quantum hall effect without applied magnetic fieldweb.phys.ntu.edu.tw/colloquium/2016fall/joint...

38
Guang-Yu Guo (郭光宇) Physics Department, National Taiwan University, Taiwan Quantum Hall Effect without Applied Magnetic Field (Colloquium Talk in NTU Physics Dept., Oct. 4, 2016)

Upload: others

Post on 17-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

Guang-Yu Guo (郭光宇)Physics Department, National Taiwan University, Taiwan

Quantum Hall Effect without Applied Magnetic Field

(Colloquium Talk in NTU Physics Dept., Oct. 4, 2016)

Page 2: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

I. IntroductionPlan of this Talk

1. (Integer) quantum Hall effect2. Spontaneous quantum Hall effects (SQHE)3. Why search for SQHE in layered 4d and 5d transition metal oxides

II. Chern insulator in 4d and 5d transition metal perovskite bilayers

1. Physical properties of layered oxide KxRhO22. Non-coplanar antiferromagnetic ground state structure3. Unconventional quantum anomalous Hall phase

IV. Conclusions

III. Quantum topological Hall effect in chiral antiferromagnet K1/2RhO2

1. 4d and 5d metal perovskite bilayers along [111] direction 2. Magnetic and electronic properties3. Quantum anomalous Hall phase

Page 3: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

1. (Integer) quantum Hall effectI. Introduction

1) Ordinal Hall Effect [Hall 1879]

Edwin H. Hall (1855-1938)

Lorentz forceq v B

/ ( ) / ( ) (1/ )

H H y x xyR V I E W j Wnq B

/ ( ) / ( ) ( / )

L L x x

xx

R V I E L j WL W

Hall resistance

magneto-resistance

Hall resistance

OHE is a widely used characterization tool in material science lab.

Page 4: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

2) (Integer) quantum Hall Effect [von Klitzing et al., 1980]

Klaus von Klitzing (1943-present)

In 1980, von Klitzing et al discovered QHE.

(1/ )xy Ki R

xx ≈ 0, superconducting states (xx ≈ ∞)?

0xx von Klitzing constant RK = 1 h/e2

= 25812.807557(18) Conductance quantum 0 = 1/RK = 1 e2/h

[PRL 45, 494]

1

0

0 0 1/, [ ] ,

0 1/ 01/ , 0, they are insulating phases.

xy xy

xy xy

xy xy xxi

ρ σ ρ

[Wei et al., PRL 61 (1988) 129]

Page 5: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

EF

Formation of discrete Landau levels

2DEG: Ej = ħc(j+1/2)

c =

2e /hxy i

0xx

Bulk quantum Hall insulating state

T = 1.5 K, B = 18 T

[von Klitzing et al., PRL 45 (1980) 494]

[Wei et al., PRL 61 (1988) 129]

Page 6: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

Quantization of Hall conductanceThouless et al. topological invariance argument

2

2DBZ

2 , Chern (TKNN) number

1 ( ), ( )2

xy

i i i i i ix x z z

i x y y x

en nh

u u u un dk dk ik k k k

k k k kk k

[PRL49, 405 (1982); PRB31, 3372 (1985)]

David Thouless (1934 - )

QH phases are the first discovered topological phases of quantum matter; QH systems are the first topological insulators with broken time-reversal symmetry. Topological invariant is Chern number.

(Berry curvature)

2D BZ is a torus. Chern theorem:2DBZ

( ) ( ) 2 .x x z Sdk dk dS C k k

Q: A nonzero conductance in an insulating system! How can it be possible?

Page 7: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

(a) Laughlin gauge invariance argument

[Laughlin, PRB23 (1981) 5632; Halperin, PRB25 (1982) 4802]

Existence of conducting edge states (modes)

To do measurements, a finite size sample and hence boundaries must be created.

0

2

,

.

xy

yxy

x

neVEI

I enV h

Robert Laughlin (1950 - )

Bending of the LL

(b) Bulk-edge correspondence theorem

When crossing the boundary between two different Chern insulators, the band gap would close and open again, i.e., metallic edge states exist at the edge whose number is equal to the difference in Chern number.

Page 8: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

(c) Explicit energy band calculations

IQHE is an intriguing phenomenon due to the occurrence of bulk topological insulating phases with dissipationless conducting edge states in the Hall bars at low temperatures and under strong magnetic field. Hall resistance is so precisely quantized that it can be used to determine the fundamental constants and robust metallic edge state is useful for low-power consuming nanoelectronics and spintronics.

= p/q = 2/7.

2D TB electrons with 2 edges under

[Hatsugai, PRL 71 (1993) 3697]

Q: High temperature IQHE without applied magnetic field?

Page 9: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

2. Spontaneous quantum Hall effects1) Anomalous Hall Effect [Hall 1881]

[Zeng et al. PRL 96 (2006) 2010]Mn5Ge3

0H SR B R M

Spin current

2) Spin Hall Effect[Dyakonov & Perel, JETP 1971]

Relativistic spin-orbit coupling

Spin current

Charge current

(Mott or skew scattering)

' ( ),v E pB Ec mc

2 2

1' ( ( ) )2SOH B s V p

m c r

[Jackson’s textbook]

2

2 2 2 2 3

1 ( ) ( )2 2SO

dV r ZeH s p s Lm c dr r m c r

(Hall effect with applied magnetic field)

Page 10: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

3) Quantum spin Hall effect and topological insulators(a) Intrinsic spin Hall effect

2

22

21

2

0 )(2)25(

2Skk

mH

Luttinger model

(hole)ii

lili

i

Eek

kFmkX

0e

Ekk

em

kX

3

Equation of motion

Anomalous velocity

nh = 1019 cm-3, μ= 50 cm /V·s, σ= eμnh = 80 Ω-1cm-1;σs= 80 Ω-1cm-1

[Science 301, 1348 (2003)]

p-type zincblende semiconductors

Page 11: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

[Kato et al., Science 306, 1910 (2004)]

First observation of the SHE in n-type 3D GaAs and InGaAs thin films

Page 12: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

(b) Quantum spin Hall effect and 2D topological insulatorsKane-Mele SOC Hamiltonian for graphene

† †KM

,

zi j i z ij j

i j ij

H t c c i c s v c

[Kane & Mele, PRL 95 (2005) 146801; 95 (2005) 226801]

SOC in graphene is too small (<0.01 meV) to make QSHE observable!

2

1 ( 1) , 1 ( 1) 0.2

sxy xy

e eh

Based on Haldane honeycomb model for QHE without Landau levels [PRL 1998].

1 2

1 2ij

d dvd d

[Chen, Xiao, Chiou, Guo, PRB84 (2011) 165453]

y

xAB

Page 13: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

Quantum spin Hall effect in semiconductor quantum wells

[Bernevig, Hughes, Zhang, Science 314, 1757 (2006)]

Quantum spin Hall effect in 2D topological insulator HgTe quantum well [Koenig et al.,

Science 318, 766 (2007)]

Observation of QSHE in quantum wells

[Du et al.,PRL 114 (2015)

096802]

Page 14: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

For their pioneering works on topological insulators and quantum spin Hall effect, three theoretical condensed-matter physicists won the 2012 Dirac medal and prize (ICTP in Trieste, Italy)

Shoucheng Zhang (1963 - ) Charles Kane (1963 - )Duncan Haldane (1951 - )

Page 15: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

4) Quantum anomalous Hall effect (QHE without applied magnetic field)

topological insulatorquantum Hall insulator Chern insulator

yes yes

Holy trinity????

Page 16: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

[PRL 61 (1988) 2015]

2 1

2

2

[ / 1/ 3]

If / 3 3 sin ,

/ .xy

t t

M t

ne h

† † †1 2

, ,exp( )z

H i j ij i j i i ii j i j i

H t c c t iv c c M c c

Haldane’s 2D honeycomb lattice model (graphene) for spinless electronsAreas a and b are threaded by fluxes a and b = -a. Area c has no flux. = 2 (2a+b)/0 . i = 1.

AB

1 2

1 2ijv

d dd d

Phase diagram of Haldane model

N.B. Kane-Mele model is two copies of Haldane model with M = 0, =3/2and SO = t2.

Page 17: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

QAHE in real systems: Magnetic impurity-doped topological insulator filmsTheoretical proposal: Bi2Te3, Bi2Se3 or Sb2Te3 films doped with Cr or Fe

[Yu et al., Science 329, 61 (2010)]

Page 18: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

First observation on QAHE in Cr0.15(Bi0.1Sb0.9)1.85Te3 (5 QLs) thin films

[Science 340, 167 (2013)]

Page 19: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

[Science 340, 167 (2013)]

QAHE in Cr0.15(Bi0.1Sb0.9)1.85Te3 thin films

Remaining issues:QAHE below 30 mK due to(a) Small band gap (~10 meV);(b) Weak exchange coupling

Tc = ~15 K(a) Low mobility (760 cm2/Vs).

Qikun Xue (1963 - )

Xue just won the first Future Science Prize (“China’s Nobel Prize”, US$ 1 million) for his team’s observation of the QAHE and also superconductivity in FeSe monolayer/SrTiO3.

Page 20: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

2) Layered 4d and 5d transition metal oxides as Chern insulator candidates Electron correlations in 3d transition metal oxides are strong, which is challenging to describe, and make them become Mott (trivial) insulators. So far, many-body theory appears unnecessary for TI research.Layered 4d and 5d transition metal oxides have stronger SOC (larger band gaps?), moderate/weak correlation (easier to study?) and intrinsic itinerant magnetism (higher mobility?).

3. Why search for SQHE in layered 4d and 5d transition metal oxides

1) Transition metal oxidesA fascinating family of solid state systems:high Tc superconductivity: YBa2Cu3O6.9colossal magnetoresistance: La2/3Ca1/3MnO3half-metallicity for spintronics: Sr2FeMoO6ferroelectricity: BaTiO3charge-orbital ordering: Fe3O4

Charge-orbital ordering in Fe3O4

[Jeng, Guo, Huang, PRL 93 (2004) 156403; Huang et al., PRL 96 (2006) 096401]

Page 21: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

Perovskite (AB’O3)N/(ABO3)2 bilayer candidates for a topological insulator

II. Chern insulator in 4d and 5d transition metal perovskite bilayers

Conf bulk

LaReO3LaRuO3SrRhO3SrIrO3LaOsO3LaAgO3LaAuO3

t2g4t2g5t2g5t2g5t2g5eg2eg2

‐‐metallicmetallicmetallic‐‐metallic‐‐

List of ABO3 candidates. B’ = Al or Ti.

[Xiao et al., NC 2 (2011) 596]

1. 4d and 5d metal perovskite bilayers along [111] direction

Design principle: Start with a band structure having ‘Dirac points’ without SOC, and then examine whether a gap opened at those points with the SOC turned on.

Page 22: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

[Xiao et al., NC 2 (2011) 596]t2g model: /t=5 with /t=1(red) & =0(green)

t2g model: /t=0.5, /t=1.5 (red) & /t=1.5, =0(green)

eg model: /t=0.2 (red) & /t=0(green)

LaAlO3/LaReO3 LaAlO3/LaOsO3

SrTiO3/SrRhO3 SrTiO3/SrIrO3

LaAlO3/LaAgO3 LaAlO3/LaAuO3

LaAlO3/LaAuO3/LaScO3 LaAlO3/LaAuO3/YAlO3

TI

TI

TI TI

TINI

Electronic band structure and topology

Page 23: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

[Chandra & Guo, arXiv: 1609.07383 (2016)]2. Magnetic and electronic properties

ABO3 Conf Bulk Superlat

LaRuO3LaAgO3LaReO3LaOsO3LaAuO3SrRhO3SrAgO3SrOsO3SrIrO3

d5 (t2g5)

d8 (eg2)

d4 (t2g4)

d5 (t2g5)

d8 (eg2)

d5 (t2g5)

d7 (eg1)

d4 (t2g4)

d5 (t2g5)

metallicmetallicmetallic*metallic*metallicmetallicmetallic*metallicmetallic

yes [6]

Yes [10](ABO3)2/(ABO3)10superlattices*

ABO3 = LaAlO3or SrTiO3

z-AF i-AF

Page 24: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

Mean-field estimation

[Chandra & Guo, arXiv: 1609.07383 (2016)]

Physical properties of the magnetic perovskite bilayers

0 ij i ji j

E E J

Heisenberg model

013B C j

jk T J

*Large exchange couplings, thus high Curie temperatures;

*(LaOsO3)2/(LAO)10 is an insulator, others, metallic.*(LaRuO3)2/(LAO)10 and (SrRhO3)2/(STO)10,

half-metallic; *Large anomalous Hall conductivities.

Page 25: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

Band structure of the magnetic perovskite bilayers

(LaOsO3)2/(LAO)10 is an insulator with a gap of 38 meV, (SrIrO3)2/(STO)10 is a semimetal and the rest are metallic.(LaRuO3)2/(LAO)10 and (SrRhO3)2/(STO)10 are half-metallic.

[Chandra & Guo, arXiv: 1609.07383 (2016)]

Page 26: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

Quantum confinement of conduction electrons

Both charge and spin densities are confined within the (LaRuO3)2bilayer in the central part of the superlattice. Although many 3D bulk magnetic materials have been predicted to be half-metallic, quasi-2D fully spin-polarized electron gas systems have been rare.

(LaRuO3)2/(LAO)10 (111)

charge density

spin density

Page 27: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

3. Quantum anomalous Hall phase

(LaOsO3)2/(LAO)10 is a spin-polarized quantum anomalous Hall (Chern) insulator (Chern number = 2) with the spin-polarized edge current tunable by applied magnetic field.

23

3 2' '

2 Im | | ' ' | |( ( )) ( ), ( )

(2 ) ( )x yz z

AH n n nn n n n n

n v n n v ne d k f

k k

k k k kk k k

For a 3D Chern insulator, 2

AH cenhc

, nc is an integer (Chern number)

is calculated using the maximally localized Wannier functions fitted to GGA band structure.

[Chandra & Guo, arXiv: 1609.07383 (2016)]

Page 28: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

1. Physical properties of layered oxide KxRhO2

III. Quantum topological Hall effect in K1/2RhO2

1) Crystal structure:

2) Interesting properties:

Layered hexagonal -NaxCoO2-type structure (P63/mmc; No. 194)with two CdI2-type (1T) RhO2 layers stacked along c-axis [2f.u./cell].

It is isostructural and also isoelectronic to thermoelectric and superconducting material NaxCoO2.It shows significant thermopower and Seebeck coefficient, and is also expected to become superconducting at low temperatures.

[Shibasaki et al., JPCM 22 (2010) 115603]

RhO2

RhO2

RhO2

K

K

Page 29: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

1) Energetics of various magnetic structures in K0.5RhO2

Ground state: all-in (all-out) non-coplanar antiferromagnetic structure.

2. Non-coplanar antiferromagnetic ground state structure

Possible metastable magnetic structures

nc-AFM

FM S-AFM z-AFM

t-AFM 3:1-FiM 90-c-AFM

3i-1o-nc-FiM 2i-2o-nc-AFM

90-nc-FiM 90-nc-AFM

[Zhou et al., PRL 116, 256601 (2016)]

Page 30: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

Total energy (Etot) (meV/f.u.), total spin moment (mstot) (B/f.u.), Rh

atomic spin moment (msRh) (B/f.u.) and band gap (Eg), from GGA+U

calculations. [VASP-PAW method, GGA+Ueff (Rh) = 2 eV]

0 ij i ji j

H E J

Heisenberg model

Exchange couplingJ1 = 4.4, J2 = -3.6 meVNeel temperature TN = ~20 K

[Zhou et al., PRL 116, 256601 (2016)]

[Henze et al., APA 75, 25 (2002)]

K0.5RhO2

Page 31: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

2) Band structure of non-coplanar antiferromagnetic structure

In (a), blue solid lines from GGA+U and red dotted lines from MLWFs interpolations.

An insulator (Eg =0.22eV)

(a) (b)

Is it a topologically trivial or nontrivial insulator?

Crystal field splitting of Rh t2gorbitals in K1/2RhO2 with Rh a1g is ¾ filled.

8(K1/2RhO2)[Zhou et al., PRL 116, 256601 (2016)]

Page 32: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

3. Unconventional quantum anomalous Hall phase

23

3

2' '

( ( )) ( )(2 )

2 Im | | ' ' | |( )

( )

zAH n n

n

x yzn

n n n n

e d k f

n v n n v n

k k

k k

k k k kk

Anomalous Hall conductivity

For a 3D Chern insulator, 2

AH cenhc

nc is an integer (Chern number)

Thus, nc-AFM state is a QAH phase with nc = 2.

1) A Chern insulator

[Zhou et al., PRL 116, 256601 (2016)]

Page 33: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

2) Edge states

Bulk-edge correspondence theorem is fulfilled.

[Zhou et al., PRL 116, 256601 (2016)]

Page 34: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

3) Nature of the quantum anomalous Hall phaseSpin chirality, Berry phase and topological Hall effect

[Taguchi et al., Science 291, 2573 (2001)]

, ,

( ).i j ki j k

s s sSpin chirality

s3s2s1

solid angle , Berry phase / 2

Nd2Mo2O7

Nd2Mo2O7

Topological Hall effect: Anomalous Hall effect purely due to Berry phase produced by spin-chiraty in the noncoplanar magnetic strucure.

Page 35: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

A conventional QAH phase is caused by the presence of FM and SOC!

Here, mstot = 0 and no SOC; thus

QAH phase is unconventional.AHC is due to nonzero scalar spin chirality in nc-AFM structure,

, ,( )i j k

i j k s s s

So it is the quantum topological Hall effect due to the topologically nontrivial chiral magnetic structure!

[Zhou et al., PRL 116, 256601 (2016)]

2AH

Total solid angle 4 , Berry phase / 2,Chern number ( / 2 ) 2 2,

AHC =2e /h.cn

Page 36: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

4) Effects of spin-orbit coupling [Zhou et al., PRL 116, 256601 (2016)]

The nc-AFM structure remains the lowest energy one and it is still a QAH insulator with Eg = 0.16 eV and ms

tot = 0.08 B/f.u.

Page 37: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

IV. Conclusions1. Layered 4d and 5d transition metal oxides are good candidates for Chern insulators, because 4d and 5d transition metal oxides have stronger SOC but moderate/weak correlation, quite unlike 3d transition metal oxides where correlation is strong and often leads to Mott insulators.

2. Based on first-principles density functional calculations, we predict that the high temperature QAH phases would exist in two kinds of 4d and 5d transition metal oxides, ferromagnetic /(LaOsO3)2/(LAO)10 perovskite [111] superlattice and layered chiral antiferromagnetic K1/2RhO2.

3. Further theoretical analysis reveals that the QAH phases in these oxide systems result from two distinctly different mechanisms, namely, conventional one of the presence of ferromagnetism and SOC, and unconventional one due to the topologically nontrivial magnetic structure (i.e., exotic quantum topological Hall effect).

Page 38: Quantum Hall Effect without Applied Magnetic Fieldweb.phys.ntu.edu.tw/colloquium/2016Fall/Joint colloquia_files/Slides... · 04-10-2016  · Guang-Yu Guo (郭光宇)Physics Department,

Discussion and Collaborations:Hirak Kumar Chandra (Nat’l Taiwan U.)Jian Zhou and his team (Nanjing U.)Qi-Feng Liang (Shaoxing U.)

Acknowledgements:

Supports:Ministry of Science and Technology,Academia Sinica (Thematic Research Program),National Center for Theoretical Sciences of Taiwan.