quantum memory with 3-level atoms - ifraf · arc centre of excellence for quantum atom optics the...

65
ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms G. Hétet, M Hosseini, B. M. Sparkes, J. J. Longdell, M. J. Sellars, M. T. L Hsu, P. K Lam and B. C Buchler S C T P O I QUA M U T N A U N Research School of Physical Sciences The Australian National University Canberra, Australia

Upload: vuongthien

Post on 01-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

ARC Centre of Excellence for Quantum Atom OpticsThe Australian National University

Canberra, Australia

Quantum memorywith 3-level atoms

G. Hétet, M Hosseini, B. M. Sparkes, J. J. Longdell, M. J. Sellars, M. T. L Hsu, P. K Lam and B. C Buchler

SCTPO IQ U A MUTN

A UN

Research School of Physical SciencesThe Australian National University

Canberra, Australia

Page 2: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Quantum Memory

Suppose you have a quantum state of light......

2

Page 3: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Quantum Memory

Squeezed state

Schrödinger cat state

Suppose you have a quantum state of light......

2

Page 4: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Quantum Memory

Squeezed state

Schrödinger cat state

Suppose you have a quantum state of light......

You can only store it in a memory that does not measure the state.

2

Page 5: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Uses:Quantum cryptographyQuantum computing

Quantum Memory

Squeezed state

Schrödinger cat state

Suppose you have a quantum state of light......

You can only store it in a memory that does not measure the state.

2

Page 6: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Quantum Memory Overview

• Electromagnetically induced transparency (EIT)

• Delay of squeezed light & entanglement with EIT

• Photon echos and Gradient Echo Memory

MahdiHosseini

BenSparkes

GabrielHétet

Ping KoyLam

JevonLongdell(Otago)

MattSellars(SSS Group, ANU)

3

Page 7: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Quantum Memory Overview

• Electromagnetically induced transparency (EIT)

• Delay of squeezed light & entanglement with EIT

• Photon echos and Gradient Echo Memory

MahdiHosseini

BenSparkes

GabrielHétet

Ping KoyLam

JevonLongdell(Otago)

MattSellars(SSS Group, ANU)

3

Page 8: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

1

2€

3

ˆ E (z,t)

EIT in a 3-level atom

• The field Ωc is used to control the transmission of E. *

•There is no noise added to E by EIT provided population shuffling is negligible**.

**Hetet et al. Phys. Rev. A 77 012323 (2008)* Ex : Harris , Phys. Rev. Lett. 64 1107 (1990)

!1.0 !0.5 0.0 0.5 1.0!1.0

!0.5

0.0

0.5

1.0

!1.0 !0.5 0.0 0.5 1.00.0

0.5

1.0

1.5

2.0 Amplitude

Phase

4

Page 9: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

1

2€

3

ˆ E (z,t)

Ω c ( t )

EIT in a 3-level atom

• The field Ωc is used to control the transmission of E. *

•There is no noise added to E by EIT provided population shuffling is negligible**.

**Hetet et al. Phys. Rev. A 77 012323 (2008)* Ex : Harris , Phys. Rev. Lett. 64 1107 (1990)

!1.0 !0.5 0.0 0.5 1.0!1.0

!0.5

0.0

0.5

1.0

!1.0 !0.5 0.0 0.5 1.00.0

0.5

1.0

1.5

2.0 Amplitude

Phase

4

Page 10: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

1

2€

3

ˆ E (z,t)

Ω c ( t )

EIT in a 3-level atom

• The field Ωc is used to control the transmission of E. *

•There is no noise added to E by EIT provided population shuffling is negligible**.

**Hetet et al. Phys. Rev. A 77 012323 (2008)* Ex : Harris , Phys. Rev. Lett. 64 1107 (1990)

!1.0 !0.5 0.0 0.5 1.0!1.0

!0.5

0.0

0.5

1.0

!1.0 !0.5 0.0 0.5 1.00.0

0.5

1.0

1.5

2.0 Amplitude

Phase

4

Page 11: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

∂∂t− vg (t)

∂∂z

ψ(z,t) = 0

ψ = a(t)Ε + b(t)α

The EIT normal mode

• The normal mode (polariton) is a mixture of atomic polarisation and optical field.

• It’s evolution can be manipulated via the control beam.

Fleischhauer and Lukin, PRL 84 5094

5

Page 12: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

∂∂t− vg (t)

∂∂z

ψ(z,t) = 0

ψ = a(t)Ε + b(t)α

The EIT normal mode

• The normal mode (polariton) is a mixture of atomic polarisation and optical field.

• It’s evolution can be manipulated via the control beam.

Fleischhauer and Lukin, PRL 84 5094

5

Page 13: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

∂∂t− vg (t)

∂∂z

ψ(z,t) = 0

ψ = a(t)Ε + b(t)α

The EIT normal mode

• The normal mode (polariton) is a mixture of atomic polarisation and optical field.

• It’s evolution can be manipulated via the control beam.

Fleischhauer and Lukin, PRL 84 5094

5

Page 14: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Squeezed state delay in EIT.

Hetet et al. Opt Express 16 pp. 7369 (2008)

Squeezed source at 795nm and EIT in warm 87Rb vapour. See also:Appel et al. PRL 100, 093602 (2008)Honda et al., PRL 100, 093601 (2008),

6

Page 15: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

X̂+

X̂!

!X̂+

!X̂!

Amplitude quadrature uncertainty

Phase quadrature uncertainty

The ball represents the noise over some frequency band. The stick represents the coherent amplitude at

the carrier frequency.

Squeezed states

7

Page 16: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Bright minimum uncertainty state

X̂+

X̂!

Squeezed states

8

Page 17: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

X̂+

X̂!

Bright phase squeezed state

Squeezed states

8

Page 18: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

X̂+

X̂!

Bright amplitude squeezed state

Squeezed states

8

Page 19: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

X̂+

X̂!

Bright amplitude squeezed state

Squeezed states

9

Page 20: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

X̂+

X̂!

Vacuum squeezed state

Squeezed states

9

Page 21: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

X̂+

X̂!

Vacuum squeezed state

Vacuum state

Squeezed states

9

Page 22: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Squeezing transmission through EIT

Shot Noise

Hetet et al. Opt Express 16 pp. 7369 (2008)10

Page 23: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Squeezing transmission through EIT

Shot Noise

Squeezing before EIT(~3.2dB)

Hetet et al. Opt Express 16 pp. 7369 (2008)10

Page 24: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Squeezing transmission through EIT

Shot Noise

Squeezing before EIT(~3.2dB)

Squeezing after EIT(~2dB)

Hetet et al. Opt Express 16 pp. 7369 (2008)10

Page 25: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Delay of Entanglement through EIT

Hetet et al. Opt Express 16 pp. 7369 (2008)11

Page 26: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Delay of Entanglement through EIT

Hetet et al. Opt Express 16 pp. 7369 (2008)11

Page 27: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Delay of Entanglement through EIT

Amplitude Phase

Hetet et al. Opt Express 16 pp. 7369 (2008)12

Page 28: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Delay of Entanglement through EIT

Inseperability before EIT: 0.65±0.01

Amplitude Phase

Hetet et al. Opt Express 16 pp. 7369 (2008)12

Page 29: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Delay of Entanglement through EIT

Inseperability before EIT: 0.65±0.01

Inseperability after EIT: 0.71±0.01

Amplitude Phase

Hetet et al. Opt Express 16 pp. 7369 (2008)12

Page 30: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Delay of Entanglement through EIT

Inseperability before EIT: 0.65±0.01

Inseperability after EIT: 0.71±0.01

Amplitude Phase

Hetet et al. Opt Express 16 pp. 7369 (2008)12

Page 31: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Overview

• Electromagnetically induced transparency (EIT)

• Delay of squeezed light & entanglement with EIT

• Photon echoes and the Gradient Echo Memory (GEM)

13

Page 32: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Overview

• Electromagnetically induced transparency (EIT)

• Delay of squeezed light & entanglement with EIT

• Photon echoes and the Gradient Echo Memory (GEM)

13

Page 33: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Photon echoes

The art of inverting absorption

Excitation on a Bloch Sphere

14

Page 34: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Photon echoes

The art of inverting absorption

Excitation on a Bloch Sphere Coherent re-emission?

14

Page 35: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Photon echoes

Kurnit et al, Phys .Rev. Lett. 13, 567 (1964), T. W. Mossberg, Opt. Lett. 7, 77, (1982), C. Sjaarda Cornish et al. Opt Lett 25,1276 (2000)

Δ−Δ

Controlled Reversible Inhomogeneous broadening

Flipping an energy shift (eg Stark shift) reverses evolution of ensemble

15

Page 36: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Photon echoes

Kurnit et al, Phys .Rev. Lett. 13, 567 (1964), T. W. Mossberg, Opt. Lett. 7, 77, (1982), C. Sjaarda Cornish et al. Opt Lett 25,1276 (2000)

Δ−Δ

Controlled Reversible Inhomogeneous broadening

Flipping an energy shift (eg Stark shift) reverses evolution of ensemble

15

Page 37: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

•Two levels and forward direction.•Linear spatial chirp of the atomic frequency

Gradient Echo Memory (GEM)

Hetet et al. Phys. Rev. Lett. 100 023601 (2008), Hétet et al., PRL 101, 203601 (2008).

16

Page 38: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

∂∂zE(z,t) = iNα(z,t)

Time domain

The GEM normal mode

∂∂tα(z,t) = iη(t)zα(z,t) + igE(z,t)

Optical field

Atomic density

Atomic polarisation

Stark shift slope

G. Hétet et al., PRL 101, 203601 (2008)

Atom-light coupling

17

Page 39: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

∂∂zE(z,t) = iNα(z,t)

Time domain

The GEM normal mode

∂∂tα(z,t) = iη(t)zα(z,t) + igE(z,t)

Optical field

Atomic density

Atomic polarisation

Stark shift slope

Spatial Fourier domain

∂∂t−η(t) ∂

∂k+ iϕk

ψ(k, t) = 0

ψ = a'(t)Ε + b'(t)α

F

Normal mode

Propagator

Like the EIT polariton, this a normal mode of light and

atoms, but now in k-space!G. Hétet et al., PRL 101, 203601 (2008)

Atom-light coupling

17

Page 40: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Gaussian light pulse

Light

Atomic Polarisation

Normal mode

Evolution in space and time

G. Hétet et al., PRL 101, 203601 (2008).18

Page 41: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Gaussian light pulse

Light

Atomic Polarisation

Normal mode

Evolution in space and time

G. Hétet et al., PRL 101, 203601 (2008).18

Page 42: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Gaussian light pulse

Light

Atomic Polarisation

Normal mode

Evolution in space and time

G. Hétet et al., PRL 101, 203601 (2008).18

Page 43: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

k-space GEM normal mode shows temporal profile

Real-space EIT normal mode shows temporal profile

GEM and EIT normal modes

G. Hétet et al., PRL 101, 203601 (2008).19

Page 44: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Evolution in space and time

E-field

G. Hétet et al., PRL 101, 203601 (2008).20

Page 45: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Evolution in space and time

E-field

Time reversal of pulse

G. Hétet et al., PRL 101, 203601 (2008).20

Page 46: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Evolution in space and time

E-field

Atomic Polarisation

Time reversal of pulse

G. Hétet et al., PRL 101, 203601 (2008).20

Page 47: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Evolution in space and time

E-field

Atomic Polarisation

Pulse stored as Fourier transform

Time reversal of pulse

G. Hétet et al., PRL 101, 203601 (2008).20

Page 48: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Modulated pulse storage movie

|E|

|α|

21

Page 49: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Modulated pulse storage movie

|E|

|α|

21

Page 50: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Memory Efficiency ~ 15 %(Now up to 45%)

Experimental Results in a solid state system

Hetet et al. Phys. Rev. Lett. 100 023601 (2008)

Gradient Echo Memory (GEM)

Experiment by Longdell, Alexander and Sellars, RSPhysSE, ANU

22

Page 51: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

Ωc ( t )

1

2€

3

ˆ E (z,t)

3-level GEM

1

2€

ˆ E (z,t)

•Previously, GEM used a 2-level optical transition.

•Raman coupling of a 3-level system can be used to form a quasi 2-level atom.

•The dynamics of the control beam are (in theory) unimportant.

•Ground states can be very long lived.

G. Hétet et al., Opt. Lett. 33, 2323 (2008)23

Page 52: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

3-level GEM protocol

G. Hétet et al., Opt. Lett. 33, 2323 (2008)24

Page 53: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Les Houches 2009

3-level GEM protocol

Detunedcontrol beam

As before but now the control beam is used to form 2-level atoms with coherence times of the ground states.

Detunedcontrol beam

G. Hétet et al., Opt. Lett. 33, 2323 (2008)24

Page 54: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Experiment with Rb vapour

ΩcE^

Coil design from Simon Bell, University of Melbourne

Page 55: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Experiment with Rb vapour

Zeeman gradient controlled using B-fields

ΩcE^

Coil design from Simon Bell, University of Melbourne

Page 56: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Experiment with Rb vapour

Zeeman gradient controlled using B-fields

ΩcE^

Coil design from Simon Bell, University of Melbourne

Page 57: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Experiment with Rb vapour

Zeeman gradient controlled using B-fields

ΩcE^

Coil design from Simon Bell, University of Melbourne

Page 58: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

First observation of echo from Rb vapour

Efficiency is about 1%. G. Hétet et al., Opt. Lett. 33, 2323 (2008)

26

Page 59: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Current best performance

Time (µs)

Inte

nsity

(ar

b.)

Switching Point

~7% echo efficiency

27

Page 60: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Pulse mirroring

Echoes

Input pulses

Switching

28

Page 61: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Pulse mirroring

Echoes

Input pulses

Switching

τstorage=15 μs

τstorage=25 μs

28

Page 62: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Transition Between Raman and EIT

-0.5 0.0 0.5 1.0-1.00.0

0.2

0.4

0.6

0.8

1.0

Two photon detuning δ (MHz)

Nor

mal

ized

pro

be

tran

smis

sion Ωc

E

In the presence of Doppler broadening, some atoms are still close to resonance leading to control field induced decoherence.

Δ=0

29

Page 63: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Transition Between Raman and EIT

-0.5 0.0 0.5 1.0-1.00.0

0.2

0.4

0.6

0.8

1.0

Two photon detuning δ (MHz)

Nor

mal

ized

pro

be

tran

smis

sion Ωc

Δ~1GHz

δ{Δ{

E

In the presence of Doppler broadening, some atoms are still close to resonance leading to control field induced decoherence.

Δ=0

29

Page 64: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Inte

nsity

(ar

b)

Echoes

Input

Leakage

0.0 5.0 10.0 15.0 20.0 25.0

0

1

No control field during storage

Time (µs)

Control field induced decoherence

30

Page 65: Quantum memory with 3-level atoms - IFRAF · ARC Centre of Excellence for Quantum Atom Optics The Australian National University Canberra, Australia Quantum memory with 3-level atoms

Summary

EIT storage is a good option and already demonstrated.

GEM has some promising advantages - especially large bandwidth.

Future Directions:

Try difference hyperfine ground states

MOT?

Solid State?

More info, links to papers etc......

http://photonics.anu.edu.au/

31