question seven.docx

3
QUESTION SEVEN Approximate the solution to the following partial differential equations using the backward – difference algorithm. ∂u ∂t 2 u ∂t 2 =0 , 0<x <2 , 0 <t u ( 0 ,t) =u ( 0 ,t) =0 , 0 <t u ( x, 0 )=sin ( π) 2 x, 0 ≤x≤ 2 usem=4 ,T=0.1N=2 ¿ compare your results ¿ the actual solution u ( x,t )=e ( π 2 /4 ) t sin π 2 x SOLUTION z, w ij w ij1 z w i1 ,j2 w ij+¿ w ij1 z 2 = 0 ¿ let z h 2 =α w i,j w i,j1 α ( w i +1 ,j2 w i,j + w i,j1 , j=0 ) ( 1 +2 α ) w i,j αw i +1, jαw i1, jwi,j1=0 αw i1 , j+ ( 1+2 α ) w i,jα w i +1 ,jw i, j1=0 ……… .1 αw i1 , j+ ( 1+2 α ) w i,j αw i + 1= w i ,j1 i=1 equation … … .1 αw 0 j +( 1+2 α ) w ij αw 2 ,j =w 1 j1 i=2 αw 1 j + ( 1+ 2 α ) w 2 j αw 3 j=w 3 j1 ………b i=3 w 2 j ( 1+ 2 α ) w 3 jαw 4 j=w 3 j1 ……………c j=1 equation ( 1)becomes

Upload: karen-johnson

Post on 14-Nov-2015

212 views

Category:

Documents


0 download

DESCRIPTION

numerical analysis

TRANSCRIPT

QUESTION SEVENApproximate the solution to the following partial differential equations using the backward difference algorithm.

SOLUTION

becomes

becomes

Therefore from 1 substituting all these valueEquation1

Equation2

Equation3

Equation4

Equation5

Equation5

Equation6

Hence equation

So the backward substitution ijxiwwijU(xi,w)

110.50.050.632950.65204

211.00.050.895130.88394

311.50. 050.632950.62504

120.50.10.566570.55249

221.00.10.801260.78134

321.50.10.566570.55249