quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis,...

14
Novel phosphorescent iridium(III) complexes containing 2-thienyl quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,* ,a Jiena Weng, a,c Zhijie Xu, a Bihai Tong, b Qingfang Hua, a Yujie Shi, a Juan Song a and Wei Huang* ,a,c a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; E-mail: [email protected]. b College of Metallurgy and Resources, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China; c Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China; E-mail: [email protected] Contents: 1. Supplementary Figures and Tables 2. Characterizations: 1 H-NMR, 13 C-NMR, and MADIL-TOF-MS spectra Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Upload: others

Post on 22-Aug-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

Novel phosphorescent iridium(III) complexes containing 2-thienyl

quinazoline ligand: synthesis, photophysical properities and theoretical

calculation

Qunbo Mei,*,a Jiena Weng,a,c Zhijie Xu,a Bihai Tong,b Qingfang Hua,a Yujie Shi,a Juan Songa and Wei Huang*,a,c

aKey Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation

Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; E-mail:

[email protected].

bCollege of Metallurgy and Resources, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China;cKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China; E-mail: [email protected]

Contents:

1. Supplementary Figures and Tables

2. Characterizations: 1H-NMR, 13C-NMR, and MADIL-TOF-MS spectra

Electronic Supplementary Material (ESI) for RSC Advances.This journal is © The Royal Society of Chemistry 2015

Page 2: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

1. Supplementary Figures and Tables

500 550 600 650 700 750 8000.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

PL

inte

nsity

Ir1 Ir2 Ir3 Ir4

Wavelength (nm)

Figure. S1 Photoluminescence spectra of complexes Ir1-Ir4 in 2 wt% PMMA films at room temperature

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Cur

rent

(a.u

.)

Ir1 Ir2 Ir3 Ir4

Potential vs. Ag/Ag+

Figure. S2 Cyclic voltammogram of complexes Ir1-Ir4 in deoxygenated DCM solutions at room temperature.

200 300 400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

Abs

. (a.

u.)

Wavelength (nm)

Ir1 Ir2 Ir3 Ir4

Fig. S3 The simulated absorption spectra of complexes Ir1-Ir4 in DCM.

Page 3: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

650 660 670 680 690580

590

600

610

620

Ir4

Ir1

Ir2

in DCM in PMMA film

Expe

rimen

t val

ues

(nm

)

Theoretical values (nm)

Ir3

Figure. S4 The relationship between the theoretical and experimental values of the maximum phosphorescence emissions.

Page 4: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

Table S1 XRD experimental details

Ir1 Ir2 Ir3 Ir4

Empirical formula C30H18IrN5O2S2 C40H36IrN7O2S2 C46H34IrN5O4S2 C54H36IrN7O2S2

Formula weight 736.81 903.08 977.10 1071.22

Temperature (K) 296 296 296 296

Mo K radiation (Å) λ = 0.71073 λ = 0.71073 λ = 0.71073 λ = 0.71073

Crystal system, space group Monoclinic, P21/n Triclinic, P1̅ Monoclinic, C2/c Monoclinic, P21/n

Unit cell dimensions a = 11.3735 (11) Å

= 90.000 °

a = 9.324 (5) Å

= 106.650 (8) °

a = 27.554 (13) Å

= 90.000 °

a = 14.908 (3) Å

= 90.000 °

b = 12.2222 (11) Å

= 93.385 (1) °

b = 12.900 (7) Å

= 94.335 (8) °

b = 17.381 (8) Å

= 122.764 (7) °

b = 14.425 (3) Å

= 94.332 (4) °

c = 121.987 (2) Å

= 90.000 °

c = 18.496 (10) Å

= 91.856 (7) °

c = 23.473 (11) Å

= 90.000 °

c = 23.345 (5) Å

= 90.000 °

Volume (Å3) 3051.1 (5) 2122 (2) 9453 (8) 4684 Å3

Z, Calculated density 4 2 8 4

Dx (Mg/m3) 1.604 1.413 1.373 1.421

μ (mm-1) 4.55 3.29 2.96 2.80

F(000) 1432 900 3888 2136

Crystal size (mm) 0.26 × 0.24 × 0.22 0.28 × 0.25 × 0.22 0.27 × 0.25 × 0.22 0.26 × 0.24 × 0.22

Theta range for data collection 2.5° - 27.2° 1.2° - 25.0° 1.5° - 25.0° 1.6° - 25.0°

Limiting indices h = -13 → 11

k = -14 → 14

l = -26 → 20

h = -10 → 11

k = -15 → 15

l = -21 → 12

h = -27 → 32

k = -20 → 20

l = -27 → 22

h = -17 → 12

k = -17 → 17

l = -27 → 27

No. of mearured, independent

and observed [I > 2σ(I)]

reflections

16314, 5383, 4171 11715, 7432, 6271 25823, 8342, 6649 27285, 8827, 6894

Rint 0.031 0.026 0.033 0.038

(sinθ/λ)max (Å-1) 0.595 0.595 0.595 0.595

Refinement method Refinement on F2 Refinement on F2 Refinement on F2 Refinement on F2

Least-squares matrix full full full full

Data / restraints / parameters 5383 / 0 / 361 7432 / 0 / 469 8342 / 72 / 515 8827 / 48 / 595

Goodness-of-fit on F2 1.02 0.97 1.05 1.02

R[F2 > 2σ(F2)] 0.026 0.031 0.027 0.029

ѡR(F2) 0.060 0.065 0.066 0.072

Δρmax, Δρmin (e A-3) 0.81, -0.72 0.84, -0.95 0.61, -0.51 1.03, -0.53

Page 5: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

Table S2 Selected bond lengths of complexes Ir1-Ir4

Ir1Bond length

(Å)Ir2

Bond length

(Å)Ir3

Bond length

(Å)Ir4

Bond length

(Å)

Ir-C30 2.001(4) Ir-C15 1.980(4) Ir-C18 1.983(3) Ir-C22 1.984(4)

Ir-C21 1.986(4) Ir-C32 1.966(3) Ir-C38 1.975(4) Ir-C46 1.963(4)

Ir-N1 2.049(3) Ir-N1 2.100(4) Ir-N3 2.101(3) Ir-N4 2.083(3)

Ir-N3 2.044(3) Ir-N4 2.083(4) Ir-N1 2.077(3) Ir-N1 2.087(3)

Ir-N5 2.129(3) Ir-N7 2.150(4) Ir-N5 2.157(5) Ir-N7 2.164(3)

Ir-O1 2.148(2) Ir-O1 2.158(3) Ir-O3 2.149(4) Ir-O1 2.138(3)

Table S3 Selected bond angles of complexes Ir1-Ir4

Ir1Bond angle

(o)Ir2

Bond angle

(o)Ir3

Bond angle

(o)Ir4

Bond angle

(o)

C30-Ir-C21 86.9(2) C15-Ir-C32 92.6(2) C18-Ir-C38 93.0(2) C22-Ir-C46 95.3(2)

C30-Ir-N1 80.6(2) C15-Ir-N1 79.3(1) C18-Ir-N3 79.5(1) C22-Ir-N4 79.7(1)

C30-Ir-N3 95.1(1) C15-Ir-N4 92.7(1) C18-Ir-N1 93.5(1) C22-Ir-N1 94.4(1)

C30-Ir-N5 173.6(1) C15-Ir-N7 171.5(1) C18-Ir-N5 169.7(2) C22-Ir-N7 165.8(1)

C30-Ir-O1 98.2(1) C15-Ir-O1 95.3(1) C18-Ir-O3 93.2(2) C22-Ir-O1 90.2(1)

C21-Ir-N1 96.1(1) C32-Ir-N1 99.0(1) C38-Ir-N3 94.6(1) C46-Ir-N4 95.7(1)

C21-Ir-N3 80.0(1) C32-Ir-N4 79.6(1) C38-Ir-N1 79.6(1) C46-Ir-N1 79.7(1)

C21-Ir-N5 98.5(1) C32-Ir-N7 95.7(1) C38-Ir-N5 96.5(2) C46-Ir-N7 98.3(1)

C21-Ir-O1 172.3(1) C32-Ir-O1 172.0(1) C38-Ir-O3 173.4(2) C46-Ir-O1 173.8(1)

N1-Ir-N3 174.4(1) N1-Ir-N4 171.8(1) N3-Ir-N1 170.8(1) N4-Ir-N1 172.2(1)

N1-Ir-N5 95.4(1) N1-Ir-N7 101.2(1) N3-Ir-N5 103.5(1) N4-Ir-N7 103.0(1)

N1-Ir-O1 90.4(1) N1-Ir-O1 82.9(1) N3-Ir-O3 84.5(1) N4-Ir-O1 82.5(1)

N3-Ir-N5 89.2(1) N4-Ir-N7 87.0(1) N1-Ir-N5 84.5(1) N1-Ir-N7 84.0(1)

N3-Ir-O1 93.8(1) N4-Ir-O1 99.7(1) N1-Ir-O3 102.1(1) N1-Ir-O1 102.7(1)

N5-Ir-O1 76.8(1) N7-Ir-O1 76.3(1) N5-Ir-O1 77.4(2) N7-Ir-O1 76.4(1)

Page 6: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

Table S4 Orbital composition analysis for Ir1–Ir4 at their lowest singlet state (S0) geometries

C^N (1) C^N (2)Complex Orbital Ir

total QZ Th substituent total QZ Th substituentN^O

Ir1 LUMO 1.7% 5.5% 3.9% 1.6% -- 91.8% 66.4% 17.0%

%%

-- 0.9%

HOMO 33.0% 35.8% 22.7% 13.1% -- 27.7% 25.4% 10.4% -- 3.6%

Ir2 LUMO+1 2.2% 81.1% 59.6% 13.9% 7.6% 0.7% 0.5% 0.0% 0.2% 16.0%

LUMO 3.0% 0.4% 0.1% 0.2% 0.0% 95.7% 71.4% 15.8% 8.5% 0.9%

HOMO 34.7% 32.6% 7.7% 24.8% 0.1% 29.6% 7.1% 22.4% 0.1% 3.1%

Ir3 LUMO+1 3.3% 89.6% 69.5% 16.3% 3.8% 4.1% 7.9% 20.9% 0.0% 3.0%

LUMO 3.5% 4.7% 3.4% 1.1% 0.2% 90.9% 71.2% 19.1% 0.6% 0.9%

HOMO 34.3% 33.9% 9.0% 24.8% 0.0% 28.9% 3.4% 0.7% 0.0% 3.0%

Ir4 LUMO+1 3.6% 0.8% 0.5 0.3 0.0 94.3% 69.5% 13.8 11.0 1.4%

LUMO 2.5% 94.5% 72.3 10.7 11.5 0.5% 0.2 0.2 0.0 2.5%

HOMO 34.5% 30.4% 7.8 22.6 0.0 32.0% 7.8 23.9 0.3 3.1%

Table S5 Orbital composition analysis for Ir1–Ir4 at their first excited triplet state (T1) geometries.

C^N (1) C^N (2)Complex Orbital Ir

total QZ Th substituent total QZ Th substituentN^O

Ir1 LUMO+4 5.7 71.4 43.7 27.6 -- 21.7 13.8 7.8 -- 1.2

LUMO 1.5 96.8 88.4 8.3 -- 1.2 0.7 0.5 -- 0.5

HOMO 28.0 48.3 15.8 32.5 -- 20.4 5.4 15.0 -- 3.4

HOMO-1 2.5 42.9 18.6 24.3 -- 53.4 19.2 34.3 -- 1.1

Ir2 LUMO+4 1.9 61.4 44.1 16.1 1.2 34.1 25.6 7.8 0.6 2.6

LUMO 4.2 91.6 62.4 23.8 5.4 0.5 0.3 0.2 0.0 3.7

HOMO 28.8 49.1 18.7 30.4 0.1 20.1 5.1 14.9 0.1 1.9

HOMO-1 20.6 33.5 19.3 10.3 3.9 43.2 20.4 20.5 2.3 2.8

Ir3 LUMO 4.90 5.08 3.34 1.60 0.15 88.84 55.77 30.46 2.62 1.18

HOMO 29.34 25.65 7.09 18.54 0.02 42.24 15.30 26.92 0.02 2.77

HOMO-1 17.70 40.74 17.71 22.58 0.45 38.35 21.05 16.61 0.69 3.21

Ir4 LUMO 4.4 0.8 0.4 0.3 0.0 93.9 71.4 14.7 7.9 0.9

HOMO 30.4 28.6 7.5 20.9 0.1 38.1 12.7 25.4 0.1 2.8

HOMO-1 12.1 19.0 8.3 6.1 4.6 67.5 18.7 4.4 44.3 1.4

HOMO-3 2.3 57.5 6.5 19.7 31.4 39.1 14.4 16.8 10.9 1.0

Page 7: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

2. Characterizations: 1H-NMR, 13C-NMR, and MADIL-TOF-MS spectra

-3-2-10123456789101112δ(ppm)

1.02

1.01

1.00

2.00

2.01

1.00

2.48

3.39

7.22

7.23

7.23

7.24

7.66

7.77

7.78

7.79

7.79

7.95

7.95

7.95

8.06

8.06

8.07

8.07

8.08

9.57

N

NS

7.07.58.08.59.09.5δ(ppm)

1.02

1.01

1.00

2.00

2.01

1.00

Figure S5. 1H NMR of L1 in DMSO

-100102030405060708090110130150170190210δ(ppm)

123.

5512

7.80

127.

8512

8.45

129.

1112

9.72

131.

4513

5.49

143.

8015

0.16

157.

4316

1.84

125130135140145150155160δ(ppm)

123.

55

127.

8012

7.85

128.

4512

9.11

129.

7213

1.45

135.

49

143.

80

150.

16

157.

43

161.

84

N

NS

Figure S6. 13C NMR of L1 in DMSO

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.5δ(ppm)

6.10

4.08

1.00

1.02

1.00

2.03

2.00

1.71

2.49

3.32

3.73

3.74

7.16

7.17

7.17

7.18

7.44

7.45

7.46

7.47

7.67

7.67

7.68

7.69

7.90

7.92

7.92

7.93

7.93

N

N

S

N

Figure S7. 1H NMR of L2 in DMSO

Page 8: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

-20-100102030405060708090100110120130140150160170180190200210220f1 (ppm)

13c-paiding-2014-1202-1

24.89

26.00

50.95

76.80

77.12

77.44

115.42

124.33

125.19

127.97

128.23

128.46

128.93

132.32

145.09

152.71

156.41

164.84

N

N

S

N

Figure S8. 13C NMR of L2 in DMSO

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.511.5δ(ppm)

6.08

1.01

2.96

1.02

1.03

1.00

1.03

1.01

1.00

2.17

7.02

7.03

7.03

7.04

7.17

7.38

7.38

7.39

7.40

7.59

7.71

7.71

7.86

7.86

7.88

7.88

7.88

7.90

7.90

7.99

8.01

8.38

8.40

N

N

S

O

CH3

CH3

Figure S9. 1H NMR of L3 in CDCl3

102030405060708090110130150170190δ(ppm)

16.6

0

114.

5212

3.64

125.

6712

6.54

127.

7912

7.99

128.

5112

9.42

129.

8413

0.75

134.

0914

3.71

149.

9115

2.55

157.

0316

5.48

N

NS

OCH3 CH3

Figure S10. 13C NMR of L3 in CDCl3

Page 9: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

-3-2-10123456789101112δ(ppm)

1.03

8.01

4.05

1.00

0.99

1.01

1.00

7.53

7.54

7.54

7.63

7.64

7.69

7.71

7.73

7.81

7.83

7.07.17.27.37.47.57.67.77.87.9δ(ppm)

1.03

8.01

4.05

1.00

0.99

1.01

1.00

N

N

N

S

Figure S11. 1H NMR of L4 in DMSO

Figure S12. 13C NMR of L4 in CDCl3

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5δ(ppm)

1.00

1.03

3.06

3.05

5.05

2.06

1.09

1.01

1.03

2.48

6.20

6.21

6.44

6.45

7.56

7.57

7.71

7.72

7.73

7.98

7.98

7.99

8.09

8.10

8.72

9.49

Ir1

Figure S13. 1H NMR of Ir1 in DMSO

Page 10: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

-100102030405060708090110130150170190210δ(ppm)

76.7

577

.07

77.3

912

0.96

120.

9812

6.35

126.

7412

7.33

127.

3812

7.60

128.

1112

8.58

128.

6813

1.09

131.

1113

1.83

132.

8213

4.38

136.

3013

6.35

138.

4214

8.26

149.

0915

0.58

150.

7715

8.77

159.

6816

7.19

167.

9917

3.03

126128130132134136138140142144146148150152δ(ppm)

126.

3512

6.74

127.

3312

7.38

127.

6012

8.11

128.

5812

8.68

131.

0913

1.11

131.

8313

2.82

134.

38

136.

3013

6.35

138.

42

148.

2614

9.09

150.

5815

0.77

Ir1

Figure S14. 13C NMR of Ir1 in CDCl3

Figure S15. 1H NMR of Ir2 in DMSO

-100102030405060708090110130150170190210δ(ppm)

14.1

222

.65

24.7

124

.79

26.1

526

.19

31.5

8

50.6

150

.79

76.7

377

.05

77.2

577

.37

112.

8611

3.28

122.

4212

3.62

126.

0312

7.21

129.

6213

0.79

132.

2413

2.75

134.

1013

4.14

147.

56

164.

3716

4.54

169.

3416

9.84

172.

76

Ir2

Figure S16. 13C NMR of Ir2 in CDCl3

Page 11: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5δ(ppm)

12.2

8

1.00

1.01

1.02

6.17

2.05

2.04

1.06

1.03

3.14

1.03

3.04

6.13

6.14

6.47

6.48

6.70

6.72

7.22

7.22

7.25

7.36

7.37

7.54

7.55

8.32

8.32

8.34

8.35

8.37

Ir3

Figure S17. 1H NMR of Ir3 in DMSO

-100102030405060708090110130150170190210δ(ppm)

16.7

7

76.7

577

.06

77.3

811

2.34

113.

0212

6.01

126.

0312

7.63

132.

3313

3.25

134.

4613

6.82

139.

3314

7.10

149.

6014

9.62

152.

53

166.

6517

0.96

171.

9117

2.53

120125130135140145150δ(ppm)

121.

8012

3.98

124.

4412

4.89

125.

0712

5.88

126.

0112

6.03

127.

6312

7.93

132.

3313

2.59

133.

2513

3.73

134.

4613

6.29

136.

8213

7.95

139.

33

147.

10

149.

6014

9.62

152.

1015

2.53

153.

0715

3.08

Ir3

Figure S18. 13C NMR of Ir3 in CDCl3

Figure S19. 1H NMR of Ir4 in DMSO

Page 12: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

-100102030405060708090110130150170190210δ(ppm)

76.7

777

.09

77.4

0

113.

9711

4.53

126.

1612

6.68

127.

0112

9.45

129.

4814

6.38

146.

40

163.

3716

3.44

170.

0217

0.73

172.

6717

2.68

122125128131134137140δ(ppm)

126.

1012

6.16

126.

6812

7.01

129.

4512

9.48

130.

9013

1.95

132.

5413

2.64

133.

8713

4.58

136.

7813

7.55

139.

35

Ir4

Figure S20. 13C NMR of Ir4 in CDCl3

Figure S21. MALDI-TOF spectrum of Ir1

Page 13: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

Figure S22. MALDI-TOF spectrum of Ir2

Figure S23. MALDI-TOF spectrum of Ir3

Page 14: quinazoline ligand: synthesis, photophysical properities ...€¦ · quinazoline ligand: synthesis, photophysical properities and theoretical calculation Qunbo Mei,*,a Jiena Weng,a,c

Figure S24. MALDI-TOF spectrum of Ir4