quantifying competing carbon pathways in mesoscale upwelling filaments off nw africa nick...

22
Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres, Tim Smyth, Ian Brown, Vasilis Kitidis, P. Nightingale, C. Widdicombe (PML) (or the pitfalls of seawater CO 2 inversions)

Upload: dulcie-tate

Post on 04-Jan-2016

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa

Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres, Tim Smyth, Ian Brown, Vasilis Kitidis, P. Nightingale, C. Widdicombe (PML)

(or the pitfalls of seawater CO2 inversions)

Page 2: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

What is relative contribution of different CO2 pathways: air-sea flux vs. export production?

CoolHigh NHigh CO2

Warms

CO2 flux

Phytoplankton production

Respiration

Carbon export

NCP = E

Page 3: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Lagrangian study: plume tracking with SF6 and drifters

• 3 patches seeded• P1 & P3 filaments tracked• P2 subducted

SOLAS-ICON+ (D338)

+The impact of coastal upwelling on the air-sea exchange of climatically important gases

Rees et al. 2011

Page 4: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Sampling

Underway:T, S, fCO2, O2, Fl

Surface drifters:T, S, fCO2

Physics:CTD, MVP, ADCP, micro-turbulence, wirewalker, optics

Rosette bottle samples

Deck incubations

Page 5: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Spatial structure – satellite view

Patch 1: freshly upwelled, followed for 9 days

Patch 3: ~10 days old, followed for 8 days

Page 6: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Spatial structure – in situ

Page 7: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Temporal variability

195

205

215

225

235

245

255

265380

400

420

440

460

480

500

520

22-Apr 23-Apr 24-Apr 25-Apr 26-Apr 27-Apr 28-Apr 29-Apr 30-Apr 01-May

O2

(µm

ol

l-1)

fCO

2(μ

atm

)Patch 1 fCO2 O2

195

205

215

225

235

245

255

265380

400

420

440

460

480

500

520

540

14-May 15-May 16-May 17-May 18-May 19-May 20-May 21-May 22-May 23-May

O2

(µm

ol

l-1)

fCO

2(μ

atm

)

Patch 3 fCO2 O2

Page 8: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

0

100

200

300

400

500

600

700

Sum of BIOMASS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Average of % FLAG

Average of % DINOS

Average of % DIATOMS

0

20

40

60

80

100

120

140

160

Sum of BIOMASS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Average of % FLAG

Average of % DINOS

Average of % DIATOMS

Phytoplankton community and primary productionPatch 1

Patch 3

Page 9: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

ncptrsptc

x

tc

JJDICDICt

h

hxxDIC

K

hz

DICKzhh

F

t

DIC

111

Daily DIC change

Sea-air Flux

Vertical diffusion flux

Horizontal diffusion flux

Vertical entrainment (ventilation)

Horizontal advection

NCP

• Assume advection/diffusion terms negligible because lagrangian expt, i.e. tracking water patch.

• Supported by lack of relationship between salinity and DIC within patch

• Salinity normalise DIC to make sure

2110.0

2120.0

2130.0

2140.0

2150.0

2160.0

2170.0

35.6 35.7 35.8 35.9 36 36.1 36.2 36.3 36.4

Patch 1

Patch 3

?Controls on CO2 dynamics

Shadwick et al. 2010

• Focus on NCP, F and V?

Page 10: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

y = 49.986x + 564.18R² = 0.8356

2330.0

2340.0

2350.0

2360.0

2370.0

2380.0

2390.0

35.6 35.7 35.8 35.9 36 36.1 36.2 36.3 36.4

TA (µ

mol

kg-1

)

Salinity

DIC calculations• Need continuous DIC

• Use discrete TA / S relationship to calculate continuous TAs

• Calculate DIC from TAs and measured underway fCO2 in CO2SYS

• Salinity normalise calculated DIC = nDIC

intint

SS

DICnDIC

Page 11: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Daily δnDIC calculation

δnDIC day

δnDIC night

δnDIC day+night

nDIC

Time

depth integrated NCPt = Zeut (max DICt- max DICt-1) – Ft (– Vt)

Page 12: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

A. Daily nDIC change

-40

-30

-20

-10

0

10

20

30

40

22/04 23/04 24/04 25/04 26/04 27/04 28/04 29/04 30/04

µmol

l-1 dnDIC_day

dnDIC_night

Patch 1

-25

-20

-15

-10

-5

0

5

10

15

20

25

15/05 16/05 17/05 18/05 19/05 20/05 21/05 22/05

µm

ol l-1

dnDIC_day

dnDIC_night

Patch 3

Daily DIC reduction

Night time DIC increase

production/respiration signal

Patch 1 has larger signals and is more variable than Patch 3

Page 13: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

B. Sea-air CO2 fluxes

0

5

10

15

20

25

30

35

22/04 23/04 24/04 25/04 26/04 27/04 28/04 29/04 30/04

mm

ol C

O2

m-2

d-1

Patch 1Patch 1

0

5

10

15

20

25

30

35

14/05 15/05 16/05 17/05 18/05 19/05 20/05 21/05 22/05

mm

ol C

O2

m-2

d-1

Patch 3Patch 3

Calculated using Nightingale et al. (2000)

Winds 6-14 m s-1 P1, 8-14 m s-1 P3

ΔpCO2 20-100 µatm P1, 60-110 µatm P3

Patch 1 sea-air flux starts high and reduces as seawater pCO2 reduces

Increase on 25-26/4 from ventilation?

Patch 3 sea-air flux higher on average, more gradual decline, driven by seawater pCO2 decline

Page 14: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

C. Depth Integrated NCP* vs. sea-air flux

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

23/04 24/04 25/04 26/04 27/04 28/04 29/04 30/04

mm

ol C

m-2

d-1

- NCP_M

F_M N'00

Patch 1

-150

-100

-50

0

50

100

150

200

15/05 16/05 17/05 18/05 19/05 20/05 21/05 22/05

mm

ol C

m-2

d-1

- NCP_M

F_M N'00

Patch 3

y = -4.9816x + 921.34R² = 0.7242

350

370

390

410

430

450

470

490

510

530

550

80 90 100 110

Np

CO

2(µ

atm

)

%O2 Sat

y = -4.7253x + 949.31R² = 0.8301

350

370

390

410

430

450

470

490

510

530

550

90 100 110 120

Np

CO

2(µ

atm

)

%O2 Sat

Louicades et al. 2011

Patch 1

Page 15: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

C. Depth Integrated NCP* vs. sea-air flux

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

23/04 24/04 25/04 26/04 27/04 28/04 29/04 30/04

mm

ol C

m-2

d-1

- NCP_M

F_M N'00

Patch 1

-150

-100

-50

0

50

100

150

200

15/05 16/05 17/05 18/05 19/05 20/05 21/05 22/05

mm

ol C

m-2

d-1

- NCP_M

F_M N'00

Patch 3

Patch 1 is net autotrophic and NCP* dominates over sea-air flux

Patch 3 shifts from autotrophic to heterotrophic between days

In ~trophic balance over all

NCP* dominates the signal but overall sea-air flux is greater

mmol C m-2 Patch 1 Patch 3

NCP* 1285 29

Sea-air flux 86 124

Page 16: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

NACW>50%Max(80%,75m)

SACW>50%Max(95%,300m)

SACW<50%Max(40%,150m)(NACW or BDA shelf water)

SACW>50%(Max 100%)

Patch 1

Patch 3

Water masses

Page 17: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

D. NCP vs. entrainment/ventilation vs. sea-air flux

-400-300-200-100

0100200300400500600

15/05 16/05 17/05 18/05 19/05 20/05 21/05 22/05

mm

ol C

m-2

d-1

- NCP_M

Vent_M

F_M N'00

-1500

-1000

-500

0

500

1000

23/04 24/04 25/04 26/04 27/04 28/04 29/04 30/04

mm

ol C

m-2

d-1

- NCP_M

Vent_M

F_M N'00

Use change in nutricline depth and DIC gradient over nutricline

NCP (residual) has to increase with ventilation

Accounting for ventilation increases estimate of autotrophy - Is it real?

mmol C m-2 Patch 1 Patch 3

NCP-V2823 715

Vent1537 687

Sea-air flux 86 124

Page 18: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Preliminary conclusions

1. Biogeochemistry different between filaments:– phytoplankton, CO2 dynamics, [nutrients]

– Water masses or age?

2. Variable influence of NCP vs Sea-Air Flux– Patch 1: net autotrophic, NCP dominates; sea-air CO2 flux has minor

influence

– Patch 3: trophic status looks neutral but depends on external sources of DIC; sea-air CO2 flux may be dominant over time

3. Method– Ventilation calculation critical for determining NCP?

– Method needs testing / refining for a lagrangian /sub-mesoscale framework

Page 19: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Next steps

• Consider sub-mesoscale physics to calculate ventilation fluxes

• Compare results with DOC, C14 PP, O18 R, N-flux estimates

• Look at heterotrophic dynamics (diurnal variability in grazing?)

Page 20: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

Acknowledgements: UK-SOLAS ICON team, National Marine Facilities staff, Captain and crew of RRS Discovery.

Funding: UK Natural Environment Research Council (NERC). Satellite images provided by NEODAAS, UK.

Thank you!

Page 21: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

B. Sea-air CO2 fluxes

Units on time plots legend!!!

Page 22: Quantifying competing carbon pathways in mesoscale upwelling filaments off NW Africa Nick Hardman-Mountford (CSIRO), Carol Robinson (UEA), Ricardo Torres,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

21 23 25 27 29 01

Silic

ate

(μm

ol/l

)

Nit

rate

+ N

itri

te (μ

mol

/l)

Apr '09

Filament 1

N+N

Si

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

9

9.5

10

10.5

11

11.5

12

12.5

13

15 17 19 21 23

Silic

ate

(μm

ol/l

)

Nit

rate

+ N

itri

te (μ

mol

/l)

May '09

Filament 2

N+N

Si

Nutrients