambiguity

14

Page 16: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Asymmetry at the NNLO• Ambiguity makes the asymmetry not an infra-red

safe observable (and we neglected the electron mass!)

• Large logarithmic corrections to asymmetry at the NNLO

• To solve both problems we invoke the jet concept

‣ Traditional jest algorithms are flavor blind

‣ Durham algorithm allows tracking the jet “flavor”15

Page 17: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Jet algorithm

• Soft photon + Hard electron

• Hard photon + Soft electron

• Collinear electron + Positron

y(F )ij =

2(1� cos ✓ij)

m2µ

⇥⇢

max(E2i , E

2j ), softer of i, j is flavored,

min(E2i , E

2j ), softer of i, j is flavorless.

electron

no recombination

photon

Guarantees IR and collinear safety Banfi, Salam,

Zanderighi, 2006

16

Page 18: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

• Iteratively recombine if

• Physically motivated recombination angle

• Typical electron jet size

• Expected correction

• No resummation needed for muon even though

Electron jety(F )ij < y

✓ ⇠ me/Ee

y ⇠ ✓2E2e

m2µ

⇠ m2e

m2µ

⇠ 2⇥ 10�5

⇠ ↵2 ln 1/y

ln 1/y ⇠ 12

17

Page 19: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Dependence on the jet resolution

• Full NNLO calculation

• Neglected electron mass

• Introduced electron jet instead

• Logarithmic part is small for muon

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

1e-05 0.0001 0.001 0.01

a 2

y

Numerical resultLogarithmic fit

a2 = 9.5(1)� 0.14(1) ln y

mµ = 105.658MeV

Caola, Czarnecki, Liang, Melnikov, Szafron, 2014

18

Page 20: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Energy dependenceA|y,Emin

= �1

3

a0 + a1

⇡+ a2

⇣↵⇡

⌘2�

19

Page 21: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Energy dependenceA|y,Emin

= �1

3

a0 + a1

⇡+ a2

⇣↵⇡

⌘2�

• No dependence on the jet resolution in the LO

19

Page 22: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Energy dependenceA|y,Emin

= �1

3

a0 + a1

⇡+ a2

⇣↵⇡

⌘2�

• No dependence on the jet resolution in the LO• Weak dependence in the NLO

19

Page 23: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Energy dependenceA|y,Emin

= �1

3

a0 + a1

⇡+ a2

⇣↵⇡

⌘2�

• No dependence on the jet resolution in the LO• Weak dependence in the NLO• Strong dependence in the NNLO

19

Page 24: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Energy dependenceA|y,Emin

= �1

3

a0 + a1

⇡+ a2

⇣↵⇡

⌘2�

• No dependence on the jet resolution in the LO• Weak dependence in the NLO• Strong dependence in the NNLO• The more inclusive is the observable the weaker is the

dependence and the correction smaller19

Page 25: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

The result� = �0

1� 1.81

⇡+ 6.74

⇣↵⇡

⌘2�

A = A0

1� 2.95

⇡+ 11.2(1)

⇣↵⇡

⌘2�

Corrections to asymmetry are typically larger than correction to the total decay width

Total decay width is infrared finite and independent of y.

NNLO corrections to asymmetry are more important than the finite electron mass corrections

20

Page 26: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Part II Bound muon decay

or What we can learn from

QED about heavy mesons?

21

Page 27: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Muon DIO

Muon DIO: standard muon decay into an electron and two neutrinos, with the muon and a nucleus forming a bound state

For DIO momentum can be exchanged between the nucleus and both the muon and the electron

Al

μ

e

⌫̄e ⌫µDIO — Decay In Orbit

22

Page 28: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

MuonHeavy

quark of QED

Muonic atom

QED heavy meson

23

Page 29: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

DIO Spectrum

1

2mµ mµ

24

Page 30: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Characteristic scales of muonic atom

Al

μ

MAl � mµ � mµZ↵ � mµ(Z↵)2

MAl

Z↵mµ

(Z↵)2mµ

nucleus mass

muon mass

muon momentum

muon binding energy

electron cloud ⇠ me

25

Page 31: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Endpoint energyE

max

= mµ

+ Eb

+ Erec

Eb ⇡ �mµ(Z↵)2

2Binding energy

Erec ⇡ �m2

µ

2mN

Recoil energy

Both corrections decrease the endpoint energy

(kinetic energy of the nucleus)(+ higher orders)

26

Page 32: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

MAl ! 1

A. Neglect recoil corrections — nucleus is a static source of EM field

mµ(Z↵)2,me ! 0

B. Neglect higher orders in Z↵ and me

Two scales and the external Coulomb potential

hard scale

soft scalemµ

Z↵mµ

Schwinger background field method

Simplification

27

Page 33: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Comparison with mesons containing heavy quarks

• Decay of a heavy particle in the presence of soft background

• No dependence on the nucleus spin in the LO

• Muon momentum

mµ ! mq Z↵mµ ! ⇤QCD

Pµ = mµvµ + kµ k ⇠ mµZ↵

28

Page 34: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

How to describe the central region of the spectrum

Typical momentum transfer between nucleus and muon is of the order of

We need resummation

Dominant effect — muon motion in the initial state

Central Region

mµZ↵

29

Page 35: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Shape function In QCD part of the decay spectrum can be described by the shape function

QED muon shape function

S(�) =

Zd3x ?(x)�(�� n · ⇡) (x)

Muon wave-function Covariant

derivativeLight-like vector (electron velocity)

30

Neubert 1993; Mannel, Neubert 1994; Bigi, Shifman,Uraltsev, Vainshtein, 1994

Page 36: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Shape function — basic idea

• Electron propagator in the external field

• We are interested only in the leading corrections

µ e

ν

ν

⇡µ = i@µ � eAµ

1

(pe + ⇡)2⇡ 1

p2e + 2pe · ⇡! �(p2e + 2pe · ⇡)

31

Page 37: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Shape functionFor a point-like nucleus the shape function can be calculated analytically

S(�) =8m5

µZ5↵5

3⇡⇥�2 +m2

µZ2↵2

⇤3 .

!20 !10 0 10 20

0.00

0.02

0.04

0.06

0.08

Λ !MeV"

s#Λ$!M

eV!

1"

Szafron, Czarnecki 2015

Shape function describes muon

momentum distribution

32

Page 38: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Power counting• (muon momentum in an atom)

• Shape function behaves as

• First moment is zero in the leading order

• Second moment

� ⇠ p2e2Ee

⇠ mµZ↵

S(�) ⇠ 1

Z↵

Zd��2S(�) =

1

3(mµZ↵)2

Zd��S(�) = 0 Bigi, Uraltsev, Vainshtein, 1992

Remember Z↵mµ ! ⇤QCD

33

Page 39: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

20 30 40 50 600

2

4

6

8

10

12

14

Ee !MeV"

ev

en

ts!

10"

4#M

eV

18 20 22 24 264

5

6

7

8

Results for real atom and their relation to the TWIST data

Free muonLO

Shape function NLO

Czarnecki, Dowling, Garcia i Tormo, Marciano, Szafron 2014

34

Page 40: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Endpoint expansion

Near the endpoint the dominant contribution comes form the exchange of hard virtual photons.

�Free

d�

dEe⇡ 1024

5⇡(Z↵)5

✓�

◆5

� = Emax

� Ee

µ

Nucleus

eµ µ ee

q2 = �m2µ

End- point

Region

Szafron, Czarnecki 2015

Like a tail of heavy quark

spectrum

Page 41: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Endpoint Radiative corrections

Two large effects:

a) Emission of collinear photons reduces the number of events in the endpoint region

b) Large vacuum polarization correction increases the spectrum near the endpoint

⇠ lnmµ

me

⇠ lnmµ

me⇠ ln

Z↵mµ

me

1

me� 1

mµZ↵

36

Page 42: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Endpoint region• Large higher order corrections in

• Very sensitive to the nucleus charge distribution

Z↵ (~20%)

(~50%)

Both corrections can be easily incorporated into the numerical computation

q2 = �m2µPhotons with can probe nucleus interior

37

Page 43: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Fragmentation function

with the perturbative fragmentation function

De(x) = �(1� x) +↵

2⇡ln

m

m

2e

!P

(0)ee (x) + . . .

P

(0)ee (x) is the electron splitting function

d�LL

dEe=

d�LO

dEe⌦De

38

Arbuzov, Czarnecki, Gaponenko 2002 Arbuzov, Melnikov 2002 Arbuzov, 2003

Page 44: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

0 20 40 60 80 100!0.15

!0.10

!0.05

0.00

0.05

Ee !MeV"

RelativeCorrection

Leading correction to the DIO spectrum

VP only

LL only

VP+LLPreliminary results

39

Page 45: Radiative corrections for muon physics · 2016. 5. 17. · muon physics Robert Szafron Precision Radiative Corrections for Next Generation Experiments Workshop May 16-19, 2016 Jefferson

Summary• There is a large overlap between methods used to

solve different problems

• Large corrections to asymmetry at the NNLO can be expected

• We can improve the DIO spectrum prediction with the help of shape function and fragmentation function and we can better understand the structure functions

40