quantum dot and hybrid solar cellsocw.snu.ac.kr/sites/default/files/note/9225.pdf · 2018. 1....

21
Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1 st Semester Quantum Dot and Hybrid Solar Cells 2014. 5. 29. Changhee Lee School of Electrical Engineering and Computer Science Seoul National Univ. [email protected]

Upload: others

Post on 28-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Quantum Dot and Hybrid Solar Cells

2014. 5. 29.

Changhee LeeSchool of Electrical Engineering and Computer Science

Seoul National Univ. [email protected]

Page 2: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterContents

Part I: Properties and formation of semiconductor Quantum dots: Introduction: Basic quantum mechanics applied to quantum dots (QDs): Basic properties of quantum wells and dots: Formation of quantum dots

Part II: Colloidal Quantum dot LEDs: QD-LED device structures and operating mechanism: History of QD-LED development: Inverted QD-LEDs: Polymer–QD hybrid LEDs: Cd-free QLEDs: QD patterning

Part III. QD and Hybrid Solar Cells

Page 3: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterSolar Cells - Converters of Energy

Sources: http://www.econedlink.org/lessons/EM189/images/cartoon_tv.gifhttp://emmagoodegg.blogs.com/thebeehive/images/lightbulb.jpg, http://www.torpedowire.com/solar.htm, http://www.uoregon.edu/~stiedeke/a3/assignment03/a3/assignment_images/cartoon-sun.jpg

• Solar cells are devices that take light energy as input and convert it into electrical energy

• Energy produced by the sun• Clean, renewable source of energy

Light energy

Solar cell -converts light energy to electricity

Electrical energy (carried through wires)

Page 4: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterSolar spectrumAir Mass 1.5 (solar zenith angle 48.19°)Ref. http://rredc.nrel.gov/solar/standards/am1.5/#Bird

Power level in outer space (AM0): 1.353 kW/m2

Power level on earth at sea level, with the sun at zenith (AM1): 100 mW/cm2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00

0.5

1.0

1.5

2.0

2.5

SpectralIntensity

W/cm2/m

Page 5: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

V

I (mA)

Dark

Light

Twice the light

0.60.40.2

20

?0

0Iph

Voc

Typical I-V characteristics of a Si solar cell. The short circuit current is Iphand the open circuit voltage is Voc. The I-V curves for positive currentrequires an external bias voltage. Photovoltaic operation is always in thenegative current region.?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

I-V Characteristics of solar cells

Page 6: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

(NREL rev. 2014. 5. 11) http://www.nrel.gov/ncpv/

Solar cell efficiencies (NREL rev. 2014. 5. 11)

Page 7: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterEfficiency-cost of organic solar cells

I. 1st Generation:High efficiency but high cost• Single crystal Si, 24.7%• Polycrystalline Si, 20.3%

Shockley-Queisser limit; 32% (single bandgap)

Ultimate thermodynamic limit; 67% at 1 sun

$3.50/W

$1.00/W

$0.50/W$0.20/W$0.10/W

Cost ($/m2)

Eff

icie

ncy

(%)

0 100 200 300 400 500

2040

6080

100

II. 2nd Generation:Low cost but low efficiency• Amorphous Si, 11.7%• CuInSe2, 19.9%• CdTe, 16.5%• DSSC, 11.1%• OPV, 8.3% (small cell)

III. 3rd Generation:High efficiency (h>Q-S limit) & low cost (<$0.50/W)

I

III

II

Page 8: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Wavelength (nm)

Qua

ntum

Effi

cien

cy

1.0

gg E

hc

Ideal quantum efficiency

Quantum Efficiency

in

SCOC

in

out

PFFJV

PPEff .

Page 9: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

M. A. Green, “Third generation photovoltaics”

Thermodynamic cell efficiency

Page 10: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Absorber

Cathode

Glass+Anode (TCO)

P type layer

h

N typelayer

1

2

3 4

5

6

7

7

8

8 7

7

Loss mechanism

Idea Experiment

1 Reflection Textured surface In production (c-Si, TCO)

2 Absorption High Eg window a-p-SiC of a-Si solar cell

3 Interface recombination

Graded interface p/i buffer of a-Si solar cell

4 Bulk recombination

High quality,Nanostructure

Clean process, DSSC, polymer-acceptor

5 Thermalization Carrier multiplication, Energy selective contact (ESC)

PbSe 300% quantum yield,QD ESC

6 Color limit Multijunction, intermediate band, Up/Down converter, Thermo-photovoltaic

III-V triple junction 34.1%, QD/impurity band, Er converter

7 Contact loss Energy selective contact

QD ESC

8 Series resistance High mobility Amorphous Si vs. Poly Si

Principles of efficiency losses

자료: 백승재박사 (KAIST)

Page 11: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Shockley-Queisser limit

3rd generation concept: MEG, Intermediate band

Multi-exciton generation

Intermediate band

Sun

CB

VB

Sun IB

Breaking efficiency limits

자료: 백승재박사 (KAIST)

Page 12: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

MRS Bulletin V.32 2007

Principle of carrier multiplication QE of PbSe, PbS, PbTe QD’s (3.9-5.5nm)

• Efficiency limit ~45% (86% @ full solar)• QD: much higher QE than bulk• Problem: how to separate e- & h+’s to electrodes from QD

Multi-exciton generation (MEG)

자료: 백승재박사 (KAIST)

Page 13: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterMulti-exciton generation (MEG)

자료: 백승재박사 (KAIST)

O. E. Semonin, et al., Science, 334, 1530, 2011

Page 14: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Luther et al., Nano lett, vol.8, no.10, 3488-3492, 2008

Schottky QD solar cell

Page 15: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterInter-QD distance controls transport

Y. Liu et al., Nano Lett., 10, 1960, 2010

• Electrode interface: Schottky emission with tunneling• Site to site transport: variable range hopping

Page 16: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterAnnealing controls inter-QD distance

S. J. Baik et al., JPCC, 115, 607, 2011

Page 17: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

R. Debnath et al., Energy and Environmental Sciences, 2011

Front transparent electrode

N P

Back metal electrode

Similar to conventional thin film solar cells N layer with colloidal nanocrystals

Voc ~ p-n More efficient: front junction Rear ohmic design

J. Tang et al., Nat. Mat., 2011

Heterojunction QD solar cells

Page 18: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st Semester

Mimicking Dye sensitized solar cells

Absorber QD size tuning

Kamat, JPCC, 112, 18737 (2008)

QD sensitized solar cells

Page 19: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterQD sensitized solar cells

Absorber QD size tuning

Full band solar cell Kamat, JPCC, 112, 18737 (2008)

• Similar to DSSC• Potential high Voc• Potentially most efficient• Surface chemistry• Hole transport materials

Page 20: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterRecent reports of thin film solar cells

QD PVs

1.1 / 4 / 0.25 / 1.8Nature Nanotech. 7, 577 (2012)

Perovskite Solar Cells

Nature Photon. (2013)

Organic PVs

KRICT (Sang Il Seok) & EPFL (Michael Grätzel)PCE=12%, VOC=1.0 V, JSC=16.5 mA/cm2, FF=0.73 University of Toronto (Edward H. Sargent)

PCE=7.4%, VOC=0.6 V, JSC=21.8 mA/cm2, FF=0.58

ACS Nano (2013)University of Florida (Jiangeng Xue)

PCE=4.7%, VOC=0.74 V, JSC=12.8 mA/cm2, FF=0.50

Organic-Inorganic Blend PVs

KolonPCE=11.3%

Mitsubishi Chemical

PCE=11.1%

HeliatekPCE=12.0%

• Best efficiency of perovskite solar cells : 19.3% (Yang Yang, UCLA)• lead-free (Sn) perovskite solar cells: ~ 6.4% (Henry Snaith, Energy & Environmental Science, 2014)

http://news.sciencemag.org/chemistry/2014/05/perovskite-solar-cells-get-lead-out

Page 21: Quantum Dot and Hybrid Solar Cellsocw.snu.ac.kr/sites/default/files/NOTE/9225.pdf · 2018. 1. 30. · Changhee Lee, SNU, Korea 전자물리특강 EE 430.859 2014. 1st Semester Quantum

Changhee Lee, SNU, Korea

전자물리특강EE 430.859

2014. 1st SemesterBIPV - DSSC

R F Service Science 2014;344:458