quasiparticle and cooper pair tunneling in small capacitance josephson junctions

8
7/23/2019 Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions http://slidepdf.com/reader/full/quasiparticle-and-cooper-pair-tunneling-in-small-capacitance-josephson-junctions 1/8 Z. Phys. B - Condensed Matter 85, 451-458 (1991) ondensed Zeitschrift atter for Physik 9 Springer-Verlag 1991 Quasiparticle and ooper pair tunneling in small capacitance Josephson junctions ffects of the electromagnetic environment G. Falci , V. Bubanja, and Gerd Sch6n Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands Received July 5, 1991 The tunneling of single electrons in small capacitance tunnel junctions is influenced by charging effects and by the fluctuations of the elecromagnetic environment. We study the effect of an external circuit with arbitrary im- pedance on the tunneling of quasiparticles and Cooper pairs in voltage driven Josephson junctions. We present results at finite temperatures and also consider an ac driven system. 1. Introduction Charging effects in small capacitance tunnel junctions have recently attracted much theoretical and experimen- tal interest. Modern lithography allows the controlled fabrication of junctions with capacitances in the range C<10 15F and large tunneling resistance Rt>;>R =h/4e2~6.45 kf~). In these systems the energy differ- ence associated with a single electron tunneling (SET) event, which is of order Ec-e2/2 C, is large enough to manifest itself at temperatures below T~ 1 K. At low volt- ages [ V[ < e/2 C tunneling should be suppressed ('Cou- lomb blockade'), and for large voltages the I- V char- acteristic shows an offset by V= _+ e/2 C ('Coulomb gap') [1,2]. These effects have been clearly demonstrated in normal conducting, multi-junction devices [3]. In exper- iments with a single junction the effects can only be ob- served if the junction is sufficiently decoupled from the external circuit [4]. In superconducting junctions, if the Josephson energy Ej is not too large, one may also expect a suppression of Cooper pair tunneling at low voltages. This has been recently observed [5] in a single junction, whereas the experimental data on multi-junction systems * Present address: Istituto di Fisica, Facolt/t di Ingegneria, Uni- versitfi di Catania, viale A. Doria 6, 1-95129 Catania, Italy ** New address: Institut ftir Theoretische Festk6rperphysik, Universitfit Karlsruhe, W -7500 Karlsruhe, Federal Republic of Germany show much more structure and still await a complete theoretical description [6, 7]. The properties of small tunnel junctions are influenced by the external circuit. The Coulomb blockade is effective only if the charge relaxation through the circuit is slow. Thermal and quantum fluctuations of the electromagnetic environment can activate the charge transfer across the junction. This weakens the Coulomb blockade. The in- fluence of the environment, which is excited by the tun- neling current, back onto the tunneling itself was first discussed by Nazarov [8]. The I-V characteristics of normal tunnel junctions, either current biased (Ix) with a parallel shunt resistor R~ [2, 9], or voltage biased (Vx) with a series resistor have been derived [10] (both circuits are equivalent if one replaces V by Ix/Rs). In normal junctions the leading low temperature and voltage be- haviour is I oc V) +l/2~s at T=0 and I, oc VxT 1/2~ t finite temperatures [9]. Here as=Rq/R, is the dimen- sionless conductance of the resistor. In Josephson junc- tions the influence of shunt or series resistors on the su- percurrent has been analyzed. At low voltages it is Is OC V -1 2/~ and I, oc VT -2+2/~ for T=0 and finite temperatures, respectively [2, 11 ]. For weak cq a resonant structure in the supercurrent at V=e/C has been pre- dicted [ 12]. From these results one sees that the Coulomb blockade is only effective if the series resistance R s is substantially larger than Rq, which can be achieved in an experiment only with some effort [4]. The effect of an arbitrary linear circuit can be ac- counted for by the circuit impedance Z (co), as seen by the junction [13, 10]. With this in mind we can describe the junction plus environment in a compact form by an effective action, combining the action describing Cooper pair and quasiparticle tunneling [14], and the action of the external impedance [13]. An expansion in the weak tunneling limit 1/R~<I/Z o)~O) reproduces the ex- pression for the tunnel current derived in [10] for normal junctions [ 15, i6]. It crucially depends on the probability for inelastic tunneling processes P (E) which describes the fact that the electromagnetic environment has to be ex- cited for tunneling to take place. It has been shown before

Upload: irfan-sokacana

Post on 13-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

7/23/2019 Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

http://slidepdf.com/reader/full/quasiparticle-and-cooper-pair-tunneling-in-small-capacitance-josephson-junctions 1/8

Z. P hys. B - Condensed M atter 85, 451-458 (1991)

ondensed

Zeitschrift a t t e r

for Physik

9 Springer-Verlag 1991

Q uasiparticle and oo pe r pa ir tunneling

in sm all capacitance Jo seph son junctions

f f ec t s o f the e l ec trom agnet i c env i ronm ent

G . F a l c i , V . B u b a n j a , a n d G e r d S c h 6 n

Department of A pplied Physics, Delft Universi ty of Technology, Lorentzweg 1, 2628 CJ Delft , The Netherlands

Received July 5, 1991

T h e t u n n e l i n g o f s in g l e e le c t r o n s i n s m a l l c a p a c i t a n c e

t u n n e l j u n c t i o n s i s i n f l u e n c e d b y c h a r g i n g e f f e c t s a n d b y

t h e f l u c t u a t io n s o f t h e e l e c r o m a g n e t ic e n v i r o n m e n t . W e

s t u d y t h e e f f e c t o f a n e x t e r n a l c i r c u i t w i t h a r b i t r a r y i m -

p e d a n c e o n t h e t u n n e l i n g o f q u a s i p a rt ic l e s a n d C o o p e r

p a i rs i n v o l ta g e d r i v e n J o s e p h s o n j u n c t i o n s . W e p r e s e n t

r e s u l t s a t f i n i t e t e m p e r a t u r e s a n d a l s o c o n s i d e r a n a c

d r i v e n s y s t e m .

1 . Int roduct i on

C h a r g i n g e f fe c t s i n s m a l l c a p a c i t a n c e t u n n e l j u n c t i o n s

h a v e r e c e n t ly a t t r a c t e d m u c h t h e o r e t ic a l a n d e x p e r im e n -

t a l i n t e r e s t . M o d e r n l i t h o g r a p h y a l l o w s t h e c o n t r o l l e d

f a b r i c a t i o n o f j u n c t i o n s w i t h c a p a c i t a n c e s i n t h e r a n g e

C < 1 0 1 5 F a n d l a r g e t u n n e l i n g r e s is t an c e Rt>;>R

= h / 4 e 2 ~ 6 . 4 5 k f ~ ) . I n t h e s e s y s t e m s t h e e n e r g y d i f f e r -

e n c e a s s o c i a t e d w i t h a s i n g l e e l e c t r o n t u n n e l i n g ( S E T )

e v e n t , w h i c h i s o f o r d e r E c - e 2 / 2 C , i s l a r g e e n o u g h t o

m a n i f e s t i ts e l f a t t e m p e r a t u r e s b e l o w T ~ 1 K . A t l o w v o lt -

a g e s [ V [ < e / 2 C t u n n e l i n g s h o u l d b e s u p p r e s s e d ( ' C o u -

l o m b b l o c k a d e ' ) , a n d f o r l a rg e v o l ta g e s th e I - V c h a r -

a c t e r is t ic s h o w s a n o f f s e t b y V = _+ e / 2 C ( ' C o u l o m b g a p ' )

[ 1 , 2 ] . T h e s e e f f e c t s h a v e b e e n c l e a r l y d e m o n s t r a t e d i n

n o r m a l c o n d u c t i n g , m u l t i - j u n c t i o n d e v i c e s [ 3 ] . I n e x p e r -

i m e n t s w i t h a s i n g le j u n c t i o n t h e e f f e c ts c a n o n l y b e o b -

s e r v e d i f t h e j u n c t i o n i s s u f f i c i e n t ly d e c o u p l e d f r o m t h e

e x t e r n a l c i r c u i t [4 ]. I n s u p e r c o n d u c t i n g j u n c t i o n s , i f t h e

J o s e p h s o n e n e r g y E j i s n o t t o o l a r g e, o n e m a y a l s o e x p e c t

a s u p p r e s s io n o f C o o p e r p a i r t u n n e l i n g a t l o w v o l ta g e s .

T h i s h a s b e e n r e c e n t l y o b s e r v e d [ 5] i n a s i n gl e j u n c t i o n ,

w h e r e a s t h e e x p e r i m e n t a l d a t a o n m u l t i- j u n c t io n s y s t e m s

* Present address: Istituto di F isica, Facolt/t di Ingegne ria, Uni-

versitfi di C atania, viale A. D oria 6, 1-95129 Catania, Italy

** New address : Institut ft ir The oretisch e Festk6rperphysik,

Universi tfi t Karlsruhe, W -7500 Karlsruhe, F ederal R epub lic of

Germany

s h o w m u c h m o r e s t r u c t u r e a n d s t i l l a w a i t a c o m p l e t e

t heo re t i ca l de scr i p t i on [6, 7 ].

T h e p r o p e r t i e s o f s m a l l t u n n e l ju n c t i o n s a r e i n f l u e n c e d

b y t h e e x t e r n a l c ir c u i t. T h e C o u l o m b b l o c k a d e is e f f e c t iv e

o n l y i f t h e c h a r g e r e l a x a t i o n t h r o u g h t h e c i r c u i t is s lo w .

T h e r m a l a n d q u a n t u m f l u c t u a t i o n s o f t h e e l e c tr o m a g n e t i c

e n v i r o n m e n t c a n a c t i v a t e t h e c h a r g e t r a n s f e r a c r o s s t h e

j u n c t i o n . T h i s w e a k e n s t h e C o u l o m b b l o c k a d e . T h e i n -

f l u e n c e o f th e e n v i r o n m e n t , w h i c h i s e x c i t e d b y t h e t u n -

n e l i n g c u r r e n t , b a c k o n t o t h e t u n n e l i n g i t s e l f w a s f i r s t

d i s c us s e d b y N a z a r o v [ 8]. T h e I - V c h a r a c te r i st ic s o f

n o r m a l t u n n e l j u n c t i o n s , e i t h e r c u r r e n t b i a s e d ( I x ) w i t h

a para l l e l s hun t r es i s t o r R~ [2 , 9 ], o r vo l t ag e b i ase d (Vx)

wi t h a se r i es r es i s t o r have been der i ved [10 ] (bo t h c i r cu i t s

a r e e q u i v a l e n t i f o n e r e p l a c e s V b y I x / R s ) . I n n o r m a l

j u n c t i o n s t h e l e a d i n g l o w t e m p e r a t u r e a n d v o l t a g e b e -

ha v i o u r i s I oc V) +l /2~s a t T = 0 a n d I, oc

Vx T 1/2~ t

f in i te te m p e r a t u r e s [9 ]. H e r e a s = R q / R , is th e d i m e n -

s i o n le s s c o n d u c t a n c e o f th e r e s i st o r . I n J o s e p h s o n j u n c -

t i o n s t h e i n f l u e n c e o f s h u n t o r s e r ie s r e s i s to r s o n t h e s u -

p e r c u r r e n t h a s b e e n a n a l y z e d . A t l o w v o l t a g e s i t i s

Is OC V -1 2/~

a n d I, oc

VT -2+2/~

f o r T = 0 a n d f i ni te

t e m p e r a t u r e s , r e s p e c t iv e l y [ 2, 1 1 ] . F o r w e a k c q a r e s o n a n t

s t r u c t u r e i n t h e s u p e r c u r r e n t a t V = e / C h a s b e e n p r e -

d i c t e d [ 1 2] . F r o m t h e s e r e s u l ts o n e s e es t h a t t h e C o u l o m b

b l oc kad e i s on l y e f f ec t i ve i f the se r i es r es i s t ance R s i s

s u b s t a n t i a l l y l a r g e r t h a n Rq, w h i c h c a n b e a c h i e v e d in a n

e x p e r i m e n t o n l y w i t h s o m e e f f o r t [ 4 ] .

T h e e f f e c t o f a n a r b i t r a r y l i n e a r c i r c u i t c a n b e a c -

c o u n t e d f o r b y t h e c i r c u i t i m p e d a n c e Z ( co ), a s s e e n b y

t h e j u n c t i o n [ 13 , 1 0 ] . W i t h t h i s i n m i n d w e c a n d e s c r i b e

t h e j u n c t i o n p l u s e n v i r o n m e n t i n a c o m p a c t f o r m b y a n

e f f e c t iv e a c t i o n , c o m b i n i n g t h e a c t i o n d e s c r i b i n g C o o p e r

p a i r a n d q u a s i p a r t i c l e t u n n e l i n g [ 1 4 ] , a n d t h e a c t i o n o f

t h e e x t e r n a l i m p e d a n c e [ 1 3 ] . A n e x p a n s i o n i n t h e w e a k

t u n n e l i n g l i m i t 1 / R ~ < I / Z o ) ~ O ) r e p r o d u c e s t h e e x -

p r e s s i o n f o r t h e t u n n e l c u r r e n t d e r i v e d i n [ 10 ] f o r n o r m a l

j u n c t i o n s [ 1 5, i 6 ] . I t c r u c i a l l y d e p e n d s o n t h e p r o b a b i l i t y

f o r i n e l a s ti c tu n n e l i n g p r o c e s se s P ( E ) w h i c h d e s c r i b e s t h e

f a c t t h a t t h e e l e c t r o m a g n e t i c e n v i r o n m e n t h a s t o b e e x -

c i t e d f o r t u n n e l i n g t o t a k e p l a c e . I t h a s b e e n s h o w n b e f o r e

Page 2: Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

7/23/2019 Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

http://slidepdf.com/reader/full/quasiparticle-and-cooper-pair-tunneling-in-small-capacitance-josephson-junctions 2/8

452

[17] tha t in the weak tunnel ing l imi t the quas ipar t i c le

c u r r e n t i n J o s e p h s o n ju n c t i o n s a n d t h e s u p e rc u r r e n t [ 12 ]

a l so depe nd o n the sam e func t ion P (E) . In th i s a r t ic le

we wi ll s tudy fu r ther the e f fec t o f f in i te t em pera tu r es :

b e s i d e t h e e x p e c t e d o v e ra l l w e a k e n i n g o f t h e c h a rg i n g

effec t s , the ac t iva t ion by the env i ron me n t l ead s to a les s

o b v i o u s m o d i f i c a t io n o f t h e q u a si p a r ti c l e c u r r e n t a s u b g a p

v o l t a g e s . F u r t h e r w e e x t e n d o u r a n a l y s i s t o s t u d y t h e

e f f e ct o f a n a c d r iv e . F o r t h e s a k e o f c o m p l e t e n e s s w e

re p e a t t h e fo rm u l a t i o n o f th e p ro b l e m g i v en b e fo re i n

[17] in the fol lowing sect ion.

2 M o d e l a n d m e t h o d s

W e cons ider the c i rcu i t sho wn in F ig . 1 . Bo th on the

c l as s ic a l a n d t h e q u a n t u m m e c h a n i c a l l e v e l a n a rb i t r a ry

e n v i ro n m e n t c o m p o s e d o f li n e a r e l e m e n ts ( e . g . a t r an s -

m i s s io n l i n e ) c a n b e a c c o u n t e d fo r b y u s i n g a s u i t a b l e

i m p e d a n c e Z (o ) ) . Ea c h c i r c u i t e l e m e n t i s c h a ra c t e r i z e d

by a phase wh ich i s re la ted to the re la t ive vo l tage d rop

b y

~(o~/~t=2eV~

we pu t h = 1 ) . The ind ices i= t ; z ; x

re fer to the tunnel junc t ion ( t ) , s e r ies impedance (z ) , and

vo l tage source (x ) , respec t ive ly . In the imag inary - t ime

p a t h - i n te g ra l f o rm a l i s m t h e e f f e c ti v e a c t i o n o f t h e t u n n e l

j u n c t i o n p l u s e x t e rn a l i m p e d a n c e i s

s r ) ; r ) ] = s , [ r r ) ] + s r ) ] .

(1)

The ac t ion o f the tunnel junc t io n i s g iven by [14]

S t [ ~ b t (r ) ] = ~ d r I C ( 1 e ~ t t t ) 2 - E j c o s q ~ t ( r ) l

B

+ ~ d r ~ d r o c t ( r - U )

o s

( 2 )

I t d e sc r i b e s s u p e rc o n d u c t i n g a n d n o rm a l j u n c t i o n s : t h e

f i r s t t e rm accoun ts fo r the charg ing energy , the second

fo r t h e J o s e p h s o n c o u p l i n g ( i f p r e s e n t ) , a n d t h e e t - t e rm

for the tunnel ing o f quas ipar t i c les in supercon duct ing

j u n c t i o n s (o r s i n g l e e l e c t ro n s i n n o rm a l j u n c t i o n s ) . Th e

k e rn e l e , ( r ) s c a l e s w i t h t h e d i m e n s i o n l e s s n o rm a l s t a t e

t u n n e li n g c o n d u c t a n c e ~ , Rq/Rt, bu t i t s func t iona l fo rm

depends on the gap , re f lec t ing the co rrespond ing s t ruc-

t u r e s i n t h e q u a s i p a r ti c l e I - V c h a ra c t e r is t ic s . F o r fu r th e r

de ta i l s we re fer to [2 ] o r [14 ] . The ac t ion descr ib ing the

ex terna l c i rcu i t , a f t e r F our ie r t ra ns fo rm at ion , i s [ 13 ]

V

Fig 1. The e quivalent circuit for a v oltage biased tunnel junction,

the external impedance simulating a general electromagnetic envi-

ronment

1 I o l z _ l

s 1 6 2

] ) I C z ( o J ) [ 2 . ( 3 )

The vo l tage source f ixes ~b x / ~ t = 2e V . The phases q~,

and ~bz a r e s u b j e c t t o b o t h t h e rm a l a n d q u a n t u m f l uc -

tuat ions with the c ons train t q~, + ~bz + q~x = 0 i m p o s e d b y

the c i rcu i t . L arge f luc tua t ions o f q~z a re poss ib le i f the

impedance in (3 ) i s l a rge enough and imply l a rge f luc-

t u a t i o n s o f ~b t, l e a d in g t o t h e u s u a l C o u l o m b b l o c k a d e

p ic tu re . The re lev an t averages o f observab les re fe r r ing to

t h e j u n c t i o n a r e c a l c u l a te d a s

A

r

= Z o S D e ,

( r ) ( r )

• ( (~ t+(~ +~ x)A (~bt ) exp { - S[q~t; ~ ] }

( 4 )

whe re Z 0 i s the par t i t ion func t ion . Fo r in s tance , the cu r-

r e n t f l o w i n g t h ro u g h t h e j u n c t i o n c a n b e e x p re s s e d a s

( I ( r ) = - 2 e E s (s in ~b~(r )}

( r G ( r ) )

- 2 e j d r a t ( r - r ) sin 2

0 ( 5 )

The f i r s t t e rm i s the supercu rren t , the secon d i s the quas i -

par t i c le ( s ing le e lec t ron ) cu rren t fo r a superconduct ing

(n o rm a l ) j u n c t i o n .

I f th e t u n n e li n g c o n d u c t a n c e fo r q u a s ip a r t ic l e s 1 / R ,

a n d t h e s t r e n g t h fo r C o o p e r p a i r t u n n e l i n g E j a r e w e a k

w e c a n p ro c e e d p e r t u rb a t i v e l y i n t he s e p a r a m e t e r s [ 8 -1 2 ,

15 , 17 ] . S ince the junc t ion coup les p red om inan t ly to the

l o w f r e q u e n c y m o d e s o f th e e l e c t ro m a g n e t i c e n v i ro n m e n t ,

and in mos t exper imen ts Z(o~) i s main ly res i s t ive fo r

s m a l l ~ , t h e r e q u i r e d c o n d i t i o n s a r e 1 / R r 1 / Z (0 ) and

E j / E c ~ R q / Z

(0 ). Fo r l a te r u se we def ine ~s

Rq / g 0 ) .

In the cons idered l imi t the ac t ion reduces to

S ~ S o [ r d r 5 2-e t~r / +S~[q~x+~b~] (6 )

0

a n d t h e a v e ra g e s , t o b e e v a l u a t e d w i t h t h e q u a d ra t i c

S o [~bt], can be expre ssed explici t ly .

In (6 ) we have e l imina ted the exp l ic i t dependence on

~b~ in fa vo ur of the drive q~x. This pro ced ure is s l ight ly

d i f fe ren t than the one used in [17 ] and i s m ore conv en ien t

i f we a l low fo r a genera l d r ive V~(t). The averages ca l -

c u l a t e d i n t h is w a y c a n b e f a c t o r i z e d i n t o a n a v e ra g e o v e r

t h e e q u i li b r i u m f l u c t u a t i o n s a n d a t e rm d e p e n d i n g o n t h e

d r ive . The l a t t e r tu rns ou t to depend on the c las s ica l

voltage at the junction V on ly . For in s tance

( si n ~ t ( r ) 2 ~ t ( r ' ) )

I lo~, D ( ~ ) (ei o j~ _ ei o jr, ) ~x (~o)1

= s i n - ~ 8 f l e 2 Z ( _ il o ) l )

• 1 - c ~

4 f l D (~

=sin I dseV(s) l exp{-}([c~ t (r) - -r

Page 3: Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

7/23/2019 Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

http://slidepdf.com/reader/full/quasiparticle-and-cooper-pair-tunneling-in-small-capacitance-josephson-junctions 3/8

o)~ I o ) l z - 1

w h e r e D ( c o ) = ~ E ~ + ~ e S - e 2

- i l co

[ ) i s t he equ i l i b -

r i u m p r o p a g a t o r i n F o u r i e r r e p r e s e n t a ti o n . T h e s u b s c r ip t

e q r e f e r s t o e q u i l i b r i u m a v e r a g e s , o b t a i n e d b y t h e a c t i o n

(6 ) wi t h q5 ~ = 0 . S i nce t he c i r cu i t d escr i be d by t he e f f ec t i ve

a c t i o n ( 6 ) is l i n e a r , V i s a l s o t h e q u a n t u m m e c h a n i c a l

a v e r a g e ( V ~ >. N o t i c e t h a t f r o m t h e f o l l o w i n g a n a l y s i s w e

w i l l e x p r e s s t h e c u r r e n t a s a f u n c t i o n o f t h e v o l t a g e

at

the junction .

In con t r as t i n [10 ] t he d r i ve V~ app ear s as

t h e i n d e p e n d e n t v a r i a b l e i n t h e c h a r a c t e r i s t i c s . T h i s i s

v a l i d o n l y i f V ~ i s c o n s t a n t a n d i n t h e w e a k t u n n e l i n g

l i m i t : i n t h i s c a s e i n d e e d V ~ V . T h e f o r m u l a t i o n r e-

p o r t e d h e r e p r o v i d e s a d e s c r i p t i o n v a l i d i n m o r e g e n e r a l

c i r c u i ts a n d a p p r o x i m a t i o n s c h e m e s ( s e e S e c t. 6 ) a n d i n

a w i d e r r a n g e o f p a r a m e t e r s a l l o w i ng u s t o s o f t e n t h e

r e q u i r e m e n t 1 / R

t ~ 1 /Z (0) .

T h e f i r s t o r d e r c o n t r i b u t i o n t o t h e q u a s i p a r t i c l e t u n -

n e l i n g c u r r e n t r e d u c e s t o

< I q p ( r ) > = - 2 e

~ d r ' ~ , ( r - z ' ) s i n

d s e V ( s )

0

• - 1 < [ ( ]~ t ( T ) - - q ~ t ( c ' ) ] 2 > e q }

(7)

a n d t h e s u p e r c u r r e n t, w h i c h c o n t r i b u t e s i n s e c o n d o r d e r

i n E j , t o

< I , ( r ) >

= e E ) ~

d r ' s i n

d s 2 e V ( s )

0

• - 89 ( r ) - qS, ( r ' ) ]2 >e q}. (8)

T h e e q u i l i b r i u m a v e r a g e s c a n b e c a l c u l a t e d b y t h e f l u c -

t u a t i o n - d i s s i p a t i o n t h e o r e m a n d a r e c o m p l e t e l y d e t e r -

m i n e d b y t h e i m p e d a n c e s e e n b y t h e j u n c t i o n

z ~ ( o ) ) = [ i o ) c + z ( c o ) - ] - ~ .

A f t e r a n a l y t i c c o n t i n u a t i o n t o r e a l t i m e s r - - * i t t h e s e

e x p r e ss i o ns b e c o m e

• I m { ~ , > ( t - t ' ) e K ( ' - ' ') }

(9)

a n d

( I ( t ) ) = - 2 e E ~ i dt

--03

• I i d s 2 e V ( s ) l I m e g K (t -c )

w h e r e

(10)

K t ) = 1 < [ ~ )t t ) - ~ t ( 0 ) ] ( ~ t ( O ) > e q

e 2 ~ R e Z c ( o ) )

d o )

7 r o )

o

I

co th ~ - (cos co t - 1) - i s in o) t

(11)

453

a n d t h e d e t a i le d f o r m o f t h e k e r n e l e t > ( t ) i s g i ven

in [14].

3 . d c t u n n e l c u r r e n t a t T = 0

F o r a d c d r i v e t h e a v e r a g e q u a s i p a r t i c le c u r r e n t i s r e a d i l y

ob t a i n ed [ 17 ]

l + o o + o r

I qp -- eR ~ d E ~ d E ' N ( E ) N ( E ' )

--co 03

• f ( E ) ] P ( E - E +eV

- [ 1 - f ( E ) l f ( E ' ) P ( E ' - - E - - e V ) } ( 1 2 )

T h e q u a s i p a r t i c l e c u r r e n t t u r n s o u t t o b e a t r a n s p a r e n t

e x t e n s io n o f th e c o r r e s p o n d i n g e x p r e s si o n i n a n o r m a l

j u n c t i o n [ 10 ]. I t i n c lu d e s t h e r e d u c e d d e n s i ti e s o f q u a s i -

par t i c l e s t a t es

N ( E )

a n d

N ( E ' )

i n t he t wo e l ec t rodes .

The supercu r ren t i s [12 ]

+ c o

I s = - Z e s ~ ~ d t si n ( 2 e V t) I m e x p [ 4 K ( t )]

(13)

o

T h e q u a n t u m e f f e c t s a r e c o n t a i n e d i n t h e f u n c t i o n

P ( E ) i n t r o d u c e d i n [ 1 0 ]

P ( E ) = ( 1 / 2 r c ) ~ d t e x p [ K ( t ) + i E t ] .

(14)

co

T h e f u n c t i o n P ( E ) c a n b e i n t e r p r e t e d a s t h e p r o b a b i l i t y

t h a t t h e e n e r g y E i s e x c h a n g e d w i t h t h e e n v i r o n m e n t . I t

i s t h e c e n t r a l q u a n t i t y t o b e c a l c u l a t e d . I t s a t is f ie s d e t a i l e d

b al an c e P ( - E ) = e - # e p

(E).

In t he c l ass i ca l l i mi t i t re -

d u c e s t o a 6 ( E ) - f u n c t i o n , a n d w e r e c o v e r t h e u s u a l e x -

p r e s s i o n f o r t h e t u n n e l i n g c u r r e n t , n a m e l y f o r n o r m a l

j u n c t i o n s a l i n e a r c h a r a c t e r i s t ic a n d f o r t h e q u a s i - p a r t i c l e

c u r r e n t t h e G i a e v e r - W h e r t h a m e r [ 1 7] f u n c t i o n o r a p p r o -

p r i a t e g e n e r a l i z a t i o n s t o n o n - i d e a l c a s e s .

I n g e n e r a l t h e q u a s i p a r t i c l e ( n o r m a l ) c u r r e n t c a n b e

e x p r e s s e d a s

I qp ( v )

co

= ~ d E 1 - e x p ( - B e V )

P ( e V _ E ) i c ~ ( E / e )

(15 )

1 - exp ( - f i E )

- - o o

w h e r e I c l ( V ) i s th e c h a r a c t e r i s t ic s f o r a p e r f e c t l y v o l t a g e

b i a s e d s y s t e m . T h e s u p e r c u r r e n t i s [ 1 2 ]

I s ( V ) = ~ e E Z { P ( 2 e V ) - - P

( - 2 e V )} ( 1 6)

w h e r e t h e f u n c t i o n P ' ( E ) i s t h e F o u r i e r t r a n s f o r m o f

e x p [ 4 K ( t ) ] . I t is o b t a i n e d f r o m P ( E ) b y t h e s u b s t i t u t i o n

Zc--* Zb = Zc / 4 .

W e d e n o t e b y K o ( t ) t h e c o r r e l a t io n f u n c t i o n

K ( t )

a t

T = 0 a n d i n t r o d u c e t h e c o r r e s p o n d i n g P 0 ( E ) . I n a l l c a s e s

o f i n t e r e s t e x p [ Ko ( t ) ] d e c a y s a l g e b r a i c a l l y a n d w e e x p e c t

n o n - a n a l y t i c b e h a v i o u r o f P o ( E ) f o r E = 0 . S i n c e t h i s

m a k e s t h e n u m e r i c a l i n t e g r a ti o n s o f ( 1 t ) a n d ( 1 4 ) c u m -

Page 4: Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

7/23/2019 Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

http://slidepdf.com/reader/full/quasiparticle-and-cooper-pair-tunneling-in-small-capacitance-josephson-junctions 4/8

454

b e r s o m e , w e c a l c u l a t e d i r e c t l y P 0 ( E ) , o m i t t i n g t h e c a l -

c u l a t i o n o f K o ( t ) . F o l l o w i n g M i n n h a g e n [ 1 9] w e c a n d e -

r i v e a n i n t e g r a l e q u a t i o n f o r P 0 ( E )

z R e Z c ( E - o ) ) P o(o ))

(17)

E P o ( E ) = [ . d o ) 2 R q

0

w h i c h w e o b t a i n f r o m th e F o u r i e r t r a n s f o r m o f ( d / d t )

e x p [ K0 ( t ) ] c a l c u l a t e d f r o m ( 1 1 ) a n d ( 1 4 )

co

d e x p [ K o ( t ) ] = j. d o ) e _ i ~ o t i o ) p ( o ) )

d t

co

co

i e x p [ K 0 ( t ) ] y d o ) R e Z c ( o ) ) - i~ ,~

2 R q

0

a n d b y o b s e r v i n g t h a t

P o ( E ) = 0

f o r E < 0. T h e l a s t

p r o p e r t y c o r r e s p o n d s t o t h e f a c t t h a t a t T = 0 th e e n v i-

r o n m e n t i s i n it s g r o u n d s t a t e a n d c a n o n l y b e e x c i t ed b y

a t u n n e l i n g p r o c e s s .

E q u a t i o n ( 1 7 ) g i v e s

P o ( E )

u p t o a m u l t i p l i c a t i v e

c o n s t a n t , w h i c h w e f ix b y t h e n o r m a l i z a t i o n c o n d i -

t i o n . O t h e r s u m r u l e s c a n b e d e r i v e d f r o m c o n s i d e r i n g

d e x p [ K o ( t ) ] /d t ~

f o r t = 0 , e .g .

d o )

d E E P o ( E ) = 2 e 2 ~ ~

R e Z c ( o ) )

0 0

( 1 8 )

T h e 1 .h .s. i s t h e a v e r a g e e n e r g y a b s o r b e d b y t h e e n v i r o n -

m e n t a n d c o r r e s p o n d s t o t h e o f f s e t o f t h e I q p (~) ( V x) c u r v e s

f o r l a r g e v o l t a g e s. F o r a p u r e l y r e s is t iv e e n v i r o n m e n t t h e

r . h . s , g ives

E c.

F r o m t h e o t h e r s u m r u l e s a n d ( 1 7 ) t h e

d e c a y l a w o f P o ( E ) f o r l a r g e E c a n b e i n f e r r e d , n a m e l y

P o ( E ) ~ E - 1R e [ Z c ( E ) / 2

Rq].

E q u a t i o n ( 1 8 ) al s o i m p li e s

t h a t P0 ( E ) ~ E - ~+ ~ /2~ , fo r sm a l l E , w her e a s =

R u / Z ( O )

a n d t h e a f o r e m e n t i o n e d l i m i ti n g b e h a v i o u r s f o r s m a ll V~

o f t h e I - V c h a r a c t e r is t i c s c a n b e d e ri v e d . T h e r e s u l t in g

P o ( E ) f o r d i f f e r e n t v a l u e s o f t h e e n v i r o n m e n t a l i m p e -

d a n c e i s s h o w n i n F i g . 2 . W i t h d e c r e a s i n g

a , = R q / Z ( O )

e2p

2C

2

0 . 5 . 5

1 2 2 . 5

2CE

e2

Fig. 2. The normalized probability of inelastic tunneling P (E) in

units of

1/Ecis

shown for T = 0 and cq = 50, 5, l , 3, 0.2, 0.05, and

0.0125 from left to right, respec tively. Acco rding to (16) this is also

the T= 0 plot of

eI,/2 ~ CE~

vs.

C Vie

for values o f cq which are

4 times larger than those q uoted above

2 b , , . . . . . . . , j / /

l e

0 1 2 ~ / ~

5 ;

2 C V

e

Fig. 3. The quasiparticle I - V characteristic at T = 0 is plotted for

e~=h/(4eZR~)=oo,

10, 5, 1, 0.3, 0.05, 0.0125 and 0, from left to

right, respectively. We choose A = 2

E c.

The asymptotes for high

voltages for the Giaever curve I~ ( c ~ oo) and the other curves are

indicated by d ashed lines. The inset sh ows the tunneling current

I, (V) in a normal junction for the sa me set of cq

t h e p e a k i n P0 ( E ) m o v e s f r o m E = 0 t o E =

E c .

T h e f u n c -

t i o n a l f o r m o f P o ( E ) d i f f er s q u a l i t a ti v e l y f o r a m< 1 / 4 ,

f o r 1 / 4 < a , < 1 / 2 , a n d f o r 1 / 2 < c q . F o r a p u re ly

O h m i c e n v i r o n m e n t

P o ( E ) = O ( E )

f o r

R q / R s ~ O O ,

a n d

P o ( E ) = f i ( E - - E c )

f o r

R q / R ~ O .

I n F i g . 3 t h e r e s u l t i n g q u a s i p a r t i c l e c u r r e n t i s p l o t t e d

[ 1 7 ] . Q u a l i t a t i v e l y d i f f e r e n t r e s u l t s e m e r g e f o r a s < 1 / 2

a n d ~ s > 1 / 2 . T h e c u r r e n t I qp ( V ) i s m o r e s t r u c t u r e d t h a n

t h e n o r m a l j u n c t i o n r e s u l t I , ( V ) s h o w n i n t h e i n se t . I n

f a c t , I q p i s r e m i n i s c e n t o f t h e d e r i v a t i v e

d I , / d V .

P r o -

n o u n c e d f e a t u r e s o f t h e c h a r g i n g e f f e c ts a r e a p p a r e n t e v e n

f o r r e l a t i v el y s m a l l v a lu e s o f Z ( 0 ) . F o r i n s t a n c e t h e j u m p

a t e

V = 2 A

in the c la s s ica l cha rac te r i s t i c /~ j i s sm eared ,

a n d i n i ts v i c i n i t y I qp i s l o w e r t h a n I ~t . F r o m t h e e x p a n s i o n

o f P ( E ) m e n t i o n e d a b o v e w e f i n d a t T = 0 f o r e V l a r g e r

b u t c l o s e t o 2 A

eV

I q p V ) = ~

d E P E ) l c l e ~ f - E )

0

1

e R t r ( 1 / a , ) ~ ( e V - 2 A )

(19)

w h e r e a s I qp v a n i s h e s f o r e V < 2 A . F o r l a r g e v o l t a g e s

Iq p ( V ) t e n d s t o f o l l o w a s h i f te d G i a e v e r - W h e r t h a m e r

c u r v e , s h o w i n g t h e C o u l o m b g a p _+ e / 2 C in t h e s a m e

w a y a s t h e n o r m a l s t a te I n ( V ) .

T h e e n v i r o n m e n t a l s o i n f l u e n c e s t h e s u p e r c u r r e n t

I , ( V ) ( 1 6 ) . T h e s u p e r c u r r e n t h a s a p e a k w h i c h s h i f ts f r o m

V = 0 f o r ~ s- - o o t o V = e / C f o r c % ~ 0 , a n d t h r e e r eg i m e s

c a n b e d i st in g u is h e d, n a m e l y a , < 1 ,1 < c % < 2 ,

a n d 2 < a s . F o r l a r g e a s w e r e c o v e r t h e c l a s si c a l r e s u l t

I~ = lrE~ {~s Vz

[1 + (Jr

Vx

C / e c ~ s 2 ] } - i

f o r l a r g e V . , w h e r e -

a s f o r s m a l l v o l t a g e s t h e p e r t u r b a t i v e a p p r o a c h f a i l s t o

d e s c r i b e a d e q u a t e l y t h e c l a s s i c a l s u p e r c o n d u c t i n g s t a t e .

F o r s m a l l % < 1 t h e C o o p e r p a i r t u n n e l i n g i s b l o c k e d a t

l o w v o l t a g e s , f o r v e r y s m a l l c% t h e s u p e r c u r r e n t s h o w s

t h e s h a r p r e s o n a n c e a t

e / C

Page 5: Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

7/23/2019 Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

http://slidepdf.com/reader/full/quasiparticle-and-cooper-pair-tunneling-in-small-capacitance-josephson-junctions 5/8

4 . d c t u n n e l c u r r e n t a t f i n i t e t e m p e r a t u r e s

A t f in i te t e m p e r a t u r e s i t i s c o n v e n i e n t t o s p l it

K ( t ) = K o ( t ) + K ~ ( t ) w h e r e

K l t) = e ~ - ~ d ( ~ e c(c~

• c o t h ~ - I ( c o s c o t - 1 ) (2 0)

a n d t o d e f i n e t h e c o r r e s p o n d i n g f u n c t i o n P 1 ( E ) , w h i c h

c a n b e e v a l u a t e d b y d i r e c t i n te g r a t i o n , P ( E ) b e i n g t h e

c o n v o l u t i o n o f P 0 ( E ) a n d P~ ( E ) . T h e r e s u l t s o n t h e I - V

c h a r a c t e r i s ti c s a r e s h o w n i n F i g . 4 a n d 5 . A s i n n o r m a l

t u n n e l j u n c t i o n s [ 20 ], t h e C o u l o m b b l o c k a d e g e ts w e a k -

e n e d b y fi n it e t e m p e r a t u r e s. F u r t h e r m o r e , t h e n o n - a n a -

l y t ic b e h a v i o u r i n Iq p a n d I~ is r e m o v e d a t a r b i t r a r y s m a l l

t e m p e r a t u r e s ( c o m p a r e t h e T = 0 r e su l t s in F i g . 3 a n d 2 ,

a n d t h e f i n i t e T r e s u l t s i n F i g s . 4 a n d 5 ) .

I n s e v e r a l l im i t s a n a l y t i c e x p r e s s i o n s o f K ~ ( t ) c a n b e

o b t a i n e d . T h e d o m i n a n t c o n t r i b u t i o n i n ( 20 ) a ri se s fr o m

t h e f re q u e n c i e s ~ < T . T h e i m p e d a n c e Z c ( c n ) d e c a y s

1

s u b s t a n t i a l l y o n a f r e q u e n c y s ca l e g i v e n b y R ~ ( w h e n

t h e e n v i r o n m e n t i s a s i m p l e r e s i s t o r ) . H e n c e f o r

T ~ l / ( R , C ) = 4 o c ~ E c / r C w e c a n u s e Z c ( O ) i n t h e i n t e -

g r a t i o n , o b t a i n i n g

K i t ) , ~ _ 1 in s inh rc T i t ] ) 21)

a s ~ T I t I

F o r l o n g t i m e s ( 2 1 ) r e d u c e s t o t h e ' d i f f u s i v e ' f o r m

K 1 ( t) ,. ~ - - D ] t I w h e r e D = r c T / ( 2 a ~ ) , w h e r e a s f o r s h o r t

u , , j . , / .

4 . ' . . . . ' . . . . ' - -

2CRt lqp '~ ~ - ~ -

2 I / '

4 . / /

3 . 8 4 4 . 2 4 . 4

2

0 - ~ 3 4

r ~ 4 ;

2 C V

Fig. 4. The quasiparticle current is plotted for finite temperatures

T / E c = 0.25 (corresponding to T~ 20 0 m K i f C= 10 i s F) . For ref-

erence the G iaever result at the sam e T and a shifted one are shown

by dashed l ines . Here A =e2/C and c~,=5, 1.2, 0.8, 0.3 and 0.05

from left to right, respectively. The b otto m right inset shows a blow

up o f the subg ap region , here Iqp (in logarithmic scale) increases

with decreasing ~,. The top left inset shows the results at lower

temperature T / E c = 0.025 (T ~ 20 mK i f C = 10-~5 F) in the region

V ~ 2 A . At this temperature the mos t pronounced ef fect com pared

to T = 0 is the vanishing of the nonanalici ties

455

2gCE j 2

1.5 4

3

0.5

0

0 1 2 3 4

C V

e

Fig. 5. The supercurrent for finite temperatures T/Ec=0.25

(T~ 20 0 m K i f C = 10 - i s F) and c%= 5, 1 .2, 0 .8, 0 .3 and 0.05 f rom

left to right , respectively, with the w eakening of the C oulom b block-

ade. The inset show s the results at lower tempe rature T / E c = 0.025

T ~ 20 m K i f C = 10 -15 F )

t i m e s i t is K 1 ( t ) ~ - 1 / ( 1 2 a , ) ( g T / ) 2. F o r a , ~ > 1 t h e d i f -

f u s iv e f o r m i s s u ff i ci e n t t o d e t e r m i n e / ' 1 ( E ) , w h e r e a s i n

t h e o p p o s i t e li m i t a s ~ 0 . 1 t h e s h o r t t im e e x p a n s i o n c a n

b e u s e d .

I f T >> 1/ (R s C ) t h e i m p e d a n c e Z c ( o ) ) p r o v i d e s a n e f -

f e c t iv e h i g h f r e q u e n c y c u t o f f l e a d in g t o

2 D l t [ a r c t g ( 4 a ~ E c ] t l )

+ 8 ~ T 2 1 n [ l + ( 4 a ~ E c ] t l ) 2 ] . (2 2)

I n t h e l o n g t i m e s l im i t a l so t h i s f o r m r e d u c e s t o t h e d i f -

f u s i v e f o r m , w h i c h i s s u f f i c i e n t t o d e t e r m i n e P 1 ( E ) i f

T ~ E c a 2, w h e r e a s f o r s h o r t t i m e s w e g e t

7 E c T t2 (23)

K i ( t ) ~ 2 z c

w h i c h c a n b e u s e d t o c a l c u l a t e P ( E ) i f T ~ > E c a ~ .

L e t u s c o n c e n t r a t e o n t h e w i d t h o f P ( E ) w h i c h i s g i v e n

b y t h e r e c i p r o c a l w i d t h o f e K ( t) . W h e n a s i s n o t t o o s m a l l

a n d T ~ > m i n { E c a , e -2 ~ , E c } t h e f u n c t i o n K ( t ) i s b a s i -

c a l ly d e t e r m i n e d b y K 1 ( t ). T h e n ( 2 1 ) a n d ( 2 2 ) i m p l y t h a t

t h e p r o b a b i l i t y o f i n el a s ti c t u n n e l i n g P ( E ) i s b r o a d e n e d

w i t h i n c r e a s in g T a n d decreasing a s i n a n i n c r e a s i n g e n -

e r g y r a n g e . I n d e e d i n t h i s c a s e t h e e n v i r o n m e n t c a n a c -

t i v a t e t h e t u n n e l in g . T h e c o n s e q u e n c e s a r e p r o n o u n c e d

i n th e q u a s i - p a r t i c l e c u r r e n t . I n t h is r e g i m e t h e g a p r e g i o n

i s s t r o n g l y s m e a r e d a n d t h e s u b g a p c o n d u c t a n c e i s e n -

h a n c e d c o m p a r e d t o t h e G i a e v e r re s u lt a t th e s a m e t e m -

p e r a t u r e , t h e s t r o n g e r t h e s m a l l e r ~ . I n th e n o r m a l s t a t e

t h e t u n n e l i n g c u r r e n t i n c r e a s e s m o n o t o n o u s l y w i t h i n -

c r e a s i n g a s . I n s u p e r c o n d u c t i n g j u n c t i o n s w e f i n d a m o r e

c o m p l e x b e h a v i o u r : a t v o l t a g es b e l o w t h e g a p a n d n o t

t o o s m a l l ~ , I qp i n c r e a s e s w i t h d e c r e a s i n g a s , t h i s te n -

d e n c y b e i n g i n v e r t e d a t l a r g e r v o l t a g e s .

Page 6: Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

7/23/2019 Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

http://slidepdf.com/reader/full/quasiparticle-and-cooper-pair-tunneling-in-small-capacitance-josephson-junctions 6/8

4 5 6

T h e u s u a l p i c t u r e o f C o u l o m b b l o c k a d e is re c o v e r e d

f o r v e r y s m a l l e ~ cG < 0 .02 ) . In t h i s case [12 ] K t ) ~ K 1 t )

2c~vEc

is g iv en b y 23 ) fo r T > ~ l n e S 1 a n d d oe s n o t d e-

p e n d o n ~ , , w h e r e a s i f t h e l a t t e r c o n d i t i o n i s r e v e r s e d

2

K ( t ) ~ K o ( t ) ~ - r ~ ~ ~ v E c l n c ~ f I t 2,

as g i ven i n [12 ] , and

t h e w i d t h o f P E ) d e c r e a s e s w i t h d e c r e a s i n g cG .

5 a c v o l t a g e d r i v e

A s a n a p p l i c a ti o n o f t h e f o r m a l i s m d e s c r ib e d a b o v e , w e

s t u d y n o w t h e e f f e c t o n o f a n a c v o l t a g e a t t h e j u n c t i o n

V ( t ) = Vo + 1/i

c o s f ~ t o n t h e t u n n e l c u r r e n t . T h i s p r o b -

l e m h a s b e e n a d d r e s s e d i n [ 2 1 ] , i n t h e l i m i t

E j / E c ~> 1

w h e r e B l o c h o s c i l l a t i o n s [ 1 ] c o u l d m a n i f e s t t h e m s e l v e s .

I n t h e l i m i t c o n s i d e r e d h e r e , w h e r e p e r t u r b a t i o n t h e o r y

in

E j / E c

c a n b e u s e d , w e d o n o t e x p e c t a n y t i m e c o r -

r e l a t io n p h e n o m e n o n s i n c e t h e t u n n e l i n g is s t o c h a st i c a n d

t h e t i m e b e t w e e n t w o s u c c e s s iv e t u n n e l i n g e v e n t s is m u c h

l a r g e r t h a n a n y o t h e r t i m e s c a le i n t h e p r o b l e m .

N e v e r t h e l e s s t h e a c d r iv e le a d s t o f e a t u r e s i n t h e I - V

c h a r a c t e r i s t ic s . F o r a n a c v o l t a g e d r i v e n s y s t e m t h e c o r -

r e s p o n d i n g te r m in 9 ) a n d 1 0 ) b e c o m e s

s i n l i d s n e V ( s ) l : ~ , ~ J k (n v )J k ,( n v)

• V o ( t - t ' ) + ~? ( k t - k t ') }

w h e r e v = e

V1/ f2

a n d J ~ a r e B e s s e l f u n c t i o n s . T h e r e -

s u l t i n g d c s u p e r c u r r e n t a n d q u a s i p a r t i c l e c u r r e n t a r e

J ~ 2 v ) I v V k f 2 2 4 )

k = - - o o

k D ] 2 5 )

[ q p : ~ J l~ V ) [q p g o - - ~ -

k = - - o o

e s 0 . 8 4 . . . . . . . ~

0.4 '

0 .2

i i i i

o cv

e

F i g . 6 . T h e s u p e r c u r r e n t a t T = 0 , e , = l . 2 a n d

f 2 ~ E c

f o r

i n c r e a s i n g a c v o l t a g e

eV1/Ec=O,

1 . 5 , 3 . 0 , 4 . 5 f r o m l e f t t o r i g h t ,

r e s p e c t i v e l y . I n t h e i n s e t t h e s a m e c u r v e f o r e , = 0 .0 1 6 , ~ ~ 0 .1

E c

a n d

eV~/Ec=O,

1 0 0 , 2 0 0 , 3 0 0

w h e r e I v a n d Iq p a r e t h e d c c h a r a c t e r i s t i c s o f 1 6 ) a n d

1 5 ). T h e r e s u l t i n g I - V c h a r a c t e r i s t i c s a r e s h o w n i n

F i g . 6 . T h e e x p r e s s i o n f o r th e q u a s i p a r t M e c u r r e n t i s a g a i n

a s t r a i g h t f o r w a r d e x t e n s i o n o f t h e e q u i v a l e n t e x p r e s s i o n

f o r t h e n o r m a l s t a t e [ 22 ]. I n f a c t t h e y h a v e t h e s a m e f o r m

a s th e r e s u l t d e r iv e d b y T i e n a n d G o r d o n [ 23 ] a l o n g t i m e

a g o f o r c l a s si c a l j u n c t i o n s w h e r e c h a r g i n g e f f e c t s p l a y n o

r o l e . T h e c h a r g i n g e f f e c t s o n l y m o d i f y t h e f u n c t i o n I qp [ V ]

as g i ven in 15 ) .

6 R e m a r k s a n d e x t e n s i o n s

T h e n u m e r i c a l c a l c u l a t i o n s p r e s e n t e d a b o v e h e r e h a v e

b e e n c a r r i e d o u t o n l y f o r a p u r e l y O h m i c s e r i e s i m p e -

d a n c e , Z c o ) = R , . H o w e v e r t h e f o r m u l a t i o n a p pl ie s f o r

a n y l i n e a r e l e c t r o - m a g n e t i c e n v i r o n m e n t . T h e i n p u t w e

n e e d a r e t h e c l a ss i c a l I - V c h a r a c t e r i s t i c o f th e j u n c t i o n

a n d t h e i m p e d a n c e o f th e e n v i r o n m e n t . O t h e r c i r c u it s o f

i n t e r es t a r e , fo r i n s t anc e , t he R C l i ne [24 ] , o r t he L C li ne

w h i c h c a n m o d e l a s u p e r c o n d u c t i n g l in e . M o s t o f t h e

r e s u l ts p r e s e n t e d a b o v e a p p l y a l s o i n t h e l a t t e r c a s e i f o n e

p u t s

O~ s=R q(C/L) 1 /2 .

F o r i n s t a n c e , f o r

E ~ E c

t h e

f u n c t i o n

P o ( E )

h a s t h e s a m e f o r m a s i n t h e O h m i c

c a s e . O n t h e o t h e r h a n d , f o r

E>>8cGEc/Tr

w e h a v e

P0 E) oc exp

( , - ~ ( E - - E c ) 2 ,

b u t t h i s l e a d s o n l y t o

m i n o r c h a n g e s i n t h e I - V c h a r a c te r i st ic s a s c o m p a r e d

t o t h e r e s u l t s s h o w n a b o v e .

A n i n t e r e s t i n g q u e s t i o n i s w h i c h e n v i r o n m e n t f r e -

q u e n c i e s p l a y a ro l e in d e t e r m i n i n g t h e I - V c u r v e a t a

v o l t a g e V . A t s m a l l t e m p e r a t u r e s , E q . 1 5 ), 1 6 ) a n d 1 7 ),

t o g e t h e r w i t h t h e p r o p e r t y P 0 E ) = 0 f o r E < 0 s ug g e s t

t h a t t h e i m p o r t a n t f r e q u e n c i e s a r e c o < e V . I n d e e d t h e

f u n c t i o n a l f o r m o f t h e c h a r a c t e r i s t i c s i s d e t e r m i n e d b y

t h e s e f r e q u e n c i e s , b u t t h e n o r m a l i z a t i o n c o n d i t i o n o n

P 0 E ) i s n e e d e d i n o r d e r t o d e t e r m i n e t h e m u l t i p l i c a t i v e

c o n s t a n t . S o t h e I - V c u r v e is o b t a in e d f r o m f r e q u e n c i e s

u p t o t h e v a l u e c o r r e s p o n d i n g t o t h e e n e r g y a t w h i c h

P 0 E ) s t a r t s t o d e c a y , t h i s h a p p e n s f o r s m a l l E i f e s i s

l a r g e b u t f o r

E ~ E c

i f ev is smal l . I n t he l a t t e r ca se a l l

t h e f re q u e n c ie s o f t h e e n v i r o n m e n t u p t o

E c

a r e i m p o r t a n t

a n d a n i m p e d a n c e Z c o ) l a r g e u p t o co

~ E c

i s n e e d e d f o r

t h e C o u l o m b b l o c k a d e t o b e e f f ec t iv e .

A n o t h e r q u e s t i o n i s r e l a t e d t o t h e s m a l l v o l t a g e s b e -

d V

h a v i o u r . T h e t h e o r y p r e d ic t s -- , o e f o r V ~ 0 a n d T ~ 0

d I

i n n o r m a l t u n n e l j u n c t i o n s , w h e r e a s e x p e r i m e n t a l l y a f l a t-

t e n i n g t o w a r d s a n a p p a r e n t l y ) f i n it e v a l u e o f t h e d y -

n a m i c r e si s ta n c e is o b s e rv e d o n a p p r o a c h i n g T = 0 . T h i s

c o u l d b e a c c o u n t e d f o r b y t h e t h e o r y i f

P o ( E )

w o u l d

c o n t a i n a n e l a s t i c p e a k c o m p o n e n t , w h i c h c a n b e p r o -

d u c e d o n l y i f t h e v e r y l o w f re q u e n c y b e h a v i o u r o f Z ~ )

i s n o n - d i s s i p a t i v e . A t f i n i t e b u t l o w t e m p e r a t u r e s t h e d y -

nami c r es i s t ance i s [9 ]

2 F 3 / 2 + 1 /4 ~ s)

( 4 c ~ E c ' ~ 1 / 2~

R = R t

i r , / 2 F 1 + 1/4c~s) \ ~ /

w h i c h i s m u c h s m a l l e r th a n t h e v a l u e o b s e r v e d b y C l e l a n d

et al . [4].

Page 7: Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

7/23/2019 Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

http://slidepdf.com/reader/full/quasiparticle-and-cooper-pair-tunneling-in-small-capacitance-josephson-junctions 7/8

A n e x t e n s i o n o f t h e t h e o r y t o l a r g e r tu n n e l i n g c o n -

d u c t a n c e s c a n b e a c h i e v e d b y t r e a t i n g t h e p a r t d e s c r i b in g

t h e t u n n e l i n g i n t h e a c t i o n ( 2 ) i n t h e h a r m o n i c a p p r o x i -

m a t i o n [ 1 6 ] , r a t h e r t h a n n e g l e c t i n g i t , a s d o n e i n t h e

e x p r e s s i o n ( 6 ) . T h i s a m o u n t s t o t h e s u b s t i t u t i o n

c q ~ a s + e t i n al l t h e f o r m u l a s a f t e r ( 7 ), b u t n o f u r t h e r

q u a l i t a t i v e c h a n g e s . N o t i c e h o w e v e r t h a t t h e h a r m o n i c

a p p r o x i m a t i o n i s c o r r e c t o n l y f o r l ar g e % + e t [ 2 5] .

I n t h e e x p e r i m e n t o f [ 5] t h e s u p e r c u r r e n t i s f o u n d i n

g o o d a g r e e m e n t w i t h t h e t h e o r y [ 1 2 ] a t v o l t a g e s o f o r d e r

V ~ e / C b u t i t s h o w s d e v i a t i o n s f o r s m a l l v o l t a g e s a n d

f o r e / C < V < 2 A . A t s m a l l v o l t a g e s w e e x p e c t s o m e

c o r r e c t i o n s d u e t o t h e f a c t t h a t q ~, c a n f e e l t h e e f f e c t o f

t h e w e a k w a s h b o a r d p o t e n t i a l t h a t i s n e g l e c t e d i n t h e

p e r t u r b a t i v e a p p r o a c h . A t l a rg e v o lt a g e s t h e e x p e r i m e n t a l

I - V c o n t i n u e s t o g r o w . I n c o n t r a s t t h e t h e o r y s u g g es t s

t h a t I s h a s t o f u l f i l s o m e n o r m a l i z a t i o n c o n d i t i o n ( s ee

( 1 6 )) . A c o n t r i b u t i o n t o t h e c u r r e n t a r i se s f r o m t h e s u b g a p

q u a s i p a r t i c le c u r r e n t . T h i s c a n b e c a l c u l a te d b y ( 1 5 ) o n c e

t h e s u b g a p c u r r e n t f o r a p e r f e c t l y v o l t a g e b i a s e d j u n c t i o n

i s k n o w n a n d c a n b e c o m e r e l e v a n t d u e t o t h e p r e s e n c e

o f th e e n v i r o n m e n t , a s r e m a r k e d i n S e c t. 4 . A n o t h e r c o n -

t r i b u t i o n c o m e s f r o m t h e q u a s i p a r t i c l e - p a i r i n t e r f e r e n c e

t e r m [ 1 4 , 1 8 , 2 6 ] ( t h e s o c a l l e d ' c o s i n e ' t e r m ) , w h i c h p r o -

d u c e s l o g a r i t h m i c d i v e r g e n c i es o f t h e c u r r e n t w h e n

V > _ 2 A .

U p o n d e c r e a s i n g e s o r i n c r e a s in g E j t h e t u n n e l i n g b e -

c o m e s c o r r e la t e d a n d , m o r e o v e r , c o h e r e n t. W h e n

a l /2 < E j / E c t h i s g i v e s r i s e t o B l o c h o s c i l l a t i o n s [ 1 w i t h

s

t h e t y p i c a l n o s e - s h a p e d c h a r a c t e ri s t ic s . T h e s p a c e o f p a -

r a m e t e r s a t T = 0 i s s h o w n i n F i g . 7 . T h e l i m i t t r e a t e d i n

t h i s a r t i c l e c o r r e s p o n d s t o t h e s h a d e d r e g i o n , w h e r e t h e

t u n n e l i n g i s s t o c h a s t i c . U p o n i n c r e a s i n g E j a n d / o r d e -

c r e a s i n g e s t h e c o h e r e n t r e g i o n i s m e t . I n t h e l a s t r e g i m e

t h e e n v i r o n m e n t p r o m o t e s Z e n e r t r a n s i t i o n s [ 2 7 ] i f t h e

c u r r e n t t h r o u g h t h e j u n c t i o n i s l a rg e . T h i s p r o b l e m h a s

b e e n t r e a t e d i n [ 2 8 ] i n t h e l i m i t c~ / a < E j / E c ~ 1 in a

c u r r e n t b i a s e d r e s is t iv e l y s h u n t e d j u n c t i o n , w h e n i n c r ea s -

i n g c~ s, Z e n e r t u n n e l i n g i n c r e a s e s t h e v o l t a g e d r o p a t t h e

j u n c t i o n . T h e c u r r e n t t h r o u g h t h e s h u n t t h e n i n c r e a s e s ,

b a l a n c e d b y a d e c r e a s e o f t h e c u r r e n t t h r o u g h t h e

j u n c t i o n . I n F i g . 8 w e c o m p a r e t h e I - V c u r v e s f o r

E / E c = O . 1 a n d d e c r e a s i n g a s . T h e y e v o l v e f r o m t h e

a s y m m e t r i c p e a k s h a p e i n t h e s t o c h a s t ic r e g i m e ( d a s h e d

l i n e ) t o t h e t i l t e d p e a k b e h a v i o u r a n d t h e n t h e ' B l o c h

n o s e ' o f th e c o h e r e n t r e g i m e . V i r t u a l p h o t o n e x c h a n g e ,

E j C o h e r e n t

- - t u n n e l i n g

EC /

Stochas tic

......... : ii : ~ m g : ....

t s

Fig. 7. The space o f parameters a s and E j / E c for a superconducting

junction is sho wn . Coherent tunneling occurs for Ey/Ec>oC~/2

whereas for larger ct, an d/ or smaller E j / E c the tunneling becomes

stochastic (shaded region)

457

IsRsC

e

1 . 5

0.5

;

/ / /

05 1 15

c v

% -

Fig. 8. The I - V characteristics in the stochastic and coherent re-

gime are compared. Here E j / E c = 0.1, and c%= 0.1 (dashed line),

0.0 l 5.0 10 4 2.5 10 -4 1.0 10-4

(solid lines) from left to right

respectively, they evolve from the asymmetric peak shape in the

stochastic regim e (dashed line) to the tilted peak b ehaviour and

then the 'Bloch nose' of the coherent regime (solid lines)

n e g l e c t e d i n [ 2 8 ] s h o u l d s m e a r t h e s h a r p f e a t u r e i n t h e

l a t t e r c u r v e s a t V ~ 0 . 8 7 e / C .

7 C o n c l u s i o n s

I n t h i s p a p e r w e s t u d i e d t h e e f f e c t o f t h e e l e c t r o m a g n e t i c

e n v i r o n m e n t o n t h e tu n n e l i n g o f q u a s i p a r t ic l e s a n d C o o -

p e r p a i r s i n s m a l l j u n c t i o n s . I f a h i g h i m p e d a n c e e n v i -

r o n m e n t i s o la t e s th e j u n c t i o n f r o m t h e s o u r c e , th e t u n -

n e l i n g i s r u l e d b y t h e d i f f e r e n c e o f th e loca l e n e r g y b e f o r e

a n d a f t e r t u n n e l in g , a n d t h e C o u l o m b b l o c k a d e s h o w s

u p . T h e k n o w l e d g e o f t h e c l as s ic a l I - V c u r v e f o r t h e

p e r f e c t l y v o l t a g e b i a se d e l e m e n t a n d o f t h e i m p e d a n c e o f

t h e c i rc u i t a l l o w s u s t o d e t e r m i n e t h e I - V c h a r a c t e r i st i c

i n a n e l e c t r o m a g n e t i c e n v i r o n m e n t . S i n g l e e l e c t r o n p h e -

n o m e n a a r e a p p a r e n t e v e n a t f i n i t e t e m p e r a t u r e . I n t h i s

r e g i m e t h e e n v i r o n m e n t c a n a c t i v a t e t h e t u n n e l i n g : t h i s

i s e v i d e n t f o r t h e s u b g a p q u a s i p a r t ic l e c u r r e n t w h i c h , d u e

t o t h i s e f f e c t , t u r n s o u t t o b e e n h a n c e d w i t h r e s p e c t t o

t h e c a s e o f p u r e l y v o l ta g e b i a s e d e l e m e n t f o r t e m p e r a t u r e s

a n d e x t e r n a l im p e d a n c e s o f e x p e r i m e n t a l i n t er e s t. T h e

t h e o r y c a n a l s o b e a p p l i e d t o a j u n c t i o n u n d e r r f i rr a -

d i a t i o n . F o r i n c r e a s i n g t u n n e l i n g c o u p l i n g s t r e n g t h a n d /

o r i n c r e a s in g i m p e d a n c e o f th e e n v i r o n m e n t t h e s t o ch a s -

t i c t u n n e l i n g b e c o m e s c o r r e l a t e d a n d f o r s u p e r c o n d u c t i n g

j u n c t i o n s e v e n c o h e r e n t . I n t h e l a t t e r c a s e t h e t i l t e d p e a k

s h a p e d I - V c h a r a c t e ri s t ic s s h o u l d p r o g r e s s i v e ly tu r n i n

t h e p e c u l i a r B l o c h ' n o s e ' b e h a v i o u r .

We w ould lik e to acknowledge stimulating discussions with D.A.

Averin, R. Fazio, L.J. G eerligs, U. G eigenmfiller~ G. G iaquinta,

D.B. Haviland, L.S. Kuzman, G.L. Ingold, K.K. Likharev, Yu.V.

Nazarov, A .A. Odintsov, A. Tagliacozzo, and A.D. Z aikin.

R e f e r e n c e s

1. Averin, D.V ., Likharev, K .K.: In: Mesoscopic phenomena in

solids. Altshuler, B .L, Lee, P.A., Webb, R .A. (eds.), Chap. 6.

Amsterdam: Elsevier 1991

2. Sch6n, G., Zaikin, A.D.: Phys. Rep. 198, 237 (1990)

Page 8: Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

7/23/2019 Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions

http://slidepdf.com/reader/full/quasiparticle-and-cooper-pair-tunneling-in-small-capacitance-josephson-junctions 8/8

458

3. Ku zm in, L.S., Delsing, P. , Claeson, T. , Likharev , K.K .: Phys.

Rev. Lett . 62, 2539 1989); Geerligs, L.J. , Andereg g, V.F. , van

der Jeugd, C.A. , R om ijn, J. , Mooij , J .E. : Eu roph ys. Lett . 10,

79 1989)

4. Martinis, J .M., Ka utz, R .L. : Phys. Rev. Lett . 63, 1507 1989);

Cleland, A .N. , Schm idt, J .M ., Clarke, J. : Phys. Rev. L ett . 64,

1565 1990)

5. Ku zm in, L.S. , Na zar ov, Yu.V. , Hav iland, D .B. , Delsing, P. ,

Cleason, T. : Prepr in t 1991; Kuz min, L.S., Ha vi land, D .B. : Pre-

print 1991, see also Havilan d, D.B. , K uzm in, L.S. , Delsing, P. ,

Likharev, K.K . , Claeson, T. : Z . Phys . B - C onden sed M at ter

85, 339 1991)

6. Geerligs, L.J., A ndereg g, V.F. , Ro mijn , J. , Mooij , J .E. : Phys.

Rev. Lett . 65, 377 1990)

7. M assen v an den Brink, A . , Sch6n, G . , Geerligs. L .J. : Phys. Rev.

Let t. to be publ i shed) ; B obber t , P . , Odintsov, A.A. : Europhy s .

Let t. submit ted for publ ica t ion) ; see a lso Ma assen van den

Brink, A. , Odintsov, A.A. , Bobbert , P.A. , Sch6n, G. : Z. Phys.

B - Condensed M at ter 85 , 459 1991)

8 . Naz arov, Yu .V. : Sov. Phys . JETP 68, 561 1989)

9 . Pan yuko v, S .V., Zaikin , A.D . : J . Low Tem p. Phys . 73 , 1

1988); Averin, D.V. , Odintsov, A.A.: Phys. Lett . A140, 251

1989)

10. Devo re t , M.H . , Es t~ve, D. , Graber t , H. , Ingold , G .L. , Pothier ,

H. , Urb ina, C. :Ph ys . Rev. Lett. 64, 1824 1990); Girvin, S.M.,

Glazm an, L. I . , Jonson, M . , Penn, D.R . , S t i les , M.D . :Phys . Rev.

Lett . 64, 3183 1990)

11. Fisher, M .P.A. , Zw erger, W .: Phys. Rev. B32, 6190 1985);

Zaikin, A.D. , Panyukov, S.V.: Phys. Lett . A120, 306 1987)

12. Aver in , D.V. , Na zarov , Yu.V., Odintsov, A .A. : Physica B1 65/

166, 945 1990)

13. Leggett , A.J . : Phys. Rev. B30, 1208 1984)

14. Eckern, U. , Sch6n, G. , Ambegaokar, V. : Phys. Rev. B30, 6419

1984)

15. Sch6n, G. : In : M acroscop ic quantum phenom ena. C lark , T .D. ,

Prance, H . , Prance, R .J. , Spiller, T.P. eds.) , p. 103. Sing apo re:

W orld Scienti fic 19 91; Aver in , D.V. , Sch6n, G . : NA TO A SI

Ser ies Quantum coherence in mesoscopic sys tems. Kramer , B.

ed .) , p . 531. New Yo rk: Plenu m Press 1991

16. Flensburg, K. , Jonso n, M .: Phys. Rev. B43, 7586 1991)

17. Falci , G. , Bubanja, V . , Sch6n, G. : E urop hys. Lett . to be pub -

lished)

18. see for instance T inkh am , M . : Intr odu ctio n to superconductiv-

i ty . Ne w Yo r k : M c Gr a w- Hi l l 1975

19. Minnh agen, P . : Ph ys . Let t. A56 , 327 1976)

20. Ingo ld, G.L. , Grabert , H . : Eu roph ys. Lett . 14, 371 1991)

21. Od intsov, A.A .: Sov. J. Low Temp. Phys. 14, 568 1988); Na-

zarov, Yu.V. , Odintsov, A .A. : Proceedings of the Co nference

SQ UID 91, Ber lin , June 1991 to be publ i shed)

22. Odintsov, A .A. : Fiz . Nizk. Temp. 15 , 466 1989) [Sov. J. Lo w

Temp. Phys. 15, 263 1989)]

23. Tien, P.K. , G ord on , J.P. : Phys. Rev. 129, 647 1963)

24. Naz arov, Yu .V. : JETP Let t. 49 , 126 1989)

25. Scalia, V. , Falci , G. , Fazio, R. , Gia quin ta, G . : Physica B16 5[

166, 975 1990); Phys. Rev. B subm itted for pub lication ); see

also Z. Phys. B - Co nden sed M atter 85, 427 1991)

26. Zaikin, A.D .: Prep rint 1991)

27. Mullen, K. , Ben-Jacob, E. , Schuss, Z. :Phys. Rev. Lett . 60, 1097

1988); GeigenmfiUer, U. , Sch6n, G. : Physica B152, 186 1988)

28. Bubanja, V. , M aasse n van den Brink, A. , Averin, D.V. , Sch6n,

G. : In : Gran ular nanoelec tronics . N AT O AS I Ser ies . Fer ry ,

D.K . ed .) , p . 567. New Y ork : Plenum Press 1991