quarterly the irm current articles 2 issn: 2152-1972 · a list of current research articles dealing...

15
1 Quarterly The IRM Summer 2018, Vol. 28 No.2 Michael Volk Dario Bilardello Mike Jackson Institute for Rock Magnetism [email protected] cont’d. on pg. 8... ISSN: 2152-1972 Inside... Current Articles 2 ... and more throughout! In the first installment of this short series of articles on magnetic tests, we discussed using strong magnetic fields to better understand the magnetic domain state and/or particle sizes of a sample. In this second install- ment, we will describe the use of weak field magneti- zations and susceptibilities, as well as useful ratios and biplots that can help to characterize grain size or domain state. Many of the magnetizations and properties de- scribed are of extremely widespread use and have be- come the “bread and butter” of rock-magnetic research and some applications of rock-magnetism in particular. Other properties, on the other hand, are not as common and require instrumentation that is not as readily avail- able, and have therefore remained more unfamiliar to some, despite the useful information they may provide. The discipline of environmental magnetism first and foremost has incredibly benefited from advances in rock-magnetism, and many of the tests and procedures described here were devised for environmental applica- tions. The same goes for paleointensity and other areas of research. Other disciplines, however, have sometime displayed some hysteresis (#magnetistjoke, see IRMQ 22(4)) and have maintained a more simplistic approach. As is the case, nature is complex, and so is magnetic re- search, so without further ado we introduce the low field tests. Magnetic Susceptibility Measurement of magnetic susceptibility, k= M / H, in its most general (and common) form, probably involves the weakest field application that will come to mind to most paleo- and rock-magnetists. Magnetic susceptibil- ity is most commonly measured in fields of ~200-300 A/m or less [footnote: the current generation of multi- function Kappabridges operates at AC field intensities from 2 A/m up to a maximum of 700 A/m; the Magnon VFSM range is 20 - 400 A/m; older Kappabridges had a fixed field strength of 300 A/m], which do not (gener- ally) cause irreversible magnetizations, and therefore is a widely applied non-destructive technique to characterize a specimen’s magnetic response. The magnetic behavior of any material is subdivid- ed into diamagnetic, paramagnetic and ferromagnetic (ferrimagnetic and antiferromagnetic) components and therefore, when immersed in a steady field, the different minerals present will contribute positively or negatively to the bulk magnetic susceptibility of the specimen. The general assumption is that iron oxides have larger sus- ceptibilities than other diamagnetic and paramagnetic minerals that make up the “non-magnetic matrix” and therefore, the ferrimagnetic minerals will dominate the susceptibility response. Whether the assumption is cor- rect or not, magnetic susceptibility is a strongly concen- tration-dependent property, and is often referred to as “bulk” susceptibility. Bulk susceptibility, as other magnetic properties, can be normalized by the volume or by the mass, which sometimes introduces minor confusion when dealing Magnetic tests and characterization protocols: mineralogy and grain size / domain state Part II: isothermal weak field tests Figure 1. The AC field varies with time as H = H 0 cos(ωt). The magnetic response may lag behind, e.g. due to viscosity: M = M 0 cos(ωt-δ), where δ is the phase lag, which is 15° in this example. This can be decomposed into in-phase (“real”) and out-of-phase (“imaginary” or “quadrature”) components: M = M' cos(ωt) + M" sin(ωt), where tan(δ)=M"/M' and (M 0 ) 2 = M' 2 + M" 2 . -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 45 90 135 180 225 270 315 360 M/M 0 ωt (degrees) total in-phase quadrature

Upload: others

Post on 06-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

1

QuarterlyThe IRM

Summer 2018, Vol. 28 No.2

Michael VolkDario BilardelloMike Jackson

Institute for Rock [email protected]

cont’d. on pg. 8...

ISSN: 2152-1972

Inside...Current Articles 2... and more throughout!

Inthefirstinstallmentofthisshortseriesofarticlesonmagnetic tests,wediscussedusingstrongmagneticfields to better understand the magnetic domain stateand/orparticlesizesofasample.Inthissecondinstall-ment,wewill describe theuseofweakfieldmagneti-zationsandsusceptibilities,aswellasusefulratiosandbiplotsthatcanhelptocharacterizegrainsizeordomainstate. Many of the magnetizations and properties de-scribed are of extremelywidespread use and have be-comethe“breadandbutter”ofrock-magneticresearchandsomeapplicationsofrock-magnetisminparticular.Otherproperties,ontheotherhand,arenotascommonandrequireinstrumentationthatisnotasreadilyavail-able, and have therefore remainedmore unfamiliar tosome,despitetheusefulinformationtheymayprovide. Thedisciplineofenvironmentalmagnetismfirstandforemost has incredibly benefited from advances inrock-magnetism,andmanyof the testsandproceduresdescribedhereweredevisedforenvironmentalapplica-tions.Thesamegoesforpaleointensityandotherareasofresearch.Otherdisciplines,however,havesometimedisplayed some hysteresis (#magnetistjoke, see IRMQ22(4))andhavemaintainedamoresimplisticapproach.Asisthecase,natureiscomplex,andsoismagneticre-search,sowithoutfurtheradoweintroducethelowfieldtests.

MagneticSusceptibility Measurementofmagneticsusceptibility,k= M / H,initsmostgeneral(andcommon)form,probablyinvolvestheweakestfieldapplicationthatwillcometomindtomostpaleo-androck-magnetists.Magneticsusceptibil-ity ismost commonlymeasured infields of ~200-300A/mor less [footnote: thecurrentgenerationofmulti-functionKappabridges operates atACfield intensitiesfrom2A/muptoamaximumof700A/m;theMagnon

VFSMrangeis20-400A/m;olderKappabridgeshadafixedfieldstrengthof300A/m],whichdonot(gener-ally)causeirreversiblemagnetizations,andthereforeisawidelyappliednon-destructivetechniquetocharacterizeaspecimen’smagneticresponse. Themagneticbehaviorof anymaterial is subdivid-ed into diamagnetic, paramagnetic and ferromagnetic(ferrimagnetic and antiferromagnetic) components andtherefore,whenimmersedinasteadyfield,thedifferentmineralspresentwillcontributepositivelyornegativelytothebulkmagneticsusceptibilityofthespecimen.Thegeneralassumption is that ironoxideshave largersus-ceptibilities than other diamagnetic and paramagneticminerals thatmake up the “non-magneticmatrix” andtherefore, theferrimagneticmineralswilldominate thesusceptibilityresponse.Whethertheassumptioniscor-rectornot,magneticsusceptibilityisastronglyconcen-tration-dependent property, and is often referred to as“bulk”susceptibility. Bulk susceptibility, as other magnetic properties,canbenormalizedbythevolumeorbythemass,whichsometimes introduces minor confusion when dealing

Magnetic tests and characterization protocols: mineralogy and grain size / domain state Part II: isothermal weak field tests

Figure1.TheACfieldvarieswithtimeasH = H0cos(ωt).Themagneticresponsemaylagbehind,e.g.duetoviscosity:M = M0cos(ωt-δ),whereδisthephaselag,whichis15°inthisexample.Thiscanbedecomposedintoin-phase(“real”)andout-of-phase(“imaginary”or“quadrature”)components:M = M'cos(ωt)+M" sin(ωt),wheretan(δ)=M"/M'and(M0)

2 = M'2+M"2.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 45 90 135 180 225 270 315 360M/M

0 ωt (degrees)

totalin-phase

quadrature

Page 2: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

2

Current ArticlesAlistofcurrentresearcharticlesdealingwithvarioustopicsinthephysicsandchemistryofmagnetismisaregularfeatureoftheIRMQuarterly.Articlespublishedinfamiliargeologyandgeophysicsjournalsareincluded;specialemphasisisgiventocurrentarticlesfromphysics,chemistry,andmaterials-sciencejournals.Most are taken from ISIWeb ofKnowledge, afterwhichtheyaresubjectedtoProcrusteancullingforthisnews-letter.Anextensive reference listofarticles (primarilyaboutrock magnetism, the physics and chemistry of magnetism,andsomepaleomagnetism)iscontinuallyupdatedattheIRM.Thislist,withmorethan10,000references,isavailablefreeofcharge.Yourcontributionsbothto thelistandtotheCurrentArticlessectionoftheIRMQuarterlyarealwayswelcome.

ArcheomagnetismAidona,E.,G.S.Polymeris,P.Camps,D.Kondopoulou,N.

Ioannidis, andK.Raptis (2018),Archaeomagnetic versusluminescencemethods:thecaseofanEarlyByzantinece-ramic workshop in Thessaloniki, Greece,ArchaeologicalandAnthropologicalSciences,10(4),725-741.

Jordanova,N.,D. Jordanova,M.Kostadinova-Avramova,D.Lesigyarski, V. Nikolov, G. Katsarov, and K. Bacvarov(2018),AMineralMagneticApproachtoDeterminePaleo-Firing Temperatures in the Neolithic Settlement Site ofMursalevo-Deveboaz(SWBulgaria),JournalofGeophysi-calResearch-SolidEarth,123(4),2522-2538.

Juarez-Rodriguez,O.,D.Argote-Espino,M.Santos-Ramirez,andP.Lopez-Garcia(2018),PortableXRFanalysisfortheidentificationofrawmaterialsoftheRedJaguarsculpturein Chichen Itza, Mexico, Quaternary International, 483,148-159.

Kitahara,Y.,Y.Yamamoto,M.Ohno,Y.Kuwahara,S.Kam-eda,andT.Hatakeyama(2018),Archeointensityestimatesofatenth-centurykiln:firstapplicationoftheTsunakawa-Shawpaleointensitymethod toarcheological relics,EarthPlanetsandSpace,70.

Stillinger,M.D.,J.M.Feinberg,E.Ben-Yosef,R.Shaar,J.W.Hardin,andJ.A.Blakely(2018),ARejoinderontheValueofArchaeomagneticDatingIntegrativeMethodologyIstheKey toAddressingLevantine IronAgeChronology,NearEasternArchaeology,81(2),141-144.

BiomagnetismAmor,M.,etal.(2018),Ironuptakeandmagnetitebiominer-

alizationinthemagnetotacticbacteriumMagnetospirillummagneticumstrainAMB-1:Anironisotopestudy,Geochi-micaEtCosmochimicaActa,232,225-243.

Environmental magnetism and ClimateAo,H.,M.J.Dekkers,A.P.Roberts,E.J.Rohling,Z.S.An,

X.D.Liu,Z.X.Jiang,X.K.Qiang,Y.Xu,andH.Chang(2018),Mineralmagneticrecordof theMiocene-PlioceneclimatetransitionontheChineseLoessPlateau,NorthChi-na,QuaternaryResearch,89(3),619-628.

Ghazala,H.H.,I.M.Ibraheem,M.Haggag,andM.Lamees(2018),Anintegratedapproach toevaluate thepossibilityofurbandevelopment aroundSohagGovernorate,Egypt,usingpotentialfielddata,ArabianJournalofGeosciences,11(9).

Ghorbanzadeh,N.,R.Kumar,S.H.Lee,H.S.Park, andB.H.Jeon(2018),ImpactofShewanellaoneidensisonheavymetalsremobilizationunderreductiveconditionsinsoilof

Guilan Province, Iran, Geosciences Journal, 22(3), 423-432.

Goman,M.,A.Joyce,S.Lund,C.Pearson,W.Guerra,D.Dale,D.E.Hammond, andA. J.Celestian (2018),Preliminaryresults from LagunaMinucua: a potentially annually re-solvedrecordofclimateandenvironmentalchangeforthepastsimilarto5000yearsintheMixtecaAltaofOaxaca,Mexico,QuaternaryInternational,469,85-95.

Guo,X.L.,S.K.Banerjee,R.H.Wang,G.Y.Zhao,H.Song,B.Lu,Q.Li,andX.M.Liu(2018),WhymagnetiteisnottheonlyindicatorofpastrainfallintheChineseLoessPlateau?,GeophysicalJournalInternational,213(3),2128-2137.

Jia,J.,H.Lu,Y.J.Wang,andD.S.Xia(2018),VariationsintheIronMineralogyofaLoessSectioninTajikistanDur-ingtheMid-PleistoceneandLatePleistocene:Implicationsfor theClimaticEvolution inCentralAsia,GeochemistryGeophysicsGeosystems,19(4),1244-1258.

Lang,X.G.,J.T.Chen,H.Cui,L.Man,K.J.Huang,Y.Fu,C.M.Zhou,andB.Shen(2018),Cycliccoldclimatedur-ingtheNantuoGlaciation:EvidencefromtheCryogenianNantuoFormationintheYangtzeBlock,SouthChina,Pre-cambrianResearch,310,243-255.

Letsch,D.,S.J.E.Large,M.W.Buechi,W.Winkler,andA.vonQuadt (2018), Ediacaran glaciations of thewestAf-ricanCraton -Evidence fromMorocco,PrecambrianRe-search,310,17-38.

Li,Z.J.,F.Wang,X.Wang,B.F.Li,andF.H.Chen(2018),A multi-proxy climatic record from the central TenggerDesert, southernMongolian Plateau: Implications for thearidificationofinnerAsiasincethelatePliocene,JournalofAsianEarthSciences,160,27-37.

Li,M.K., et al. (2018), InfluenceofSeaLevelChange andCentennial East Asian Monsoon Variations on NorthernSouth China Sea Sediments Over the Past 36 kyr, Geo-chemistryGeophysicsGeosystems,19(5),1674-1689.

Lu,Y.,X.M.Fang,O.Friedrich,andC.H.Song(2018),Char-acteristicgrain-size component -Auseful process-relatedparameter for grain-size analysis of lacustrine clastics?,QuaternaryInternational,479,90-99.

Mejia-Echeverry,D.,M.A.E.Chaparro,J.F.Duque-Trujillo,and J. D. Restrepo (2018),An environmentalmagnetismapproach to assess impacts of land-derived sediment dis-turbancesoncoralreefecosystems(Cartagena,Colombia),MarinePollutionBulletin,131,441-452.

Pang,H.L.,B.T.Pan,E.Garzanti,H.S.Gao,X.Zhao,andD.B.Chen(2018),MineralogyandgeochemistryofmodernYellowRiver sediments: Implications forweathering andprovenance,ChemicalGeology,488,76-86.

Park,C.K.,andG.C.Lee(2018),RockMagneticApproachesUsedonDeep-seaSediments in theNortheasternEquato-rialPacific,OceanScienceJournal,53(2),369-380.

Shi, J.Y., Z. J. Jin,Q.Y.Liu,Z.K.Huang, andY.Q.Hao(2018),Terrestrialsedimentaryresponsestoastronomicallyforcedclimatechangesduring theEarlyPaleogene in theBohaiBayBasin,easternChina,PalaeogeographyPalaeo-climatologyPalaeoecology,502,1-12.

Vingiani,S.,E.DiIorio,C.Colombo,andF.Terribile(2018),IntegratedstudyofRedMediterraneansoilsfromSouthernItaly,Catena,168,129-140.

Wang,J.,Z.Chen,Q.Z.Gao,R.Grapes,Z.L.Peng,andG.N.Chen(2018),LatePleistoceneloess-likedepositsinthecoastalareaofsouthChina,Catena,167,305-318.

Weber,M.E.,etal.(2018),200,000yearsofmonsoonalhis-tory recordedon the lowerBengalFan - strong responseto insolation forcing,Global and PlanetaryChange, 166,107-119.

Zhang,Q.,Q.S.Liu,J.H.Li,andY.B.Sun(2018),AnInte-

Page 3: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

3

gratedStudyoftheEolianDustinPelagicSedimentsFromtheNorthPacificOceanBasedonEnvironmentalMagne-tism,TransmissionElectronMicroscopy,andDiffuseRe-flectanceSpectroscopy,JournalofGeophysicalResearch-SolidEarth,123(5),3358-3376.

Extraterrestrial and Planetary MagnetismChareev,D.A.,N.S.Bezaeva,andE.Khakhalova(2018),Syn-

thesisandcharacterizationofsinglecrystalsofmonoclinicpyrrhotite:possibleimplicationsforextraterrestrialmagne-tism,Meteoritics&PlanetaryScience,53,6359-6359.

Cordier, C., B. Baecker, U. Ott, L. Folco, and M. Trieloff(2018),Anewtypeofoxidizedandpre-irradiatedmicrome-teorite,GeochimicaEtCosmochimicaActa,233,135-158.

Day,J.M.D.,J.Maria-Benavides,F.M.McCubbin,andR.A.Zeigler(2018),Thepotentialformetalcontaminationdur-ingApollolunarsamplecuration,Meteoritics&PlanetaryScience,53(6),1283-1291.

Hausrath, E.M., D.W.Ming,T. S. Peretyazhko, and E. B.Rampe(2018),Reactivetransportandmassbalancemodel-ingoftheStimsonsedimentaryformationandalteredfrac-ture zones constrain diagenetic conditions atGale crater,Mars,EarthandPlanetaryScienceLetters,491,1-10.

Lorand,J.P.,S.Pont,V.Chevrier,A.Luguet,B.Zanda,andR.Hewins(2018),Petrogenesisofmartiansulfides in theChassignymeteorite,AmericanMineralogist,103(6),872-885.

Melero-Asensio,I.,J.Ormo,E.Sturkell,G.Stockmann,andJ.Mansfeld (2018),Geophysical signatureofMalingen, theminorcrateroftheLockne-Malingendoubletimpactstruc-ture,Meteoritics&PlanetaryScience,53(7),1456-1475.

Morrison, S.M., et al. (2018),Crystal chemistry ofmartianmineralsfromBradburyLandingthroughNaukluftPlateau,Galecrater,Mars,AmericanMineralogist,103(6),857-871.

Morrison,S.M.,etal.(2018),Relationshipsbetweenunit-cellparametersandcompositionforrock-formingmineralsonEarth, Mars, and other extraterrestrial bodies, AmericanMineralogist,103(6),848-856.

Oran,R.,B.P.Weiss,andO.Cohen(2018),Werechondritesmagnetizedby theearlysolarwind?,EarthandPlanetaryScienceLetters,492,222-231.

Scheinberg,A.L.,K.M.Soderlund,andL.T.Elkins-Tanton(2018),Abasalmagmaoceandynamotoexplaintheearlylunarmagneticfield,EarthandPlanetaryScienceLetters,492,144-151.

Thomas, P., M. Grott, A. Morschhauser, and F. Vervelidou(2018), Paleopole Reconstruction of Martian MagneticFieldAnomalies,JournalofGeophysicalResearch-Planets,123(5),1140-1155.

Fundamental Rock and Mineral MagnetismAnettsungla,V.Rino,andS.Kumar(2018),RedoxCondition,

NatureandTectono-magmaticEnvironmentofGranitoidsandGranitegneissesfromtheKarbiAnglongHills,North-east India: Constraints fromMagnetic Susceptibility andBiotiteGeochemistry,JournaloftheGeologicalSocietyofIndia,91(5),601-612.

Conbhuii,P.O.,W.Williams,K.Fabian,P.Ridley,L.Nagy,andA.R.Muxworthy(2018),MERRILL:MicromagneticEarth Related Robust Interpreted Language Laboratory,GeochemistryGeophysicsGeosystems,19(4),1080-1106.

deGroot,L.V.,K.Fabian,A.Beguin,P.Reith,A.Barnhoorn,and H. Hilgenkamp (2018), Determining Individual Par-ticleMagnetizationsinAssemblagesofMicrograins,Geo-physicalResearchLetters,45(7),2995-3000.

Delefortrie, S., D. Hanssens, and P. De Smedt (2018), Low

signal-to-noiseFDEMin-phasedata:Practicalpotentialformagneticsusceptibilitymodelling,JournalofAppliedGeo-physics,152,17-25.

Harrison,R.J.,J.Muraszko,D.Heslop,I.Lascu,A.R.Mux-worthy,andA.P.Roberts(2018),AnImprovedAlgorithmforUnmixingFirst-OrderReversalCurveDiagramsUsingPrincipalComponentAnalysis,GeochemistryGeophysicsGeosystems,19(5),1595-1610.

He,X.L.,H.B.Li, L. Zhang,H.Wang,C.L.Ge,Y.Cao,M.K.Bai,C.L.Li,X.Z.Ye,andS.Han(2018),Mineraland chemical response to low magnetic susceptibility ofthefaultgougefromtheGuanxian-AnxianfaultzoneandfaultcreepsettingintheLongmenShan,ChineseJournalofGeophysics-ChineseEdition,61(5),1782-1796.

Kontny,A.,andB.Reznik(2018),Effectofpost-shockanneal-ingonmagneticpropertiesofshockedmagnetite,Meteorit-ics&PlanetaryScience,53,6285-6285.

Kontny, A., B. Reznik, A. Boubnov, J. Gottlicher, and R.Steininger(2018),PostshockThermallyInducedTransfor-mationsinExperimentallyShockedMagnetite,Geochem-istryGeophysicsGeosystems,19(3),921-931.

Makaroglu,O.,M.N.Cagatay,N.R.Nowaczyk,L.J.Pesonen,andN.Orbay (2018),Discrimination ofHolocene tephraunitsinLakeVanusingmineralmagneticanalysis,Quater-naryInternational,486,44-56.

McEnroe, S.A., P. Robinson, N. Church, andM. Purucker(2018), Magnetism at Depth: A View from an AncientContinentalSubductionandCollisionZone,GeochemistryGeophysicsGeosystems,19(4),1123-1147.

Pensa,A.,L.Capra,G.Giordano,andS.Corrado(2018),Em-placement temperature estimation of the 2015 dome col-lapseofVolcandeColimaaskeyproxyforflowdynamicsof confined and unconfined pyroclastic density currents,Journal of Volcanology and Geothermal Research, 357,321-338.

Roberts,A.P.,L.Tauxe,D.Heslop,X.Zhao,andZ.X.Jiang(2018),ACriticalAppraisalofthe"Day"Diagram,JournalofGeophysicalResearch-SolidEarth,123(4),2618-2644.

Till,J.L.,andN.Nowaczyk(2018),Authigenicmagnetitefor-mationfromgoethiteandhematiteandchemicalremanentmagnetization acquisition, Geophysical Journal Interna-tional,213(3),1818-1831.

Vasquez,C.A.,F.F.Sapienza,A.Somacal,andS.Y.Fazzito(2018), Anhysteretic remanent magnetization: model ofgrainsizedistributionofsphericalmagnetitegrains,StudiaGeophysicaEtGeodaetica,62(2),339-351.

Zhang,L.,H.B.Li,Z.M.Sun,Y.M.Chou,Y.Cao,H.Wang,X.Z.Ye,andX.L.He(2018),Rockmagneticevidencefortheseismogenicsettingof largeearthquakes in theLong-menShanfaultzone,ChineseJournalofGeophysics-Chi-neseEdition,61(5),1715-1727.

Geomagnetism, Paleointensity and Records of the Geomag-netic Field

Balbas,A.M.,A.A.P.Koppers,P.U.Clark,R.S.Coe,B.T.Reilly,J.S.Stoner,andK.Konrad(2018),Millennial-ScaleInstabilityintheGeomagneticFieldPriortotheMatuyama-BrunhesReversal,GeochemistryGeophysicsGeosystems,19(3),952-967.

Bolzan, M. J.A., C. M. Denardini, andA. Tardelli (2018),Comparison of H component geomagnetic field time se-riesobtainedatdifferentsitesoverSouthAmerica,AnnalesGeophysicae,36(3),937-943.

Channell,J.E.T.,D.A.Hodell,S.J.Crowhurst,L.C.Skinner,andR.Muscheler(2018),Relativepaleointensity(RPI)inthelatestPleistocene(10-45ka)andimplicationsfordegla-cialatmosphericradiocarbon,QuaternaryScienceReviews,

Page 4: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

4

191,57-72.Cromwell,G.,C.L.Johnson,L.Tauxe,C.G.Constable,and

N.A.Jarboe(2018),PSV10:AGlobalDataSetfor0-10MaTime-Averaged Field and PaleosecularVariation Studies,GeochemistryGeophysicsGeosystems,19(5),1533-1558.

deOliveira,W.P.,D.R.Franco,D.Brandt,M.Ernesto,C.F.D.Neto,X.X.Zhao,F.B.V.deFreitas,andR.S.Martins(2018),BehaviorofthePaleosecularVariationDuringthePermian-CarboniferousReversedSuperchronandCompar-isonstotheLowReversalFrequencyIntervalsSincePre-cambrian Times, Geochemistry Geophysics Geosystems,19(4),1035-1048.

Evans,M.E.,andA.R.Muxworthy(2018),Are-appraisaloftheproposedrapidMatuyama-Brunhesgeomagneticrever-salintheSulmonaBasin,Italy,GeophysicalJournalInter-national,213(3),1744-1750.

Gogorza,C.S.G.,M.A.Irurzun,M.J.Orgeira,P.Palermo,andM.Llera(2018),AcontinuousLateHolocenepaleose-cularvariationrecordfromCarmenLake(TierradelFuego,Argentina), Physics of the Earth and Planetary Interiors,280,40-52.

Goguitchaichvili,A.,R.G.Ruiz,F.J.Pavon-Carrasco,J.J.M.Contreras,A.M.S.Arechalde,andJ.Urrutia-Fucugauchi(2018),LastthreemillenniaEarth'sMagneticfieldstrengthinMesoamerica and southernUnitedStates: Implicationsingeomagnetismandarchaeology,PhysicsoftheEarthandPlanetaryInteriors,279,79-91.

Greve,A.,andG.M.Turner(2018),Newandrevisedpalaeo-magneticsecularvariationrecordsfrompost-glacialvolca-nicmaterialsinNewZealand(vol269,pg1,2017),PhysicsoftheEarthandPlanetaryInteriors,279,92-94.

Kim,W.,S.J.Doh,andY.Yu(2018),ReliablepaleointensitydeterminationsfromLateCretaceousvolcanicrocksinKo-reawithconstraintofthermochemicalalteration,PhysicsoftheEarthandPlanetaryInteriors,279,47-56.

Liu,J.B.,N.R.Nowaczyk,U.Frank,andH.W.Arz(2018),A20-15kahigh-resolutionpaleomagneticsecularvariationrecordfromBlackSeasediments-noevidenceforthe'Hi-linaPaliexcursion'?,EarthandPlanetaryScienceLetters,492,174-185.

Molinek, F. R., andD. Bilardello (2018),Application of anAnisotropy-Based Correction to Relative PaleointensityEstimates of Experimentally Deposited Sediments, Geo-chemistryGeophysicsGeosystems,19(3),882-900.

Panovska, S., C. G. Constable, and M. C. Brown (2018),GlobalandRegionalAssessmentsofPaleosecularVariationActivityOver thePast100ka,GeochemistryGeophysicsGeosystems,19(5),1559-1580.

Sanchez-Moreno, E. M., M. Calvo-Rathert, A. Goguitchai-chvili,G.T.Vashakidze, andV.A.Lebedev (2018),Evi-denceofUnusualGeomagneticRegimesRecordedinPlio-PleistoceneVolcanicSequencesfromtheLesserCaucasus(Southern Georgia), Geochemistry Geophysics Geosys-tems,19(5),1429-1446.

Sprain,C.J.,N.L.Swanson-Hysell,L.M.Fairchild,andK.Gaastra (2018),A field like today's? The strength of thegeomagneticfield1.1billionyearsago,GeophysicalJour-nalInternational,213(3),1969-1983.

Xu,Y.C.,Z.Y.Yang,Y.B.Tong,andX.Q.Jing(2018),Pa-leomagnetic Secular Variation Constraints on the RapidEruption of the Emeishan Continental Flood Basalts inSouthwestern China and Northern Vietnam, Journal ofGeophysicalResearch-SolidEarth,123(4),2597-2617.

Magnetic Fabrics and AnisotropyBiedermann,A.R.(2018),Magneticanisotropyinsinglecrys-

tals: a review.Geosciences8(8),DOI:10.3390/geoscienc-

es8080302Canon-Tapia,E.,andM.I.B.Raposo(2018),Anisotropyof

magneticsusceptibilityofsilicicrocksfromquarriesinthevicinityofSaoMarcos,RioGrandedoSul,SouthBrazil:Implicationsforemplacementmechanisms,JournalofVol-canologyandGeothermalResearch,355,165-180.

Chatterjee,S.,S.Mondal,P.Paul,andP.Das(2018),Palaeo-currentandenvironmentalimplicationsfromanisotropyofmagneticsusceptibility(AMS):acasestudyfromTalchirandBarakarformations,RaniganjBasin,WestBengal,In-dia,ArabianJournalofGeosciences,11(11).

Guimaraes, L. F.,M. I. B. Raposo,V.A. Janasi, E. Canon-Tapia,andL.A.Polo(2018),AnAMSstudyofdifferentsilicicunitsfromthesouthernParana-EtendekaMagmaticProvince in Brazil: Implications for the identification offlowdirectionsand localsources,JournalofVolcanologyandGeothermalResearch,355,304-318.

Hrouda, F., M. Chadima, and J. Jezek (2018), Anisotropyof susceptibility in rockswhich aremagnetically nonlin-eareven in lowfields,Geophysical Journal International,213(3),1792-1803.

Hrouda,F.,M.Chadima,J.Jezek,andJ.Kadlec(2018),An-isotropiesofin-phase,out-of-phase,andfrequency-depen-dentsusceptibilitiesinthreeloess/palaeosolprofilesintheCzechRepublic;methodologicalimplications,StudiaGeo-physicaEtGeodaetica,62(2),272-290.

Nke,B.E.B.,T.Njanko,M.A.Mamtani,E.Njonfang,andP. Rochette (2018), Kinematic evolution of the MbakopPan-African granitoids (western Cameroon domain): AnintegratedAMSandEBSDapproach,JournalofStructuralGeology,111,42-63.

Oliva-Urcia,B.,I.Gil-Pena,R.Soto,J.M.Samso,B.Antolin,andE.L.Pueyo(2018),Newinsightsintoasymmetricfold-ingbymeansoftheanisotropyofmagneticsusceptibility,VariscanandPyreneanfolds(SWPyrenees),StudiaGeo-physicaEtGeodaetica,62(2),291-322.

Terrinha, P., E. L. Pueyo,A.Aranguren, J. C.Kullberg,M.C.Kullberg,A.Casas-Sainz,andM.D.Azevedo (2018),GravimetricandmagneticfabricstudyoftheSintraIgne-ous complex: laccolith-plug emplacement in theWesternIberianpassivemargin,InternationalJournalofEarthSci-ences,107(5),1807-1833.

Mineralogy, Petrology, Mineral Physics and Chemistry Czaja,A.D.,M.J.VanKranendonk,B.L.Beard,andC.M.

Johnson (2018),Amultistage origin forNeoarchean lay-ered hematite-magnetite iron formation from the WeldRange,YilgarnCraton,WesternAustralia,ChemicalGeol-ogy,488,125-137.

Eslami,A.,S.Arai,M.Miura,andM.A.Mackizadeh(2018),Metallogenyoftheperidotite-hostedmagnetiteoresoftheNainophiolite,CentralIran:ImplicationsforFeconcentra-tionprocessesduringmulti-episodicserpentinization,OreGeologyReviews,95,680-694.

Farley,K.A. (2018),Heliumdiffusion parameters of hema-titefromasingle-diffusion-domaincrystal,GeochimicaEtCosmochimicaActa,231,117-129.

Gahlan,H.A.,M.K.Azer,andP.D.Asimow(2018),Ontherelativetimingoflistwaeniteformationandchromianspi-nel equilibration in serpentinites,AmericanMineralogist,103(7),1087-1102.

Liang,Z.,Y.Xiao,J.Thakurta,B.X.Su,C.Chen,Y.Bai,andP.A.Sakyi(2018),ExsolutionLamellaeinOlivineGrainsofDuniteUnitsfromDifferentTypesofMafic-UltramaficComplexes,ActaGeologicaSinica-EnglishEdition,92(2),586-599.

Mei,W.,X.B.Lu,X.D.Wang,M.R. Jiang,X. J. Fan, S.

Page 5: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

5

B.Wang,W.Wei,andB.Zhang(2018),Geochemistryofmagnetite from the Huanggang skarn iron-tin polymetal-licdepositinthesouthernGreatXing'anRange,NEChina,GeologicalJournal,53(3),1200-1214.

Meng,J.,H.M.Li,L.X.Li,M.Santosh,Z.Song,andX.Q.Yang(2018),PetrologicalandGeochemicalConstraintsontheProtolithsofSerpentine-MagnetiteOresintheZhaoan-zhuang IronDeposit, SouthernNorthChinaCraton,ActaGeologicaSinica-EnglishEdition,92(2),627-665.

Pekov,I.V.,O.I.Siidra,V.O.Yapaskurt,Y.S.Polekhovsky,andP.M.Kartashov (2018),Ziminaite, Fe3+VO4, a newhowardevansite-group mineral from the Bezymyannyivolcano, Kamchatka, Russia, Mineralogy and Petrology,112(3),371-379.

Ramaroson,V.H.,T.Becquer,S.O.Sa,H.Razafimahatratra,J.L.Delariviere,D.Blavet, P.R.S.Vendrame,L.Rabe-harisoa,andA.F.M.Rakotondrazafy(2018),Mineralogicalanalysisof ferralitic soils inMadagascarusingNIRspec-troscopy,Catena,168,102-109.

Srivastava,P.,N.S.Siddaiah,S.J.Sangode,andD.C.Mesh-ram(2018),Mineralogyandgeochemistryofvariouscol-oredbolesfromtheDeccanvolcanicprovince:Implicationsfor paleoweathering and paleoenvironmental conditions,Catena,167,44-59.

Tang,J.S.,L.Xiang,J.Fan,Z.X.Cui,andH.L.Wu(2018),Synthesisofpolyethylenimine-functionalizedmagneticma-terialsandacriticalevaluationoftheremovalofcopperinsediments,EnvironmentalEarthSciences,77(12).

Voelz,J.L.,W.A.Arnold,andR.L.Penn(2018),Redox-in-duced nucleation and growth of goethite on synthetic he-matitenanoparticles,AmericanMineralogist,103(7),1021-1029.

Zhang,D.N.,S.F.Wang,Y.Wang,M.A.Gomez,Y.H.Duan,andY.F.Jia(2018),TheTransformationofTwo-LineFer-rihydriteintoCrystallineProducts:EffectofpHandMedia(Sulfate versus Nitrate),Acs Earth and Space Chemistry,2(6),577-587.

Zhu,C.X.,S.Ko,H.Daigle,andB.Y.Zhang(2018),NMRRelaxationofSurface-FunctionalizedFe3O4Nanoparticles,Petrophysics,59(3),407-417.

PaleomagnetismAbbey,A.L.,N.A.Niemi,J.W.Geissman,I.Z.Winkelstern,

andM.Heizler(2018),EarlyCenozoicexhumationandpa-leotopographyintheArkansasRivervalley,southernRockyMountains,Colorado,Lithosphere,10(2),239-266.

Abrajevitch,A.,B. J.Pillans,A.P.Roberts, andK.Kodama(2018),MagneticPropertiesandPaleomagnetismofZebraRock,WesternAustralia:ChemicalRemanenceAcquisitioninHematitePigmentandEdiacaranGeomagneticFieldBe-havior,GeochemistryGeophysicsGeosystems,19(3),732-748.

Ahn,H.S.,Y.K.Sohn,J.Y.Lee,andJ.C.Kim(2018),Prelimi-narypaleomagnetic and rockmagnetic results from17 to22kasedimentofJejuIsland,Korea:Geomagneticexcur-sionalbehaviororrockmagneticanomalies?,EarthPlanetsandSpace,70.

Alvarez-Posada, C., J. M. Pares, G. Cuenca-Bescos, J. VanderMade,J.Rosell,J.M.B.deCastro,andE.Carbonell(2018),Apost-Jaramilloage for theartefact-bearing layerTD4 (Gran Dolina, Atapuerca): New paleomagnetic evi-dence,QuaternaryGeochronology,45,1-8.

Boschman,L.M.,R.S.M.Garza,C.G.Langereis,andD.J.J.vanHinsbergen(2018),PaleomagneticconstraintsonthekinematicrelationshipbetweentheGuerreroterrane(Mex-ico)andNorthAmericasinceEarlyCretaceoustime,Geo-

logicalSocietyofAmericaBulletin,130(7-8),1131-1142.Calvin, P.,A.M. Casas-Sainz, J. J.Villalain, andB.Mous-

said(2018),Extensionalvs.compressionaldeformationintheCentralHighAtlassaltprovince:Apaleomagneticap-proach,Tectonophysics,734,130-147.

Dallanave,E.,U.Kirscher,J.Hauck,R.Hesse,V.Bachtadse,and U. G. Wortmann (2018), Palaeomagnetic time andspaceconstraintsof theEarlyCretaceousRhenodanubianFlysch zone (EasternAlps),Geophysical Journal Interna-tional,213(3),1804-1817.

Feng, J.W., J. S.Dai,X. Li, and P. Luo (2018), Soft colli-sionandpolyphasic tectonicevolutionofWuxia forelandthrustbelt:Evidencefromgeochemistryandgeophysicsatthenorthwesternmarginof the JunggarBasin, JournalofGeodynamics,118,32-48.

Gao,L.,Z.Y.Yang,Z.R.Han,Y.B.Tong,X.Q.Jing,andS.H.Zhang (2018),Remagnetizationof theLowerOrdovicianHongshiyaFormationofthesouthwesternYangtzeBlock,Tectonophysics,738,83-91.

Gordienko, I. V., D. V. Metelkin, L. I. Vetluzhskikh, N. E.Mikhaltsov, and E.V. Kulakov (2018), New palaeomag-neticdatafromArgunterrane.TestingitsassociationwithAmuriaandtheMongol-OkhotskOcean,GeophysicalJour-nalInternational,213(3),1463-1477.

Gregory,L.C.,C.MacNiocaill,R.T.Walker,G.Bayasga-lan,andT. J.Craig (2018),Verticalaxis rotation (or lackthereof)oftheeasternMongolianAltayMountains:Impli-cationsforfar-fieldtranspressionalmountainbuilding,Tec-tonophysics,736,31-46.

Ha,G.H.,Z.H.Wu,L.He,andS.B.Wang(2018),LateCeno-zoicSedimentaryEvolutionofPagri-DuoqingCograben,SouthernEnd ofYadong-GuluRift, SouthernTibet,ActaGeologicaSinica-EnglishEdition,92(3),972-987.

Horst,A.J.,J.A.Karson,andR.J.Varga(2018),LargeRo-tationsofCrustalBlocks in theTjornesFractureZoneofNorthernIceland,Tectonics,37(6),1607-1625.

Michalski,K.(2018),PalaeomagnetismofmetacarbonatesandfracturefillsofKongsfjordenislands(westernSpitsbergen):Towardsabetterunderstandingoflate-topost-Caledoniantectonicrotations,PolishPolarResearch,39(1),51-75.

Nugsse,K.,A.A.Muluneh,andT.Kidane(2018),Paleomag-neticevidenceforcounterclockwiserotationoftheDofanmagmatic segment,MainEthiopianRift,Tectonophysics,731,85-94.

Pellegrino,A.G.,B.Zhang,F.Speranza,R.Maniscalco,C.Y.Yin,C.Hernandez-Moreno, andA.Winkler (2018),Tec-tonicsandPaleomagneticRotationPatternofYunnan(24degrees N-25 degrees N, China): Gaoligong Fault ShearVersusMegablockDrift,Tectonics,37(5),1524-1551.

Rapalini,A.E.(2018),TheAssemblyofWesternGondwana:ReconstructionBasedonPaleomagneticData,inGeologyofSouthwestGondwana,editedbyS.Siegesmund,M.A.S.Basei,P.OyhantcabalandS.Oriolo,pp.3-18.

Rivera,T.A.,R.Furlong,J.Vincent,S.Gardiner,B.R.Jicha,M.D.Schmitz,andP.C.Lippert(2018),Volcanismat1.45Mawithin theYellowstoneVolcanicField,UnitedStates,Journal of Volcanology and Geothermal Research, 357,224-238.

Sengor,A.M.C.,B.A.Natal'in,G.Sunal,andR.vanderVoo(2018),TheTectonicsoftheAltaids:CrustalGrowthDur-ingtheConstructionoftheContinentalLithosphereofCen-tralAsiaBetweensimilarto750andsimilarto130MaAgo,inAnnualReviewofEarthandPlanetarySciences,Vol46,editedbyR.JeanlozandK.H.Freeman,pp.439-494.

Sierra-Rojas,M. I., andR.S.Molina-Garza (2018),Detritalandearlychemicalremanentmagnetizationinredbedsandtheirrockmagneticsignature:ZicapaFormation,southern

Page 6: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

6

Mexico,Geophysical Journal International,213(3),1701-1719.

Speranza,F.,C.Hernandez-Moreno,G.Avellone,M.G.Mor-ticelli,M.Agate,A.Sulli,andE.DiStefano(2018),Under-standingPaleomagneticRotationsinSicily:ThrustVersusStrike-SlipTectonics,Tectonics,37(4),1138-1158.

Thomas, D. N., and P. W. Schmidt (2018), Paleomagneticevidencefortheemplacementmechanismofanenigmaticboulderaccumulationonacoastalcliff topinNewSouthWales: implications for theAustralianMegatsunami Hy-pothesis,AustralianJournalofEarthSciences,65(4),503-515.

Wunderman,R.L.,P.E.Wannamaker,andC.T.Young(2018),Architecture of the hidden Penokean terrane suture andMidcontinent rift system overprint in eastern Minnesotaand western Wisconsin from magnetotelluric profiling,Lithosphere,10(2),291-300.

Zhang,T.,R.G.Gordon,andC.Z.Wang(2018),Obliquesea-floorspreadingacrossintermediateandsuperfastspreadingcenters,EarthandPlanetaryScienceLetters,495,146-156.

Zhang,Y.,W.T.Huang,B.C.Huang,D.J.J.vanHinsbergen,T.Yang,G.Dupont-Nivet,andZ.J.Guo(2018),53-43MaDeformationofEasternTibetRevealedbyThreeStagesofTectonicRotation in theGongjueBasin, Journal ofGeo-physicalResearch-SolidEarth,123(5),3320-3338.

Zhang,D.H.,B.C.Huang,J.Zhao,J.G.Meert,Y.Zhang,Y.L.Liang,Q.H.Bai,andT.H.Zhou(2018),PermianPaleoge-ographyoftheEasternCAOB:PaleomagneticConstraintsFromVolcanicRocks inCentralEastern InnerMongolia,NEChina, Journal ofGeophysical Research-Solid Earth,123(4),2559-2582.

Zhu,X.,B.Wang,Y.Chen,H.S.Liu,C.S.Horng,F.Chou-let,M.Faure,L.S.Shu,andZ.H.Xue(2018),FirstEarlyPermianPaleomagneticPolefortheYiliBlockanditsIm-plicationsforLatePaleozoicPostorogenicKinematicEvo-lutionof theSWCentralAsianOrogenicBelt,Tectonics,37(6),1709-1732.

Prospecting and Surveying Abedi,M.,D.Fournier,S.G.R.Devriese,andD.W.Olden-

burg (2018), Integrated inversion of airborne geophysicsoverastructuralgeologicalunit:Acasestudyfordelinea-tionofaporphyrycopperzoneinIran,JournalofAppliedGeophysics,152,188-202.

Andersson,M.,andA.Malehmir(2018),InternalarchitectureoftheAlnoalkalineandcarbonatitecomplex(centralSwe-den) revealed using 3D models of gravity and magneticdata,Tectonophysics,740,53-71.

Aydin,N.G.,andT.Isseven(2018),WhatisthereasonforthehighBouguergravityanomalyatCumra,Konya (CentralAnatolia)?,TurkishJournalofEarthSciences,27(4),318-328.

Boukerbout,H.,A.Abtout,D.Gibert,B.Henry,B.Bouyahi-aoui, andM.E.M.Derder (2018), Identificationof deepmagnetizedstructuresinthetectonicallyactiveChiefarea(Algeria)fromaeromagneticdatausingwaveletandridge-let transforms, Journal ofAppliedGeophysics, 154, 167-181.

Huang,Y.F.,Z.R.Yue,andX.Y.Hu(2018),CharacteristicsofAMTresponseofanisotropicnaturalgashydratereservoirsinpermafrostregions,ChineseJournalofGeophysics-Chi-neseEdition,61(6),2629-2640.

Lino,L.M.,F.D.Cavallaro,S.R.D.Vlach,andD.C.Coelho(2018),2Dmagnetometricmodelingofabasic-intermediateintrusiongeometry:geophysicalandgeologicalapproachesappliedtotheLimeiraintrusion,ParanaMagmaticProvince(SP,Brazil),BrazilianJournalofGeology,48(2),305-315.

Liu, S.,X.Y.Hu, andR.X. Zhu (2018), Joint inversion ofsurfaceandboreholemagneticdatatoprospectconcealedorebodies: A case study from the Mengku iron deposit,northwesternChina, JournalofAppliedGeophysics,154,150-158.

Marques,F.O.,A.Hildenbrand,andC.Hubscher(2018),Evo-lutionofavolcanicislandontheshoulderofanoceanicriftandgeodynamicimplications:S.JorgeIslandontheTercei-raRift,AzoresTripleJunction,Tectonophysics,738,41-50.

Martinez-Moreno, F. J., et al. (2018), Investigating collapsestructuresinoceanicislandsusingmagnetotelluricsurveys:ThecaseofFogoIslandinCapeVerde,JournalofVolcanol-ogyandGeothermalResearch,357,152-162.

Michels,A.C.,S.A.McEnroe, andC.Fichler (2018),Geo-physicalexpressionof theLekaOphiolite,Norway,mod-eled from integrated gravity, magnetic and petrophysicaldata,NorwegianJournalofGeology,98(1),103-125.

Panisova,J.,A.Balazs,Z.Zalai,M.Bielik,F.Horvath,S.Ha-rangi,S.Schmidt,andH.J.Gotze(2018),Intraplatevolca-nismintheDanubeBasinofNWHungary:3Dgeophysicalmodellingof theLateMiocenePasztorivolcano, Interna-tionalJournalofEarthSciences,107(5),1713-1730.

Pastore,Z.,C.Fichler,andS.A.McEnroe(2018),Magneticanomalies of the mafic/ultramafic Seiland Igneous Prov-ince,NorwegianJournalofGeology,98(1),79-101.

Pratap,A.,Kusham,B.P.Naick,andK.Naganjaneyulu(2018),AmagnetotelluricstudyfromoverDharwarcratonicnucle-usintoBilligiriRangancharnockiticmassif,India,PhysicsoftheEarthandPlanetaryInteriors,280,32-39.

Rohrmuller, J., et al. (2018),Reconnaissancestudyofan in-ferredQuaternarymaarstructureinthewesternpartoftheBohemianMassif near Neualbenreuth, NE-Bavaria (Ger-many), International Journal of Earth Sciences, 107(4),1381-1405.

Sedikou,B.O.D.,W.B.Wei,G.F.Ye,S.Jin,J.E.Jing,L.Z.Ji,H.Dong,L.T.Zhang,Y.T.Yin,andC.L.Xie(2018),Experiments of magnetotelluric observation network onNorthChina and lithospheric conductivity structure fromfastimagingmethod,ChineseJournalofGeophysics-Chi-neseEdition,61(6),2508-2524.

Shah,A.K.,andK.Crain(2018),AeromagneticDataRevealPotential Seismogenic Basement Faults in the InducedSeismicity Setting of Oklahoma, Geophysical ResearchLetters,45(12),5948-5958.

Singh,S.,V.P.Maurya,R.K.Singh,S.Srivastava,A.Tripathi,and P. K.Adhikari (2018),Audio-magnetotelluric inves-tigation of sulfide mineralization in Proterozoic-ArcheangreenstonebeltsofEasternIndianCraton,JournalofEarthSystemScience,127(3).

Valois,R., J.M.Vouillamoz, S.Lun, andL.Arnout (2018),MappinggroundwaterreservesinnorthwesternCambodiawiththecombineduseofdatafromlithologsandtime-do-main-electromagnetic andmagnetic-resonance soundings,HydrogeologyJournal,26(4),1187-1200.

Wang,X.B.,G.Zhang,J.Zhou,D.W.Li,W.Luo,Y.B.Hu,X.L.Cai,andZ.M.Guo(2018),CrustanduppermantleelectricalresistivitystructureintheLongmenshantectonicbeltanditsrelationshipwithWenchuanandLushanearth-quakes, Chinese Journal of Geophysics-Chinese Edition,61(5),1984-1995.

Zhao,W. J., S.W. Chen, and Q. H. Ding (2018),MappingelectricalstructuresinthesouthernGreatKhinganRange,north-eastChina,throughtwo-dimensionalmagnetotelluricsounding,ExplorationGeophysics,49(3),285-298.

Zhou,F.,C.H.Tao,T.Wu,Z.F.Zeng,andC.Liu(2018),3DFocusedInversionofNear-bottomMagneticDatafromAu-tonomousUnderwaterVehicleinRoughSeas,OceanSci-

Page 7: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

7

enceJournal,53(2),405-412.Zhou,Y.M.,W.B.Zhu,Z.L.Chen,B.H.Zheng,X.L.Shao,

and F.Xue (2018),Volcanic rocks distribution and base-ment structure inwestern-central Junggar Basin revealedby gravitational and magnetic data, Geological Journal,53(3),960-976.

StratigraphyArkadiev,V.,A.Guzhikov, E.Baraboshkin, J. Savelieva,A.

Feodorova, O. Shurekova, E. Platonov, and A. Manikin(2018),Biostratigraphyandmagnetostratigraphyoftheup-perTithonian-BerriasianoftheCrimeanMountains,Creta-ceousResearch,87,5-41.

Basavaiah, N., K. V. V. Satyanarayana, K. Deenadayalan,andJ.N.Prasad(2018),DoesDeccanVolcanicSequencecontainmore reversals than the three-ChronN-R-N flowmagnetostratigraphy?-apalaeomagneticevidencefromthedyke-swarm near Mumbai, Geophysical Journal Interna-tional,213(3),1503-1523.

Dallanave, E., C. Agnini, K. M. Pascher, P. Maurizot, V.Bachtadse,C. J.Hollis,G.R.Dickens, J. Collot, andE.Monesi(2018),Magneto-biostratigraphicconstraintsoftheEocenemicrite-calciturbiditetransitioninNewCaledonia:tectonicimplications,NewZealandJournalofGeologyandGeophysics,61(2),145-163.

Elbra,T.,M.Bubik,D.Rehakova,P.Schnabl,K.Cizkova,P.Pruner,S.Kdyr,A.Svobodova,andL.Svabenicka(2018),Magneto- and biostratigraphy across the Jurassic-Creta-ceousboundaryintheKurovicesection,WesternCarpath-ians,CzechRepublic,CretaceousResearch,89,211-223.

Elbra, T., P. Schnabl, K. Cizkova, P. Pruner, S. Kdyr, J.Grabowski,D.Rehakova,A.Svobodova,C.Frau,andW.A.P.Wimbledon(2018),Palaeo-androck-magneticinvestiga-tionsacrossJurassic-CretaceousboundaryatStBertrand'sSpring,Drme,France:applicationstomagnetostratigraphy,StudiaGeophysicaEtGeodaetica,62(2),323-338.

Gong, Z., andK. P.Kodama (2018),Reply to the commenton "Rock magnetic cyclostratigraphy of the DoushantuoFormation,SouthChinaandits implicationsforthedura-tionoftheShuramcarbonisotopeexcursion",PrecambrianResearch,310,467-470.

Grunert,P.,B.Balestra,C.Richter,J.A.Flores,G.Auer,A.G.Gallardo,andW.E.Piller(2018),RevisedandrefinedagemodelfortheupperPlioceneofIODPSiteU1389(IODPExpedition339,GulfofCadiz),NewslettersonStratigra-phy,51(3),261-283.

Gunderson,K.L.,D. J.Anastasio,F. J.Pazzaglia, andK.P.Kodama(2018),IntrinsicallyVariableBlindThrustFault-ing,Tectonics,37(5),1454-1471.

Leslie,C.,D.Peppe,T.Williamson,D.Bilardello,M.Heizler,R.Secord,andT.Leggett(2018),High-resolutionmagne-tostratigraphyoftheuppernacimientoformation,sanjuanbasin, newmexico, usa: implications for basin evolutionand mammalian turnover, American Journal of Science,318(3),300-334.

Leslie,C.E.,D. J.Peppe,T.E.Williamson,M.Heizler,M.Jackson,S.C.Atchley,L.North,andB.Standhardt(2018),Revised age constraints for Late Cretaceous to early Pa-leocene terrestrial strata from theDawsonCreek section,BigBendNationalPark,westTexas,GeologicalSocietyofAmericaBulletin,130(7-8),1143-1163.

Lund, S., M. Goman, and A. Joyce (2018), PaleomagneticchronostratigraphyofHoloceneLagunaMinucua,Oaxaca,Mexico,QuaternaryInternational,469,169-178.

Puertolas-Pascual, E., I. Arenillas, J. A. Arz, P. Calvin, L.Ezquerro, C. Garcia-Vicente, M. Perez-Pueyo, E. M.Sanchez-Moreno, J. J.Villalain, and J. I.Canudo (2018),

ChronostratigraphyandnewvertebratesitesfromtheupperMaastrichtianofHuesca(Spain),andtheirrelationwiththeK/Pgboundary,CretaceousResearch,89,36-59.

Qiu,Y.H.,H.Ao,Y.X.Zhang,P.X.Shu,Y.X.Li,X.W.Li,and P. Zhang (2018),Magnetostratigraphic dating of theLinyiFaunaandimplicationsforsequencingthemamma-lianfaunasontheChineseLoessPlateau,QuaternaryRe-search,89(3),629-644.

Roberts,N.J.,R.W.Barendregt,andJ.J.Clague(2018),Plio-cene and Pleistocene chronostratigraphy of continentalsedimentsunderlyingtheAltiplanoatLaPaz,Bolivia,Qua-ternaryScienceReviews,189,105-126.

Rossetti,L.,E.F.Lima,B.L.Waichel,M.J.Hole,M.S.Si-moes,andC.M.S.Scherer(2018),LithostratigraphyandvolcanologyoftheSerraGeralGroup,Parana-EtendekaIg-neousProvinceinSouthernBrazil:Towardsaformalstrati-graphicalframework,JournalofVolcanologyandGeother-malResearch,355,98-114.

Smith, D. G., and R. J. Bailey (2018), Comment on "Rockmagneticcyclostratigraphyof theDoushantuoFormation,South China and its implications for the duration of theShuramcarbonisotopeexcursion",PrecambrianResearch,310,463-466.

Stephenson,M.H.(2018),Permianpalynostratigraphy:aglob-aloverview,inPermianTimescale,editedbyS.G.LucasandS.Z.Shen,pp.321-347.

Wolfgring,E.,M.Wagreich, J.Dinares-Turell, I.O.Yilmaz,andK.Bohm (2018), Plankton biostratigraphy andmag-netostratigraphyoftheSantonian-Campanianboundaryin-tervalintheMudurnu-GoynukBasin,northwesternTurkey,CretaceousResearch,87,296-311.

Xu,W.M.,C.MacNiocaill,M.Ruhl,H.C.Jenkyns,J.B.Riding,andS.P.Hesselbo(2018),MagnetostratigraphyoftheToar-cianStage(LowerJurassic)oftheLlanbedr(MochrasFarm)Borehole,Wales: basis fora global standard and implica-tionsforvolcanicforcingofpalaeoenvironmentalchange,JournaloftheGeologicalSociety,175(4),594-604.

Zhang,P.,H.Ao,M.J.Dekkers,Z.S.An,L.J.Wang,Y.X.Li,S.H.Liu,X.K.Qiang,H.Chang,andH.Zhao(2018),Magnetochronology of the Oligocenemammalian faunasin theLanzhouBasin,NorthwestChina,JournalofAsianEarthSciences,159,24-33.

"Beforethebreakup,andafterthebreakup":1858illustrationsof Pangea byAntonio Snider-Pellegrini, from "La Créationet ses mystères dévoilés" ("Creation and its Mysteries Un-veiled".)

Page 8: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

8

cont’d. from pg. 1...

with theunitsofmeasure,orat least imposesdefiningtwo “different” susceptibilities. Because of the weakfieldsused, itmakessense to report these inA/m,andthereforesusceptibilitymeasurementswillinvolvemag-neticmoment(Am2)dividedbyfield(A/m),whichwillthenbeequaltom3.Normalizingbyvolume(m3inSI),willresultindimensionlesssusceptibility,referredtoask,whichusersoftenreportas“SIunit”,or,becauseofthegenerallysmallvalues,μSI(=10-6SI).However,notallrocks(orspecimens)havecomparabledensities,andvolume-normalizedsusceptibilitiesoftenreflectvariabledegreesofcompactionaswellasdifferencesinconcen-tration.Forthisreason,andbecauseitisgenerallyeasiertogetaccuratemeasurementsofmass thanofvolume,susceptibility(likeotherconcentration-dependentprop-erties) is commonlymass-normalized. Whenmass isusedasanormalizer(kginSI),thebulksusceptibilityisthenreferredtoasmasssusceptibilityχ,inm3/kg.Assumingthesusceptibilityresponseisdominatedbytheferromagneticfraction,susceptibilityismostoftenusedasamagneticconcentrationparameter,whichmakesita valuable normalizer to remove the concentration-de-pendencefromothermagneticproperties(morebelow). Theaboveisvalidinsteady(DC)magneticfields,forwhichkorχaresimplerealnumbers.However,changing(AForAC)fieldsmaycausedelayedresponses,makingtheACsusceptibilityingeneralacomplexquantity:k= k’ - iωk”,wherek’isthein-phaseresponseofMtoanoscillatingfieldH0 e

iωt andk”isthe90˚out-of-phase(orquadrature)response(Fig.1). The delayed response and corresponding out-of-phasesusceptibilitycanarisefromthreedifferentphysi-cal mechanisms (see IRMQ 13(4)): (1) magnetic vis-cositywithrelaxationtimescomparabletotheACfieldreversalinterval;(2)irreversiblemagnetizationchanges(low-field hysteresis) driven by theAC field; and (3)productionofelectricaleddycurrentsbytheACfieldinelectricallyconductivematerials.Eachofthesemecha-nismsissignificantonlyforarestrictedrangeofmate-rials. Viscosityonmillisecond timescales is generallyonlyimportantforfineSDparticles,neartheSPbound-ary. Low-field hysteresis has been documented onlyin multidomain pyrrhotite, hematite and intermediatecompositiontitanomagnetites,wherespontaneousmag-netizationisnottoolargeandwall-pinningenergiesare

comparabletoexternal-fieldinteraction(Zeeman)ener-gies.Conductivityisonlylargeenoughtomatterinmet-als,graphiteandsomesulfideminerals,inthefrequencyrangecommonlyusedforsusceptibilitymeasurements.Quadraturesusceptibilityk”isthereforealmostalwaysmuchsmallerthanin-phasesusceptibilityk’.Butwhenitissignificantinmagnitude,itprovidesimportantinfor-mationaboutthemagnetic(and/orconductive)mineralassemblage. ForverysmallSD(“viscoussuperparamagnetic”orVSP)grains,k”andthefrequencydependenceofk’(fre-quencyf= ω/2π)arecloselyrelatedtoviscouschangesofMrwithtime t(Néel,1949;MullinsandTite,1973;ShcherbakovandFabian,2005;Egli,2009).Ausefulre-lationforrecognizingthermalrelaxationistheso-called“π/2” law: χ”[viscosity]= -(π/2)(δχ’/δlnf),which applies topopulations of VSP particles with a range of particlesizes/shapesorthermalactivationenergies. Thesebehaviorsallowforgrainsizeapplicationsofmagneticsusceptibility:atsmallSDgrainsizesthesus-ceptibilityincreasesasthesuperparamagneticthresholdisapproached,andsmallrotationsofthegrainmomentsin response to thefieldgiveway tocomplete thermal-ly-assisted moment reversals (e.g. Stacey & Banerjee1974). Since superparamagnetic properties are charac-terizedbyashortrelaxationtimeτ,theapparentsuscep-tibilityofgrains thataresuperparamagneticatDCandlowAFfieldswilldecreasestronglyatfrequencies,f>l/τ. Whilemagnetite susceptibility is independentofH0 uptothemaximumACfieldsavailableinmostinstru-ments(afewhundredA/morμT),Clark(1984)andlaterWorm (1991) discovered low-field amplitude depen-dencefor thesusceptibilityofpyrrhotite; this isduetolow-fieldhysteresis,andisaccompaniedbyanincreaseinquadraturesusceptibility.Wormetal.(1993)alsode-termined that pyrrhotite (depending on grain size) ex-hibitsfrequency-dependentsusceptibilityinsufficientlyhighfrequencies(>1kHz),duetoinductionofeddycur-rents.Roomtemperaturedependenceonfieldamplitude(H0)andfrequency(f)canthusbeusedasindicationforcoarse-grainedpyrrhotite(Fig.2).Jackson et al. (1998) observed field amplitude-depen-dence for Ti-magnetite for both in-phase (χ’) and outof phase (χ”) susceptibility, and determined that (a) χ’

Figure2.Wormetal.(1993).Comparisonoffrequencydependence(a,b)inphaseandoutofphasesusceptibilitiesofpyrrhotite(a)andmagnetite(b).c)showscomparisonoffielddependence(f=2kHz)inphasesusceptibilityofpyrrhotiteore,whereSE09haslarger(mm-sized)crystalsthanSE7,andmagnetite.Notethatthefielddependenceincreaseswithgrainsize.

Page 9: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

9

decreases and (b) χ”/χ’ increases with increasing Ti-substitution (Fig. 3). With decreasing spontaneousmagnetization,thesusceptibilitydropsbelowthe“self-demagnetization limit”of1/N(whereN is thedemag-netizingfactor)thatischaracteristicofMDparticlesofhigh-intensitymagneticphases. A useful parameter to quantify frequency-depen-dence,forexampleforenvironmentalapplications,isthepercent frequency-dependenceofmagneticsusceptibil-ityχ,

χfd%=(χlf-χhf)/χlfx100

Whereχlfandχhfarealowandhighfrequencyvalues,re-spectively,thataretypicallyanorderofmagnitudeapart.Thedifferenceχlf-χhfiszeroforSDgrains,andincreasesforSPgrains(e.g.Oldfieldetal.,2009).

ARM Anhysteretic remanentmagnetization (ARM) is ac-quiredinthepresenceofastrongalternatingfield(AF)thatdecayswithtime,andaweaksteady(DC)field.Thesteadyfieldproducesabiasinwhatwouldotherwisebean effective demagnetization process. The role of therandomizingAF isanalogous to thatof temperature in

thermal demagnetization or remanence acquisition,overcominganisotropyenergybarriers in themagneticparticles, and allowing the netmoment of the popula-tiontoequilibratewiththeambientsteadyfield.Thus,despitetheuseofstrongalternatingfields,ARMiscon-sideredtobeaweak-fieldremanence,withanintensitygenerallyproportionaltothebiasfield,typicallyontheorderoftheEarth’sfieldorlittlehigher(~50μT-200μT,or equivalently, 40 - 160A/m), and anorientationgenerallyparalleltoit(intheabsenceofanisotropy,orifappliedalonganeasy-axisofmagnetization).Therapid-ityofARMs(at leastcomparedtoa laboratoryTRM),jointlywith itsmagnetizationeffectivenessandtheca-pabilityofmodernmagnetometerstoapplytheseinline,makesthemextremelyuseful.

Mineral Frequency (Hz)- dependency

Field (HAC)- de-pendency

References

SPgrains χ’, χ” χ’, χ” MullinsandTite(1973)

Pyrrhotite χ’, χ” χ’, χ” Worm(1991);Wormetal.(1993);Volketal.(2018)

Mgt Moskowitzetal.(1998);Ozdemiretal.(2009)

MDmgt χ', χ" χ’, χ” Moskowitzetal.(1998);Ozdemiretal.(2009)

Ti-mgt χ', χ" Moskowitzetal.(1998);Jacksonetal.(1998)

Hmt RockMagneticBestiary

Weak/strong field testsAFdemagnetizationspectra,theLowrieFullerTest Lowrie andFuller (1971) devised a test thatwouldhelpdistinguishbetweenremanencescarriedbySDorMDgrains.Initsoriginalform,theycomparedtheAFdemagnetizationspectraoftheoriginalNRM,oraweakfieldTRM,withthespectraofanIRM.BecausethistestremovestheNRM,analternativepro-tocolwasproposedundertheassumptionthatanARMisanadequateanaloguetotheTRM(Dunlopetal.,1973).The basic idea is that, if theweak-fieldTRM ismoreeasilyAFdemagnetizedthanthestrongfieldSIRM,thesampleisinapredominantlyMDstate.IftheoppositeistruethesampleismoreSD(Fig.4).FollowingJohn-sonetal.(1975),mostapplicationsoftheLowrie-FullertesthavesubstitutedARMforTRMastheweak-fieldre-manence.Ineithercase,thetesthasuncertaintheoreti-calfoundations(e.g.DunlopandÖzdemir1997),andisbasedsolelyonexperimentalobservations.Thetest’sva-

Figure3.In-phasesusceptibilityk’asafunctionofACfieldamplitudeforsynthetictitanomagnetites:a)single-crystalspheres,exhibitingtheself-demagnetizationlimit(N=⅓, k=3SI);b)irregularpolycrystals.

Summaryofknownmagneticsusceptibilityobservationsfordifferentmineralsandgrainsizes:f(Hz)isfrequencydependence;f(H)isamplitudedependence;χ’ is in-phase susceptibility; χ” is out of phase susceptibility.Entries in boldindicatewheretheeffectismostpronounced.

Page 10: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

10

liditywasseriouslyquestionedwhenitwasdiscoveredthatsometrulyMDsamples(>100µm)showedSDlikebehavior(Heideretal.1992).Thiswasattributedtothelowinternalstressofthesesamples.Thus,thetestmaybeusedtodeterminethedomainstate,ifthegrainscon-tainenoughdefectsfordomainwallstobepinned.How-ever,DunlopandÖzdemir (1997)noted that the sameinformationcanberetrievedfromtheshapeoftheTRMdemagnetizationspectraalone.WhileMDgrainsshowanexponentialdecayoftheremanence,aninitialplateauinremanenceat lowAF-fieldscan indicateamoreSDbehavior(Fig.5).

Magnetic Ratios and biparametric plotsBanerjee-KingPlot Ausefulgrain-sizedependentpropertyistheanhys-teretic susceptibility (χARM,unitsofm

3/kg, anddefinedastheratiooftheARMmagnetization,inAm2/kg,tothebiasDCfields, inA/m),which is highest for particlesin the stable SD (SSD) size range, decreasing slowlywithincreasinggrainsizeandrapidlyfallingtozeroforsmallergrains (i.e. towardsSPsizes,EgliandLowrie,002)(Fig.6)). Similarly,thelow-fieldsusceptibility(χLF)ishighestforparticlesizesattheupperendoftheSPrange,anddecreases (not necessarily monotonically) through theSSDandlargersizes(Fig.7aandb). TheBanerjee-Kingplot(Banerjeeetal.,1981;Kingetal.,1982) tries toquantify theconcentrationandef-fective grain size of magnetic carriers, or variationsin the ratio of coarse tofine grain-sizes, by construct-ingabiplotofanhystereticsusceptibility (χARM)versuslow-field susceptibility (χLF) (e.g.,Fig8a).Byplottingthese twoconcentration-andsizedependentpropertiesagainsteachother,itispossibletoobtainanestimateofmagnetiteconcentrationandparticlesize(Fig8b,Kingetal.,1982).Thetechniquehasbeensuccessfullyusedto distinguish climatic/environmental events in lakecoresfromMinnesota(Banerjeeetal.,1981;Kingetal.,1982).

Figure4.NRM/IRMAFdemagnetizationplotsofFulleretal.(1988).Intheleft-handpaneldemagnetizationdataofalteredlavacarryingsecondarymag-netization are shownas a functionofAFfield: other than thefirst step, theIRMoveralldemagnetizesmorereadilythantheNRM,suggestingSD-likebe-havior.Ontheright-handpanelPermianlavasfromNewZealandshowfasterdemagnetizationofanIRM,suggestingMD-likebehavior.

DatafromtheTivaCanyonsamples(IRMQ14.3and16.1)beautifullyillustratetheabilityoftheplottotrackgrain size changes in a sample setwith approximatelyconstant (titano)magnetite concentration (Fig. 9, left),whileatthesametimepointingtosomesignificantca-veats. For one, the calibrationdoes not extendbelow100nm,somanyoftheTivaCanyonsamplesare“offthegrid”.Nanoparticlepopulationsintroduceanambi-guity:withlowratiosofχARM/χLF,theyplotinthelowerrightportionofthediagramalongwithhigherconcentra-tionsofMDparticles.Anothercaveathastodowiththeabsolutesizecalibration;sizedpowdersaredifficult todisperseeffectivelyinanonmagneticmatrix,andinter-particleinteractionsarenotoriousforsuppressingARMacquisition (e.g., Sugiura, 1979; Dunlop & Ozdemir1997§11.4).Asaresult,innon-interactingpopulationssuchastheTivaCanyonsamples,χARMismuchhigherforeachgrainsizethanitwasinthecorrespondingcali-brationsamples(Fig.9,right).

Figure5.Lowrie-Fullertestsforsamplesfrombasalticflows.a)anex-ponentialdecayoftheremanenceistypicalofMDgrains,despitetheIRMdemagnetizingmorerapidlythantheNRMorARM,contrarilytoLowrieandFuller’s(1971)initialassumption;b)aninitialplateau(orhump)isindicativeofSD-likebehavior,asistheIRMdemagnetizingmorerapidlythantheNRMorARM.

Figure6.χARMasafunctionofgrain-sizeforacollectionofdata(EgliandLowrie,2002.)

Page 11: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

11

Figure7.Grain-sizedependentpropertiesintheTivaCanyontuff(Tilletal.,2011);magneticparticlesizeincreasessystem-aticallyupwardfromthebaseoftheflow.Thepeakinχ0(=χLF)markstheSP-SSDtransition;thepeaksinχARMandinMrs/Ms marktheupperendoftheSSDrange.ThesizerangedoesnotincludeMDparticles.

χARM/SIRM Assumingasingle(magnetite)remanencecarrier,theχARM/SIRMratio,whereSIRMisthesaturationisother-malremanentmagnetizationimpartedinafieldof1T,reflects someaspect of theparticle-sizedistributionofthe remanence carriers. Because both of these are re-manentmagnetizations,SPparticleshaveno influenceon the ratio. χARMdecreasesmore rapidly thanSIRMwithincreasinggrainsize,sotheratiodecreasescontinu-ouslyfromSDthroughthePSDandMDsizeranges.Insampleswith awide range of particle sizes, the χARM/SIRMratioisrelatedtotheproportionoffinergrainsin

Figure8.Calibrationdata(left)forsizedmagnetitepowdersdispersedat~1%concentrationinanonmagneticmatrix,andresultantsize-con-centrationgrid(right),fromKingetal1982.

thepopulation(Maher,1988).Highervaluessometimesexceed2x10-3m/A,indicatingdominancebySDgrains(e.g.Oldfieldetal.,2003;EgliandLowrie,2002).

ARM/SIRMversusDCfield Sugiura(1979)utilizedARMacquisition(normalizedtoSIRM)versusDCfieldtoquantifymagneticinterac-tions: PSD particles (sample 6 in Fig. 10) haveARMacquisitionthatismorelinearandplotsatlowervaluesofARM/SIRMthanSDparticles(sample1inFig.10).Sugiura(1979)thereforeproposedtousetheshapeandslopeofthecurvestoquantifymagneticinteractions.Thetechniquewassuccessivelyutilizedbyanumberofauthorsondifferent applications (e.g.DunlopandOz-demir,1997;EgliandLowrie2002;Egli2006onSD;Moskowitzetal.,1993;Tilletal.,2011).

Mrs/MsvsχARM/Mrs Lascuetal.(2010)proposedamethod,whichallowsforthequantificationofseveralmagneticparametersofasedimentatonce.TheyuseMsasaproxyforthetotalferrimagneticconcentrationofasample.Further,simi-larlytotheDayetal.(1977)plot,theirapproachutilizesthe remanenceratio toestimate thedomainstate. TheratioχARM/Mrsissensitivetobothdomainstate(Maher,2007;Egli2006)andtomagnetostaticinteractions(Su-giura1979).TheuseofχARMasawaytoquantifyinter-actionswasexperimentallyvalidated:highlyinteractingsingledomainmagnetiteintheteethofchitons(marinemolluscs),showlowχARM,whilewellseparatedparticlesofsimilarsizehavemuchhighervalues.Finally,there-manence ratio is plotted against the χARM/Mrs ratio.BycreatingsyntheticmixturesofMD,PSD,andSDmag-netitesLascuetal.(2010)wereabletocalculatemixinglinesthatcorrespondwellwiththeexperimentaldata.

OtherBiplots Oldfield et al. (2009) describe other ratios that areusefultoquantifymagneticgrain-sizewithintheSD-SP

Figure9.(left)Banerjee-KingplotoftheTivaCanyontuffsamples(Tilletal.,2011), illustratingtheprogressionfor increasingparticlesizes(smaller thanMD)withapproximatelyconstantconcentration.Symbolcolorsandshapessignifystratigraphicheight,andthusgrainsizeofthemagneticparticles(cffig7).Distinctpeaksoccuralongeachaxisatdomainstatethresholds.(right)thegrain-sizecalibrationlines(diametersinμm)fromtheoriginalstudiesyieldgrossunderestimatesof theSD-PSDsizes,andoverestimatesof theSP-SDsizes,probablybecauseinteractionsdepressedtheχARMvaluesofthecali-brationsamples.

Page 12: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

12

Figure10.Sugiura1979.ARMacquisitionasafunctionofbiasfield (wherePARMdenotesARM(H)/SIRM).Particle interac-tions increase from specimens 1 (SD particles) to 6 (PSD).ARMacquisitionbecomesmorelinearasARMdecreases.size range: χARM/χlf increaseswithmagnetic grain-size,providedthatthemeangrain-sizeiswithinorbelowthestable single domain (SD) size range (i.e. grain diam-eters less than~0.1μm(Maher,1988;Oldfield,1994,2007); χARM/χfd increases with increased grain-sizewithintheSPtoSDsizeranges(Oldfield,1994,2007).Plottingonequantityversustheotherresultsinausefulbi(logarithmic)plotthathelpsconstrainthefinermagnet-icgrains.Figure12showssuchaplotforloess/paleosolssamplesfromtheChineseloessplateau,soils,andlakeand marine sediments containing biogenic magnetite.StableSDgrain-sizesplottotheupperrightandgrain-sizedecreasestowardstheorigin.

χARM/IRM100mTversusχfd% MaherandThompson(1992)utilizedabivariateplottoalsoquantifymagneticgranulometryofloessandpa-

Figure11.Lascuetal.2010modelwithendmemberpopula-tionscomprisedofMD,PSD,SD, interactingSD (ISD)anduniaxial noninteractingSD (UNISD) populations, aswell asmixtures of these endmembers, distinguished in a bivariateplot.

leosolsamples.Ontheordinateaxis,theχARM/IRM100mT ratio increases for decreasinggrain-sizes, fromMD toSD.χfd%increaseswithdecreasinggrain-size,reachingamaximumattheSD/SPthreshold.Notethatthesamplesusedcontainedhematite,andarethereforeoffsetwithre-specttopuremagnetitepowders(whichinturnarelikelyoffsettowardslowerχARM/IRM100mTbecauseofparticlesclumping…)(Fig.13).

MagneticMineralogytests Attemptstodeterminethemagneticmineralogyfromcombinationsofthemagneticpropertiesdescribedhereandinthepreviousinstallmentofthisseriesofarticleson rock-magnetic tests (IRMQ27 (4)) have been per-formedbyqualitativelyevaluatingbiplotsandchoosingappropriate ratios. Following Thompson and Oldfield(1986), Peters and Thompson (1998) plot the ratio ofSIRM/χlf(unitsofA/m)versusacoarseestimateofco-ercivityofremanenceBcr(unitsofmT)(Fig.14a).Theplotdefinessomewhatoverlappingdistributionsfordif-ferentminerals,aroundwhichtheauthorsdrewirregularpolygons inanattempt todefine theoccurrenceof thedifferent mineralogies (not shown). To better separatethe distribution of pyrrhotite from those ofmagnetite,titanomagnetiteandgreigite,theyplotSIRM/χlfversusARM40mT/SARM(wheretheSARMwasacquiredin99mTfields,andbothARMsusingabiasfieldof0.1mT).TheARMimpartedover40mTwaschosenbecauseitwas empirically determined by the authors that it bestseparatedthetwomineralgroups(Fig.14b).Likewise,theyplotteda100mTbackfieldIRMoverSIRMration(IRM-100mT/SIRM) versus ARM40mT/SARM to furtherdistinguishgreigitefrommagnetite,titanomagnetiteandpyrrhotite(Fig.14c).Peters and Dekkers (2003) subsequently extended the

Figure12.Bi-logarithmicplotofχARM/χlfversusχARM/χfd. Both ratios increase fromSP to stableSDgrain-sizes (Oldfield etal.,2009).

Page 13: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

13

Figure13.χARM/IRM100mTratioversusχfd%(MaherandThompson,1992)forsamplesfromtheChineseLoessPlateau(containingmagnetiteandhematite),andpuremagnetitepowdersofdifferentsizes.

workofThompsonandOldfield(1986),andprovidingadditionaldata fromothermagneticminerals (goethiteandmaghemite) they regenerated the plot of SIRM/χlf(which they refer to as σRS, units ofA/m) versus co-ercivityofremanence(Bcr,unitsofmT).Forthelatter,however,theyusedthemeancoercivitydistributionde-rived from theunmixingof an IRMacquisitioncurve,which they refer to as (B0)CR’, insteadof theBcr deter-minedfromaback-fieldcurve(Fig.15). Inafutureinstallmentwewillpresentrock-magnetictestsperformedasafunctionoftemperature.Weleaveyou with a summary table of the symbols and the SIunits ofmeasure for the low-fieldmagnetic propertiesdescribedinthisarticle(onthenextpage).

ReferencesBanerjee, S.K., King, J.W., and J. Marvin (1981).A rapid

method for magnetic granulometry with applications toenvironmentalstudies.Geophys.Res.Lett.,8,4,333-336.

Cisowski,S.,J.Dunn,M.Fuller,andP.J.Wasilewski(1990).NRM:IRM(s)demagnetizationplotsofintrusiverocksandtheoriginofthetheirNRM,Tectonophys.,184,35–54.

Clark, D.A. (1984). Hysteresis properties of sized dispersedmonoclinicpyrrhotitegrains.Geophys.Res.Lett.,11,173-176.

Day,R.,Fuller,M.,andV.A.Schmidt,V.A.(1977).Hysteresispropertiesoftitanomagnetites:Grain-sizeandcomposition-aldependence.Phys.EarthPlanet.Int.,13,260-267.

Dunlop,D.J.(1973).Superparamagneticandsingle-domain-threshold sizes inmagnetite. J.Geophys.Res., 78, 7602-7613.

Dunlop,D.J.andÖ.Özdemir(1997).RockMagnetism:Fun-damentalsandfrontiers.CambridgeStudiesinMagnetism,CambridgeUniversityPress,Cambridge,573pp.

Egli, R. (2006).Theoretical considerations on the anhys-teretic remanent magnetization of interacting particleswith uniaxial anisotropy, J.Geophys.Res., 111,B12S18,doi:10.1029/2006JB004577.

Egli, R. (2009). Magnetic susceptibility measurements as afunctionoftemeperatureandfreqeuncyI:inversiontheory.Geophys.J.Int.(2009)177,395–420.

Egli,R.,andW.Lowrie(2002).Anhystereticremanentmag-netizationoffinemagneticparticles,J.Geophys.Res.,107,

Figure14. a)SIRM/χLF versus coercivityof remanenceBcrfor a collection ofmagneticminerals ; b) SIRM/χLF versusARM40mT/SARMempiricallydeterminedtoseparatethedistri-butionofpyrrhotitefromthoseofmagnetite, titanomagnetiteandgreigite;c)ARM40mT/SARMtofurtherdistinguishgreigitefrom magnetite, titanomagnetite and pyrrhotite (Peters andThompson,1998).

Figure15.SIRM/χLFversuscoercivityofremanenceBcrforacollectionofmagneticminerals(PetersandDekkers2003).

A)

B)

C)

Page 14: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

14

B10,doi:10.1029/2001JB000671.Fuller,M.,S.Cisowski,M.Hart,R.Haston,andE.Schmidtke

(1988).NRM:IRM(s)demagnetizationplots;anaidtotheinterpretationofnaturalremanentmagnetization,Geophys.Res.Lett.,15,518–521

Fuller,M.,T.Kidane,andJ.Ali(2002).AFdemagnetizationcharacteristics of NRM, compared with anhysteretic andsaturation isothermal remanence:anaid in the interpreta-tionofNRM,Phys.Chem.Earth,27(25-31),1169-1177

Heider,F.,Dunlop,D.J.,aandH.C.Soffel (1992).Low-tem-perature and alternating field demagnetization of satura-tionremanenceandthermoremanenceinmagnetitegrains(0.037umto5mm).J.Geophys.Res.,97,9371-9381.

Jackson,M.J.,Moskowitz,B.M.,Rosenbaum,J.,andC.Kis-sel(1998).Field-dependenceofACsusceptibilityintitano-magnetites.Earth.Planet.Sci.Lett.,157,129-139.

Johnson,H.P.Lowrie,W., andD.V.Kent (1975).Stabilityofanhysteretic remanent magnetization in fine and coarsemagnetiteandmaghemiteparticles.Geophys.J.Roy.As-tron.Soc.,41,1-10.

King,J.W.,Banerjee,S.K.,Marvin,J.,andÖ.Özdemir(1983).Acomparisonofdifferentmagneticmethodsfordetermin-ing the relative grain size of magnetite in natural soils:someresultsfromlakesediments.Earth.Planet.Sci.Lett.,59,404-419.

Lascu,I.,Banerjee,S.K.,andT.S.Berquo(2010).Quantifyingthe concentration of ferrimagnetic particles in sedimentsusing rockmagneticmethods.Geochem.,Geophys,Geo-syst.,11,Q08Z19,doi:10.1029/2010GC003182.

Lowrie,W., and M. Fuller (1971). On the alternating fielddemagnetization characteristics of multidomain thermo-remanentmagnetizationinmagnetite.J.Geophys.Res.,76,6339-6349.

Maher, B.A. (1988).Magnetic properties of some syntheticsub-micronmagnetites.Geophys.J.Roy.Astr.Soc.94,83-96.

Maher, B.A. (2007). Environmental magnetism and climatechange.ContemporaryPhysics,48,5,247-274.

MaherB.A,ThompsonR(1992)PaleoclimaticsignificanceofthemineralmagneticrecordoftheChineseloessandpaleo-sols.QuaternaryResearch37:155-170

Maher,B.A.,ThompsonR., andM.W.Hounslow(1999).InQuaternaryClimates,EnvironmentsandMagnetism,edited

byB.A.MaherandR.Thompson (CambridgeUniversityPress,Cambridge,1999).

Moskowitz,B.M.,R.B.Frankel,andD.A.Bazylinski(1993).Rockmagneticcriteriaforthedetectionofbiogenicmag-netite,EarthPlanet.Sci.Lett.,120,283–300,doi:10.1016/0012-821X(93)90245-5.

Moskowitz,B.M.,Jackson,M.J.,andKissel,C.(1998).Low-temperaturemagnetic behavior of titanomagnetites.EarthPlanet.Sci.Lett.,157,141–149.

Mullins, C.E., and M.S. Tite (1973), Magnetic viscosity,quadrature susceptibility, and frequency dependence ofsusceptibilityinsingle-domainassembliesofmagnetiteandmaghemite.J.Geophys.Res.,78,804–809.

Néel,L.(1949).Theoriedutrainagemagnetiquedesferromag-netiquesengrainsfinsavecapplicationsauxterrescuites.Ann.Peophys.,5,99-136.

Oldfield,F.(1994).Towardthediscriminationoffine-grainedferrimagnetsbymagneticmeasurementsinlakeandnear-shoremarinesediments.J.Geophys.Res.,99,9045–9050.

Oldfield, F. (2007). Sources of fine-grainedmagneticminer-alsinsediments:aproblemrevisited.Holocene,17,1265–1271.

Oldfield,F.,Asioli,A.,Accorsi,C.A.,Mercuri,A.M.,Juggins,S.,Langone,L.,Rolph,T.,Trincardi,F.,Wolff,G.,Gibbs,Z.,Vigliotti,L.,Frignani,M.,vanderPost,K.andBranch,N.(2003).AhighresolutionlateHolocenepalaeo-environ-mentalrecordfromthecentralAdriaticSea.Quatern.Sci.Rev.,22,319–342.

Oldfield,F.,Hao,Q.,Bloemendal,J.,Gibbs-Eggar,Z,Patil,S.,Guo,Z.(2009).Linksbetweenbulksedimentparticlesizeandmagneticgrain-size:generalobservationsandimplica-tions forChinese loessstudies.Sedimentology,56,2091-2106,doi:10.1111/j.1365-3091.2009.01071.x.

Özdemir,Ö.,Moskowitz,B.,andJackson,M.(2009).Frequen-cy andfield dependent susceptibility ofmagnetite at lowtemperature.EarthPlanetsSpace,61,125-131.

Peters,C.,andR.Thompson(1998),Magneticidentificationofselectednaturalironoxidesandsulphides,J.Magn.Magn.Mater.,183(3),365-374

Peters, C., and M. J. Dekkers (2003), Selected room tem-peraturemagneticparametersasafunctionofmineralogy,concentration and grain size, Physics and Chemistry ofthe Earth, PartsA/B/C, 28(16), 659-667, doi: https://doi.

Property UnitsVolumesusceptibility,k Dimensionless(typicallyexpressedasμSI=

10-6SI)Masssusceptibility, χ m3/kgIn-phasesusceptibility,k’ or χ’ μSIorm3/kgOutofphasesusceptibility,k” or χ” μSIorm3/kgFrequencydependentsusceptibility,kfd or χfd μSIorm3/kgPercentfrequencydependentsusceptibility,kfd% or χfd%

Dimensionless

Lowfrequencysusceptibility,klf or χlf μSIorm3/kgHighfrequencysusceptibility,khf or χhf μSIorm3/kgLowfieldsusceptibility,kLF or χLF μSIorm3/kgHighfieldsusceptibility,kHF or χHF μSIorm3/kgAnhystereticRemanentMagnetization,ARM Am2/kgSusceptibilityofARM,χARM μSIorm3/kgSummaryofmagneticproperties,symbolsandunitscoveredinthisarticle.

Page 15: Quarterly The IRM Current Articles 2 ISSN: 2152-1972 · A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature

15

Quarterly The IRM QuarterlyispublishedfourtimesayearbythestaffoftheIRM.Ifyouorsomeoneyouknowwouldliketobeonourmailinglist,ifyouhavesomethingyouwouldliketocontribute(e.g.,titlesplusabstractsofpapersinpress),orifyouhaveanysuggestionstoimprovethenewsletter,pleasenotifytheeditor:

Dario BilardelloInstituteforRockMagnetismDepartmentofEarthSciencesUniversityofMinnesota150JohnTTateHall116ChurchStreetSEMinneapolis,MN55455-0128phone:(612)624-5274e-mail:[email protected]

The UofMiscommittedtothepolicythatallpeopleshallhaveequalaccesstoitsprograms,facilities,andemploymentwithoutregardtorace,religion,color,sex,nationalorigin,handicap,age,veteranstatus,orsexualorientation.

The Institute for Rock Magnetismisdedi-catedtoprovidingstate-of-the-artfacilitiesandtechnicalexpertisefreeofchargetoanyinterestedresearcherwhoappliesandisac-ceptedasaVisitingFellow.Shortproposalsareacceptedsemi-annuallyinspringandfallforworktobedoneina10-dayperiodduringthefollowinghalfyear.Shorter,lessformalvisitsarearrangedonanindividualbasisthroughtheFacilitiesManager. The IRMstaffconsistsofSubir Baner-jee,Professor/FoundingDirector;Bruce Moskowitz,Professor/Director;Joshua Feinberg,AssistantProfessor/AssociateDirector;Mike Jackson, Peat Sølheid andDario Bilardello,StaffScientists. FundingfortheIRMisprovidedbytheNational Science Foundation, the W. M. Keck Foundation,andthe University of Minnesota.

The IRM

org/10.1016/S1474-7065(03)00120-7.Shcherbakov,V.P.,andK.Fabian(2005).Onthedetermination

ofmagneticgrain-sizedistributionsof superparamagneticparticleensemblesusingthefrequencydependenceofsus-ceptibilityatdifferenttemperatures.Geophys.J.Int.,162,736–746.

Stacey, F.D., and S.K. Banerjee (1974).The Physical Prin-ciplesofRockMagnetism.Elsevier,Amsterdam,195pp.

Sugiura, N. (1979). ARM, TRM ad magnetic interactions:concentrationdependence.EarthPlanet.Sci.Lett.,42,451-455.

Thompson,R.,andF.Oldfield(1986),EnvironmentalMagne-tism,GeorgeAllen&Unwin,London.

Till, J. L.,M. J. Jackson, J. G. Rosenbaum, and P. Solheid(2011).Magneticproperties inanashflow tuffwithcon-tinuousgrain sizevariation:Anatural reference formag-neticparticlegranulometry,Geochem.Geophys.Geosyst.,12,Q07Z26,doi:10.1029/2011GC003648.

Volk,M.W.R.,McCalla,E.,Voigt,B.,Manno,M.,Leighton,C.,&Feinberg,J.M.(2018).ChangesinPhysicalProper-tiesof4CPyrrhotite(Fe7S8)acrossthe32KBesnusTran-sition.AmericanMineralogist,103.https://doi.org/10.2138/am-2018-6514

Worm, H-U., Clark, D, andM.J. Dekkers (1993).Magneticsusceptibilityofpyrrhotite:Grainsize,fieldandfrequencydependence.Geophys.J.Int.,114,127-137.

Worm,H-U. (1991).Multidomain susceptibility and anoma-louslystronglowfielddependenceofinducedmagnetiza-tioninpyrrhotite.Phys.Earth.Panet.Int.,69,112-118.