quantifying the accuracy of benchmark calculations of non...

24
Quantifying the accuracy of benchmark calculations of non-covalent complexes Jan ˇ Rez´ c Institute of Organic Chemistry and Biochemistry, AS CR November 30, 2015 Jan ˇ Rez´ c (IOCB AS CR) Cuby4 November 30, 2015 1 / 21

Upload: others

Post on 13-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Quantifying the accuracy of benchmark calculations ofnon-covalent complexes

Jan Rezac

Institute of Organic Chemistry and Biochemistry, AS CR

November 30, 2015

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 1 / 21

Page 2: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Non-covalent interactions

Non-covalent interactions are important in many areas of chemistry

Difficult to describe by computational methods

Accurate treatment of electron correlation needed

Accuracy of computational methods not a priori known

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 2 / 21

Page 3: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Quantifying the accuracy of computational methods

Experiment - dissociation energy D0 is complex quantity (∆H00 )

Hard to reproduce by calculations

Limited experimental data

Comparing calculation to calculation is straightforward

Interaction energy (∆E ) easy to calculate

Reliable benchmark needed – an order of magnitude more accuratethan tested methods

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 3 / 21

Page 4: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Experimental benchmark

D0 can not be calculated directly

Calculated components are not observables

Structure → deformation energy Edef

Nuclear dynamics / Vibrational analysis → ∆ZPVE

Interaction energy ∆E

Choice of method (coverage of correlation)

Convergence with basis set

Other effects/approximations

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 4 / 21

Page 5: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Experimental benchmark – HF dimer

Experiment1 with accuracy ±1cm−1

Small enough to apply the best quantum chemistry offers2

Uncertainty of components due to basis set size

Dissociation energy components (kcal/mol)

Uncertainty of the geometry ± 0.003HF energy -3.822 ± 0.000CCSD(T) correlation energy -0.786 ± 0.003∆CCSDT(Q) -0.009 ± 0.003∆CCSDTQ 0.001 ± 0.001Relativistic effects 0.016 ± 0.001Diagonal B-O correction -0.012 ± 0.000Deformation energy 0.028 ± 0.001Harmonic ZPVE 1.805 ± 0.017ZPVE anharmonicity (VPT2) -0.185 ± 0.019

Sum – calculated D0 -2.964 ± 0.047

Experimental D0 -3.036 ± 0.003

1Bohac, E. J.; Marshall, M. D.; Miller, R. E. J. Chem. Phys. 1992, 96 (9), 6681–6695.2Rezac, J.; Hobza, P. J. Chem. Theory Comput. 2014, 10 (8), 3066–3073.

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 5 / 21

Page 6: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Experimental benchmark – HF dimer

Experiment1 with accuracy ±1cm−1

Small enough to apply the best quantum chemistry offers2

Uncertainty of components due to basis set size

Dissociation energy components (kcal/mol)

Uncertainty of the geometry ± 0.003HF energy -3.822 ± 0.000CCSD(T) correlation energy -0.786 ± 0.003∆CCSDT(Q) -0.009 ± 0.003∆CCSDTQ 0.001 ± 0.001Relativistic effects 0.016 ± 0.001Diagonal B-O correction -0.012 ± 0.000Deformation energy 0.028 ± 0.001Harmonic ZPVE 1.805 ± 0.017ZPVE anharmonicity (VPT2) -0.185 ± 0.019

Sum – calculated D0 -2.964 ± 0.047

Experimental D0 -3.036 ± 0.003

1Bohac, E. J.; Marshall, M. D.; Miller, R. E. J. Chem. Phys. 1992, 96 (9), 6681–6695.2Rezac, J.; Hobza, P. J. Chem. Theory Comput. 2014, 10 (8), 3066–3073.

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 5 / 21

Page 7: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Experimental benchmark – HF dimer

Experiment1 with accuracy ±1cm−1

Small enough to apply the best quantum chemistry offers2

Uncertainty of components due to basis set size

Dissociation energy components (kcal/mol)

Uncertainty of the geometry ± 0.003HF energy -3.822 ± 0.000CCSD(T) correlation energy -0.786 ± 0.003∆CCSDT(Q) -0.009 ± 0.003∆CCSDTQ 0.001 ± 0.001Relativistic effects 0.016 ± 0.001Diagonal B-O correction -0.012 ± 0.000Deformation energy 0.028 ± 0.001Harmonic ZPVE 1.805 ± 0.017ZPVE anharmonicity (VPT2) -0.185 ± 0.019

Sum – calculated D0 -2.964 ± 0.047

Experimental D0 -3.036 ± 0.003

1Bohac, E. J.; Marshall, M. D.; Miller, R. E. J. Chem. Phys. 1992, 96 (9), 6681–6695.2Rezac, J.; Hobza, P. J. Chem. Theory Comput. 2014, 10 (8), 3066–3073.

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 5 / 21

Page 8: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Computational benchmarking

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 6 / 21

Page 9: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

What do we do?

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 7 / 21

Page 10: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

The ”gold standard” in benchmarking: CCSD(T)/CBS

”First method accurate enough, last computationally tractable”

Small systems – direct extrapolation to CBS

Larger systems – composite scheme

ECCSD(T ) = EHF + EMP2 + δECCSD(T )

δECCSD(T ) = ECCSD(T ) − EMP2

Counterpoise correction, frozen core approximation

What is the accuracy of this benchmark?

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 8 / 21

Page 11: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Benchmarking the CCSD(T)/CBS benchmark

A24 data set - 24 complexes featuring diverse interactions3

Best estimate of interaction energies:CCSD(T)/CBS + ∆CCSDT(Q) + all electron and relativisticcorrections

Recently updated with more accurate CCSDT(Q) calculations4

3Rezac, J.; Hobza, P. J. Chem. Theory Comput. 2013, 9 (5), 2151–2155.4Rezac, J.; Dubecky, M.; Jurecka, P.; Hobza, P. Phys. Chem. Chem. Phys. 2015, 17 (29), 19268–19277.

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 9 / 21

Page 12: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Errors inherent to CCSD(T)/CBS

Errors inherent to frozen-core CCSD(T),based on updated reference from 5

Truncation of the CC series, 1.14% vs. CCSDT(Q)CCSDT(Q) covers about 95% of correlation missing in CCSD(T),6

Convergence of ∆E int tested up to FCI7

Frozen core approximation, 0.57%Relativistic effects, 0.14% (in light elements)Born-Oppenheimer approximation, ca. 0.1% (HF dimer)

Overall error 1.7%

5Rezac, J.; Dubecky, M.; Jurecka, P.; Hobza, P. Phys. Chem. Chem. Phys. 2015, 17 (29), 19268–19277.6Bomble, Y. J.; Stanton, J. F.; Kallay, M.; Gauss, J. J. Chem. Phys. 2005, 123 (5), 054101–054101.7Simova, L.; Rezac, J.; Hobza, P. J. Chem. Theory Comput. 2013, 9 (8), 3420–3428.

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 10 / 21

Page 13: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Summary I

CCSD(T)/CBS has error of about 1.7% compared to exact solution

Largest source of error is approximate treatment of correlation

CCSDT(Q) is a solution applicable to small model systems

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 11 / 21

Page 14: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Basis set error in composite CCSD(T)/CBS

Accuracy of composite schemes applicable to larger molecules

Evaluated in the A24 set, reference is CCSD(T) extrapolated fromaug-cc-pV(T,Q,5)Z basis sets

Composite scheme ECCSD(T ) = EHF + EMP2 + δECCSD(T )

EHF in the same basis as MP2, not extrapolatedEMP2 – multiple ways to achieve CBS:– Single calculation– Extrapolation (Helgaker8, ∆E corr

X = E corrCBS + aX−3)

– Explicitly correlated (MP2-F12)– Explicitly correlated, extrapolated (Hill9)δECCSD(T ) in basis no larger than MP2

8Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys. 1997, 106 (23), 9639–9646.9Hill, J. G.; Peterson, K. A.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2009, 131, 194105.

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 12 / 21

Page 15: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Basis set error in composite CCSD(T)/CBS

MP2 in QZ

0

1

2

3

4

5

6

7

8

6-31G**’ DZ haDZ aDZ TZ haTZ aTZ QZ haQZ aQZ

MU

E, %

∆CCSD(T) basis set

aQZaTZ→aQZ

QZ-F12TZ-F12→QZ-F12

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 13 / 21

Page 16: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Basis set error in composite CCSD(T)/CBS

MP2 in TZ

0

2

4

6

8

10

12

14

16

6-31G**’ DZ haDZ aDZ TZ haTZ

MU

E, %

∆CCSD(T) basis set

aTZaDZ→aTZ

TZ-F12DZ-F12→TZ-F12

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 14 / 21

Page 17: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Basis set error in composite CCSD(T)/CBS

MP2 in DZ

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

6-31G**’ DZ haDZ aDZ

MU

E, %

∆CCSD(T) basis set

aDZDZ-F12

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 15 / 21

Page 18: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Summary II

Extrapolation and MP2-F12 yield comparable results at comparableexpense

MP2-F12 is the only solution in small (DZ) basis

The bottleneck is always the CCSD(T) correction

1% accuracy can be achieved with CCSD(T) correction in triple-zetabasis

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 16 / 21

Page 19: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Benchmark data sets and their accuracy

S6610,11 and X4012 use following scheme:HF/aug-cc-pVQZ + MP2/aug-cc-pV(T→Q)Z +∆CCSD(T)/heavy-aug-cc-pVTZAccuracy of 1.1% in A24

Non-equilibrium geometries in S66x8, S66a8 and X40x10:HF/aug-cc-pVQZ + MP2/aug-cc-pV(T→Q)Z +∆CCSD(T)/aug-cc-pVDZAccuracy of 2.1% in A24

10Rezac, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7 (8), 2427–2438.11Rezac, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7 (11), 3466–3470.12Rezac, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2012, 8 (11), 4285–4292.

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 17 / 21

Page 20: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Automation of dataset calculations

Cuby framework developed by the author13

Automatic calculation of data set, processing of the results

Implements also CC correction and extrapolation to CBS

Data sets discussed here are distributed with the framework

13http://cuby4.molecular.cz

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 18 / 21

Page 21: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Automation of dataset calculations

Cuby framework developed by the author13

Automatic calculation of data set, processing of the results

Implements also CC correction and extrapolation to CBS

Data sets discussed here are distributed with the framework

13http://cuby4.molecular.cz

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 18 / 21

Page 22: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Conclusions

Accuracy of composite CSCD(T)/CBS calculations is now wellcharacterized

Excellent accuracy of 1–2% can be achieved in routine calculations ofmedium-sized molecules

Going beyond that is extremely difficult

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 19 / 21

Page 23: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Why composite CCSD(T)/CBS works so well?

Using composite schemeMP2/CBS + (ECCSD(T ) − EMP2)/smaller basis

Historically, developed as most economic optionNo special convergence properties of the correctionHowever, its accuracy is hard to beat

More expensive CCSD/CBS + (T )/smaller basis is not better

The same applies to CCSD(T)-F12 or CCSD(T*)-F1214

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

aDZ aTZ aQZ a5Z

err

or

(kca

l/m

ol)

Basis set

a)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

aDZ aTZ aQZ a5Z

rel. e

rro

r (%

)

Basis set

b)

ECSCD(T)

δECSCD(T)

14Patkowski, K. The Journal of Chemical Physics 2012, 137 (3), 034103.

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 20 / 21

Page 24: Quantifying the accuracy of benchmark calculations of non ...marge.uochb.cas.cz/...accuracy_of_benchmark_EUCOCC.pdf · Non-covalent interactions Non-covalent interactions are important

Basis set dependence of CCSDT(Q) correction

O(N9) scaling limits basis set sizeConvergence differs with nature of the interaction15,16

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

wate

r ··· am

monia

wate

r dim

er

HC

N d

imer

HF

dim

er

am

monia

dim

er

HF

··· m

eth

ane

am

monia

··· m

eth

ane

wate

r ··· m

eth

ane

form

ald

ehyde d

imer

wate

r ··· eth

ene

form

ald

ehyde ··· e

thene

eth

yne d

imer

am

monia

··· e

thene

eth

ene d

imer

meth

ane ··· e

thene

bora

ne ··· m

eth

ane

meth

ane ··· e

thane

meth

ane ··· e

thane

meth

ane d

imer

Ar

··· m

eth

ane

Ar

··· eth

ene

eth

ene ··· e

thyne

eth

ene d

imer

eth

yne d

imer∆

CC

SD

T(Q

) (k

cal/m

ol)

6-31G**(0.25,0.15)aDZaTZ

extrapolated

15Smith, D. G. A.; Jankowski, P.; Slawik, M.; Witek, H. A.; Patkowski, K. J. Chem. Theory Comput. 2014, 10 (8),3140–3150.

16Demovicova, L.; Hobza, P.; Rezac, J. Phys. Chem. Chem. Phys. 2014, 16 (36), 19115–19121.

Jan Rezac (IOCB AS CR) Cuby4 November 30, 2015 21 / 21