quantum nucleation of charge & flux solitons

28
Quantum Nucleation of Charge & Flux Solitons John H. Miller, Jr. A. I. Wijesinghe, Z. Tang, & A. M. Guloy Dept. of Physics, Dept. of Chemistry, & Texas Center for Superconductivity University of Houston [email protected] ECRYS - 2011 August 16, 2011

Upload: lefty

Post on 24-Feb-2016

77 views

Category:

Documents


0 download

DESCRIPTION

Quantum Nucleation of Charge & Flux Solitons. John H. Miller, Jr. A. I. Wijesinghe , Z. Tang, & A. M. Guloy Dept. of Physics, Dept. of Chemistry, & Texas Center for Superconductivity University of Houston [email protected] ECRYS - 2011 August 16, 2011. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quantum Nucleation of Charge & Flux  Solitons

Quantum Nucleation of Charge & Flux Solitons

John H. Miller, Jr. A. I. Wijesinghe, Z. Tang, & A. M. Guloy

Dept. of Physics, Dept. of Chemistry, &Texas Center for Superconductivity

University of Houston

[email protected]

ECRYS - 2011August 16, 2011

Page 2: Quantum Nucleation of Charge & Flux  Solitons

Tunneling of BEC Solitons (Hulet group)

2

Bright matter wave solitons

105 7Li atoms x 13,000me

M > 109 me

Macroscopic wavefunctions tunnel through opticalbarrier (w/ transmitted & reflected components).

Tunneling probability:

Agrees w/ experiment only if m & V taken to be single atom quantities.

Hybrid between Josephson tunneling & MQT. BEC soliton = quantum fluid.

Quantum fluid: Each particle delocalized over l > interparticle spacing.CDW = quantum fluid: Each e- delocalized over long distances.

Page 3: Quantum Nucleation of Charge & Flux  Solitons

CDW dielectric response: Classical predictions vs. experiment

3

1. Random pinning model: Littlewood PR B 33 6694 (1986). 2. CF: Coppersmith & Fisher PR A 38 6338 (1988). 3. NM: Narayan & Middleton PR B 49, 244 (1994).4. ZG: Zettl & Grüner PR B 29 755 (1984);

WMG: Wu, Mihaly, & Grüner Solid State Commun. 55 663 (1985).

Other ac responses flat below threshold.

JHM et al. PR B 31 5229 (1985).

Page 4: Quantum Nucleation of Charge & Flux  Solitons

Nucleation of Charge of Flux Soliton Pairs

Q0 = 2Nerc, internal field

JHM, Ordóñez, Prodan PRL 84 1555 (2000);

JHM et al. J. Phys. A 36 9209 (2003); S. Coleman, Ann. Phys. 101, 239 (1976).

Magnetic blockade effect for Josephson vortex pair nucleation:

= Coulomb blockade threshold.

ET Coulomb Blockade << ET Classical

Energy difference:

Widom & Srivastava, Phys. Lett. 114A, 337 (1986).

Page 5: Quantum Nucleation of Charge & Flux  Solitons

ET (Coulomb blockade) increases w/ nimpurity

5

Coulomb blockade threshold field: ET = Q0/2e A = eNrc /e A Grüner empirical relation emerges naturally!

e ET = ercnch (nch = N/A, rc = condensate fraction)

G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).

Derived relation for classical depinning field Ecl (Grüner):

e Ecl = 4percnch

ET (Coulomb blockade) = Ecl /4p

Expect ET (C.B.) ni

2 for weak pinning.

Page 6: Quantum Nucleation of Charge & Flux  Solitons

Time Correlated Soliton Tunneling

6

‘Vacuum angle’:

Pinning & electrostatic energy (per chain):

JHM, Ordóñez & Prodan PRL 84 1555 (2000).JHM, Cárdenas, et al. J. Phys. A 36 9209 (2003); S. Coleman, Ann. Phys. 101, 239

(1976).

Charging energy:

Tunneling (‘false vacuum’ decay) when q > p (or q – 2pn > p).

Page 7: Quantum Nucleation of Charge & Flux  Solitons

7

Explains flat dielectric response

uE/up = 1

uE/up = 0.6

uE/up = 0.2

uE/up = 0.015

JHM, Ordóñez, & Prodan PRL 84 1555 (2000).

Ross, Wang, & Slichter PRL 56 663 (1986).

t = uE/up

Page 8: Quantum Nucleation of Charge & Flux  Solitons

8

h/2e oscillations in CDW magnetoconductance

Latyshev et al, PRL 78, 919 (1997).

NbSe3 with columnar defects h/2e quantum interference in CDW rings.

Tsubota et al, Physica B 404 416–418 (2009).(Tanda group, Hokkaido U., Sapporo, Japan)

Contrasts w/ h/2Ne prediction (e.g. Bogachek et al, PRB 42, 7614 (1990)).

Page 9: Quantum Nucleation of Charge & Flux  Solitons

9

Proposed model to simulate DW dynamics

Analogous to time-correlated single-electron tunneling (Averin & Likharev, J. Low T. Phys. 62 345 (1986))

Defining: & yields:

Page 10: Quantum Nucleation of Charge & Flux  Solitons

Use of probability amplitudes, TDSE

10

Motivated by Feynman Lectures, vol. III treatment of Josephson junction.

Introduce field-dependent tunneling Hamiltonian matrix element:

Amplitude for density wave to be on branch n:

Time-dependent Schrödinger equation = “classical” Eq. of motion.

[idn]

Page 11: Quantum Nucleation of Charge & Flux  Solitons

Probability amplitudes, TDSE: Results

11

Page 12: Quantum Nucleation of Charge & Flux  Solitons

Probability amplitudes, TDSE: Results (continued)

12Solid lines – theory; Dashed Lines - experiment

Experimental data –McCarten group, PRB2000.

9.90 mA

10.89 mA

11.49 mA

11.88 mA

Page 13: Quantum Nucleation of Charge & Flux  Solitons

Probability amplitudes, TDSE: Results (continued)

13

Dotted lines:

Jcdw ~ [E ETm]exp[E0/E]

Thorne, Miller, et al, PRL 55, 1006 (1985)

Page 14: Quantum Nucleation of Charge & Flux  Solitons

TDSE: Theory vs. Experiment on dV/dI

14

NbSe3

Page 15: Quantum Nucleation of Charge & Flux  Solitons

Phase Diagram – Soliton Nucleation vs. Classical Depinning

15

Blue bronze data (Mihaly et al)

Page 16: Quantum Nucleation of Charge & Flux  Solitons

h/2e Aharonov-Bohm oscillations in CDW rings

16

Page 17: Quantum Nucleation of Charge & Flux  Solitons

17

Time-varying vector potential Modulates phase of wavefunction

TaS3 – 185 K

JHM ... Bardeen, PRL 51, 1592 (1983); PRB 31, 5229 (1985); JHM, PhD dissertation (1985).

Nonlinear mixing vs. Photon assisted tunneling theory

Page 18: Quantum Nucleation of Charge & Flux  Solitons

“Bells & whistles:” Model with multiple domains

18

Page 19: Quantum Nucleation of Charge & Flux  Solitons

Inclusion of nonlinear terms:

19

g’ = .001 g’ = .01 g’ = .02

Page 20: Quantum Nucleation of Charge & Flux  Solitons

20

Alternative approach: Use of Probabilities

Let p = probability f tunnels from branch n to n+1.

Then:

-

Page 21: Quantum Nucleation of Charge & Flux  Solitons

Fixed time interval (non-integer # of cycles) used when averaging voltage

21

Theory Experiment (Cornell group)

Page 22: Quantum Nucleation of Charge & Flux  Solitons

Thickness dependence of Ic in YBCO coated conductors

22

Pair creation current, d > l: Effective 2D penetration length:

Page 23: Quantum Nucleation of Charge & Flux  Solitons

V - I curve of YBCO grain boundary junction

23

Data from R. D. Redwing et al., APL 75, 3171 (1999).

Classical RSJ model:

Quantum Simulations(solid lines)

86 K

82.5K

77.2K

75K

70K

Page 24: Quantum Nucleation of Charge & Flux  Solitons

Superconducting iron pnictide bi-crystal junction

24

Data from X. Zhang et al., APL 95, 062510 (2009).

4.2 K

Page 25: Quantum Nucleation of Charge & Flux  Solitons

Broader implications of model

25

Spontaneous CP violation: “q = p” instability e.g. D. Boer, J. K. Boomsma, PRD 78, 054027 (2008). Michel H. G. Tytgat, PRD 61, 114009 (2000).

q = p instabilities have also been proposed for: - Quantum Hall effect - Topological Insulators

Quantum cosmology:

Quantum creation of universe(s) Phase transitions in the early universeTunneling of universe small ( 0) cosmological constant

e.g. P. J. Steinhardt, N. Turok, Science 312, 1180 (2006).

Page 26: Quantum Nucleation of Charge & Flux  Solitons

Concluding Remarks

26

Quantum theory is the most ubiquitous, universally applicable theory known to man.

The laws of quantum physics govern every system of particles in the universe, & probably the universe as a whole.

One of those laws (Murray Gell-Mann’s totalitarian principle) is:

“Everything not forbidden is compulsory.”

Page 27: Quantum Nucleation of Charge & Flux  Solitons

Acknowledgements

27

Previous collaborators: John Tucker, John Bardeen, UIUCDocumentary, book:http://1m1f.com/video/OyV8qSwGUHU/Spark-of-Genius-The-Story-of-John-Bardeen-at-the-University-of-Illinois.html

Articles about and by John Bardeen:David Pines, Physics Today, April 1992.Proc. Am. Phil. Soc. 153, 287 (2009).John Bardeen, Physics Today, December 1990.

Previous collaborators (continued):Emil Prodan (currently at Yeshiva U.), Carlos Ordonez (UH), John McCarten, Amitesh Maiti

Current collaborators (UH): Asanga I. Wijesinghe, Zhongjia Tang, Arnold M. Guloy

Funding: NIH, Texas: Texas Ctr. for Superconductivity

Page 28: Quantum Nucleation of Charge & Flux  Solitons

August 16, 2011 28ECRYS [email protected]

Thank you!