pxb15-xxdxx dualoutput15 watt dc/dc converters

32
PXB15-xxDxx Dual Output 15 Watt DC/DC Converters The PXB15 series is approved to UL/CSA/EN/IEC 60950-1. Table of contents Absolute Maximum Rating P2 Thermal Consideration P27 Output Specification P2 Heat Sink Consideration P27 Input Specification P3 Remote ON/OFF Control P28 General Specification P4 Mechanical Data P29 Characteristic Curves P5 Recommended Pad Layout P30 Testing Configurations P23 Soldering Considerations P30 EMC Consideration P24 Packaging Information P31 Input Source Impedance P26 Part Number Structure P31 Output Over Current Protection P26 Safety and Installation Instruction P32 Output Over Voltage Protection P26 MTBF and Reliability P32 Short Circuit Protection P27

Upload: others

Post on 21-Mar-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

PXB15-xxDxx

Dual Output 15 Watt DC/DC Converters

The PXB15 series is approved to UL/CSA/EN/IEC 60950-1.

Table of contents

Absolute Maximum Rating P2 Thermal Consideration P27

Output Specification P2 Heat Sink Consideration P27

Input Specification P3 Remote ON/OFF Control P28

General Specification P4 Mechanical Data P29

Characteristic Curves P5 Recommended Pad Layout P30

Testing Configurations P23 Soldering Considerations P30

EMC Consideration P24 Packaging Information P31

Input Source Impedance P26 Part Number Structure P31

Output Over Current Protection P26 Safety and Installation Instruction P32

Output Over Voltage Protection P26 MTBF and Reliability P32

Short Circuit Protection P27

Data SheetJul. 20, 2010

PXB15-xxDxx2

15W, Dual Output

Absolute Maximum RatingParameter Model Min Max Unit

Input VoltageContinuous

Transient (100mS)

12DXX24DXX48DXX12DXX24DXX48DXX

1836753650100

VDC

Input Voltage Variation(complies with ETS300 132 part 4.4)

All 5 V/mS

OperatingAmbient Temperature (with derating) All -40 85 ºCOperating Case Temperature 105 ºCStorage Temperature All -55 125 ºC

Output Specification

Parameter Model Min Typ Max Unit

Output Voltage Range

(Vin = Vin(nom) ; Full Load ; TA=25 ºC)

XXD05

XXD12

XXD15

4.95

11.88

14.85

5

12

15

5.05

12.12

15.15

VDC

Output Regulation

Line (Vin(min) to Vin(max) at Full Load)

Load (0% to 100% of Full Load)

All -0.5

-1.0

+0.5

+1.0

%

Cross Regulation

Asymmetrical Load 25% / 100% of Full LoadAll -5 5 %

Output Ripple & Noise(See Page 23)

Peak-to-Peak (20MHz bandwidth)

(Measured with a 1uF M/C and a 10uFT/C )

All 100 mVP-P

Temperature Coefficient All -0.02 +0.02 %/ ºC

Output Voltage Overshoot

(Vin(min) to Vin(max) ; Full Load ;TA=25 ºC)All 0 3 % VOUT

Dynamic Load Response

(Vin = Vin(nom) ; TA=25 ºC)

Load step change from75% to 100% or 100 to 75% of Full LoadPeak Deviation

Settling Time (VOUT<10% peak deviation)

All

All

200

250

mV

μS

Output Current XXD05

XXD12

XXD15

0

0

0

±1500

±625

±500

mA

Output Over Voltage Protection

(Voltage Clamped)

XXD05

XXD12

XXD15

5.6

13.5

16.8

7.0

19.6

20.5

VDC

Output Over Current Protection All 150 % FL.

Output Short Circuit Protection All Hiccup, automatic recovery

Data SheetJul. 20, 2010

PXB15-xxDxx3

15W, Dual Output

Input Specification

Parameter Model Min Typ Max Unit

Operating Input Voltage 12DXX

24DXX

48DXX

9

18

36

12

24

48

18

36

75

VDC

Input Current

(Maximum value at Vin = Vin(nom); Full Load)

12D05

12D12

12D15

24D05

24D12

24D15

48D05

48D12

48D15

1543

1506

1488

772

744

744

386

368

372

mA

Input Standby Current

(Typical value at Vin = Vin(nom) ; No Load)

12D05

12D12

12D15

24D05

24D12

24D15

48D05

48D12

48D15

30

30

30

20

15

25

15

15

20

mA

Under Voltage Lockout Turn-on Threshold 12DXX

24DXX

48DXX

9

18

36

VDC

Under Voltage Lockout Turn-off Threshold 12DXX

24DXX

48DXX

8

14.5

30.5

VDC

Input Reflected Ripple Current (See Page 23)

(5 to 20MHz, 12μH source impedance)All 30 mAP-P

Start Up Time

(Vin = Vin(nom) and constant resistive load)

Power up

Remote ON/OFF

All 30

30

mS

Remote ON/OFF Control (See Page 28)

(The ON/OFF pin voltage is referenced to -VIN)

Negative Logic DC-DC ON(Short)

DC-DC OFF(Open)

Positive Logic DC-DC ON(Open)

DC-DC OFF(Short)

All0

3

3

0

1.2

15

15

1.2

VDC

Remote Off Input Current All 2.5 mA

Input Current of Remote Control Pin All -0.5 1.0 mA

Data SheetJul. 20, 2010

PXB15-xxDxx4

15W, Dual Output

General Specification

Parameter Model Min Typ Max Unit

Efficiency(See Page 23)

(Vin = Vin(nom) ; Full Load ; TA=25 ºC)

12D05

12D12

12D15

24D05

24D12

24D15

48D05

48D12

48D15

85

87

88

85

88

88

85

89

88

%

Isolation Voltage

Input to Output

Input (Output) to Case

All 1600

1000

VDC

Isolation Resistance All 1 GΩ

Isolation Capacitance All 1000 pF

Switching Frequency All 400 KHz

Weight All 15 g

MTBF(See Page 32)

Bellcore TR-NWT-000332, TC=40 ºC

MIL-STD-217F

All 1.330×106

5.630×105

hours

Data SheetJul. 20, 2010

PXB15-xxDxx5

15W, Dual Output

Characteristic Curves

All test conditions are at 25 ºC. PXB15-12D05

Efficiencyversus Output Current Typical Output Ripple and Noise.

Vin = Vin(nom) ; Full Load

Efficiencyversus Input Voltage. Full Load Transient Response to Dynamic Load Change from

100% to 75% to 100% of Full Load ; Vin = Vin(nom)

DeratingOutputCurrentversusAmbientTemperatureandAirflow

Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic

Vin = Vin(nom) ; Full Load

Data SheetJul. 20, 2010

PXB15-xxDxx6

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-12D05

Conduction Emission of EN55022 Class A

Vin = Vin(nom) ; Full Load

Using ON/OFFVoltageStart-Up and Vo Rise Characteristic

Vin = Vin(nom) ; Full Load

ConductionEmission of EN55022 Class B

Vin = Vin(nom) ; Full Load

Power Dissipation versus Output Current

DeratingOutputCurrentVersusAmbientTemperaturewithHeat-Sink

andAirflow,Vin = Vin(nom)

Data SheetJul. 20, 2010

PXB15-xxDxx7

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-12D12

Efficiencyversus Output Current Typical Output Ripple and Noise.

Vin = Vin(nom) ; Full Load

Efficiencyversus Input Voltage. Full Load Transient Response to Dynamic Load Change from

100% to 75% to 100% of Full Load ; Vin = Vin(nom)

DeratingOutputCurrentversusAmbientTemperatureandAirflow

Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic

Vin = Vin(nom) ; Full Load

Data SheetJul. 20, 2010

PXB15-xxDxx8

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-12D12

ConductionEmission of EN55022 Class A

Vin = Vin(nom) ; Full Load

Using ON/OFFVoltageStart-Up and Vo Rise Characteristic

Vin = Vin(nom) ; Full Load

ConductionEmission of EN55022 Class B

Vin = Vin(nom) ; Full Load

Power Dissipation versus Output Current

DeratingOutputCurrentVersusAmbientTemperaturewithHeat-Sink

andAirflow,Vin = Vin(nom)

Data SheetJul. 20, 2010

PXB15-xxDxx9

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-12D15

Efficiencyversus Output Current Typical Output Ripple and Noise.

Vin = Vin(nom) ; Full Load

Efficiencyversus Input Voltage. Full Load Transient Response to Dynamic Load Change from

100% to 75% to 100% of Full Load ; Vin = Vin(nom)

DeratingOutputCurrentversusAmbientTemperatureandAirflow

Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic

Vin = Vin(nom) ; Full Load

Data SheetJul. 20, 2010

PXB15-xxDxx10

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-12D15

ConductionEmission of EN55022 Class A

Vin = Vin(nom) ; Full Load

Using ON/OFFVoltageStart-Up and Vo Rise Characteristic

Vin = Vin(nom) ; Full Load

ConductionEmission of EN55022 Class B

Vin = Vin(nom) ; Full Load

Power Dissipation versus Output Current

DeratingOutputCurrentVersusAmbientTemperaturewithHeat-Sink

andAirflow,Vin = Vin(nom)

Data SheetJul. 20, 2010

PXB15-xxDxx11

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-24D05

Efficiencyversus Output Current Typical Output Ripple and Noise.

Vin = Vin(nom) ; Full Load

Efficiencyversus Input Voltage. Full Load Transient Response to Dynamic Load Change from

100% to 75% to 100% of Full Load ; Vin = Vin(nom)

DeratingOutputCurrentversusAmbientTemperatureandAirflow

Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic

Vin = Vin(nom); Full Load

Data SheetJul. 20, 2010

PXB15-xxDxx12

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-24D05

ConductionEmission of EN55022 Class A

Vin = Vin(nom) ; Full Load

Using ON/OFFVoltageStart-Up and Vo Rise Characteristic

Vin = Vin(nom) ; Full Load

ConductionEmission of EN55022 Class B

Vin = Vin(nom) ; Full Load

Power Dissipation versus Output Current

DeratingOutputCurrentVersusAmbientTemperaturewithHeat-Sink

andAirflow,Vin = Vin(nom)

Data SheetJul. 20, 2010

PXB15-xxDxx13

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-24D12

Efficiencyversus Output Current Typical Output Ripple and Noise.

Vin = Vin(nom) ; Full Load

Efficiencyversus Input Voltage. Full Load Transient Response to Dynamic Load Change from

100% to 75% to 100% of Full Load ; Vin = Vin(nom)

DeratingOutputCurrentversusAmbientTemperatureandAirflow

Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic

Vin = Vin(nom) ; Full Load

Data SheetJul. 20, 2010

PXB15-xxDxx14

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-24D12

ConductionEmission of EN55022 Class A

Vin = Vin(nom) ; Full Load

Using ON/OFFVoltageStart-Up and Vo Rise Characteristic

Vin = Vin(nom); Full Load

ConductionEmission of EN55022 Class B

Vin = Vin(nom) ; Full Load

Power Dissipation versus Output Current

DeratingOutputCurrentVersusAmbientTemperaturewithHeat-Sink

andAirflow,Vin = Vin(nom)

Data SheetJul. 20, 2010

PXB15-xxDxx15

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-24D15

Efficiencyversus Output Current Typical Output Ripple and Noise.

Vin = Vin(nom) ; Full Load

Efficiencyversus Input Voltage. Full Load Transient Response to Dynamic Load Change from

100% to 75% to 100% of Full Load ; Vin = Vin(nom)

DeratingOutputCurrentversusAmbientTemperatureandAirflow

Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic

Vin = Vin(nom) ; Full Load

Data SheetJul. 20, 2010

PXB15-xxDxx16

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-24D15

ConductionEmission of EN55022 Class A

Vin = Vin(nom) ; Full Load

Using ON/OFFVoltageStart-Up and Vo Rise Characteristic

Vin = Vin(nom) ; Full Load

ConductionEmission of EN55022 Class B

Vin = Vin(nom) ; Full Load

Power Dissipation versus Output Current

DeratingOutputCurrentVersusAmbientTemperaturewithHeat-Sink

andAirflow,Vin = Vin(nom)

Data SheetJul. 20, 2010

PXB15-xxDxx17

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-48D05

Efficiencyversus Output Current Typical Output Ripple and Noise.

Vin = Vin(nom) ; Full Load

Efficiencyversus Input Voltage. Full Load Transient Response to Dynamic Load Change from

100% to 75% to 100% of Full Load ; Vin = Vin(nom)

DeratingOutputCurrentversusAmbientTemperatureandAirflow

Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic

Vin = Vin(nom) ; Full Load

Data SheetJul. 20, 2010

PXB15-xxDxx18

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-48D05

ConductionEmission of EN55022 Class A

Vin = Vin(nom) ; Full Load

Using ON/OFFVoltageStart-Up and Vo Rise Characteristic

Vin = Vin(nom); Full Load

ConductionEmission of EN55022 Class B

Vin = Vin(nom) ; Full Load

Power Dissipation versus Output Current

DeratingOutputCurrentVersusAmbientTemperaturewithHeat-Sink

andAirflow,Vin = Vin(nom)

Data SheetJul. 20, 2010

PXB15-xxDxx19

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-48D12

Efficiencyversus Output Current Typical Output Ripple and Noise.

Vin = Vin(nom) ; Full Load

Efficiencyversus Input Voltage. Full Load Transient Response to Dynamic Load Change from

100% to 75% to 100% of Full Load ; Vin = Vin(nom)

DeratingOutputCurrentversusAmbientTemperatureandAirflow

Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic

Vin = Vin(nom) ; Full Load

Data SheetJul. 20, 2010

PXB15-xxDxx20

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-48D12

ConductionEmission of EN55022 Class A

Vin = Vin(nom) ; Full Load

Using ON/OFFVoltageStart-Up and Vo Rise Characteristic

Vin = Vin(nom) ; Full Load

ConductionEmission of EN55022 Class B

Vin = Vin(nom) ; Full Load

Power Dissipation versus Output Current

DeratingOutputCurrentVersusAmbientTemperaturewithHeat-Sink

andAirflow,Vin = Vin(nom)

Data SheetJul. 20, 2010

PXB15-xxDxx21

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-48D15

Efficiencyversus Output Current Typical Output Ripple and Noise.

Vin = Vin(nom) ; Full Load

Efficiencyversus Input Voltage. Full Load Transient Response to Dynamic Load Change from

100% to 75% to 100% of Full Load ; Vin = Vin(nom)

DeratingOutputCurrentversusAmbientTemperatureandAirflow

Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic

Vin = Vin(nom); Full Load

Data SheetJul. 20, 2010

PXB15-xxDxx22

15W, Dual Output

Characteristic Curves (Continued)

All test conditions are at 25 ºC. PXB15-48D15

ConductionEmission of EN55022 Class A

Vin = Vin(nom) ; Full Load

Using ON/OFFVoltageStart-Up and Vo Rise Characteristic

Vin = Vin(nom) ; Full Load

ConductionEmission of EN55022 Class B

Vin = Vin(nom) ; Full Load

Power Dissipation versus Output Current

DeratingOutputCurrentVersusAmbientTemperaturewithHeat-Sink

andAirflow,Vin = Vin(nom)

Data SheetJul. 20, 2010

PXB15-xxDxx23

15W, Dual Output

Testing Configurations

Input reflected-ripple current measurement

L

+

C2

+

C1

CURRENT PROBEMEASURE POINT

BATTERY

+Vin

-Vin

Component Value Voltage ReferenceL 12μH ---- ----

C1 10μF 100V Aluminum Electrolytic CapacitorC2 10μF 100V Aluminum Electrolytic Capacitor

Peak-to-peak output ripple & noise measurement

Output voltage and efficiencymeasurement

Note:All measurements are taken at the module terminals.

%100

inin

oo

IV

IVEfficiency

Data SheetJul. 20, 2010

PXB15-xxDxx24

15W, Dual Output

EMC considerations

Suggested schematic for EN55022 conducted emission ClassAlimits

Recommended layout with input filter

To meet conducted emissions EN55022 CLASSA, the following components are needed:

PXB15-12DXX

Component Value Voltage ReferenceC1 10uF 25V 1812 MLCCC2 ---- ---- ----C3,C4 470pF 2KV 1808 MLCC

PXB15-24DXX

Component Value Voltage ReferenceC1 6.8uF 50V 1812 MLCCC2 6.8uF 50V 1812 MLCCC3,C4 470pF 2KV 1808 MLCC

PXB15-48DXX

Component Value Voltage ReferenceC1 2.2uF 100V 1812 MLCCC2 2.2uF 100V 1812 MLCCC3,C4 470pF 2KV 1808 MLCC

Data SheetJul. 20, 2010

PXB15-xxDxx25

15W, Dual Output

EMC considerations (Continued)

Suggested schematic for EN55022 conducted emission Class B limits

Recommended layout with input filter

To meet conducted emissions EN55022 CLASS B, the following components are needed:

PXB15-12DXX

Component Value Voltage ReferenceC1,C3 10μF 25V 1812 MLCCC2 ---- ---- ----C4,C5 470pF 2KV 1808 MLCCL1 145μH ---- Common Choke

PXB15-24DXX

Component Value Voltage ReferenceC1,C3 6.8μF 50V 1812 MLCCC2 ---- ---- ----C4,C5 470pF 2KV 1808 MLCCL1 325μH ---- Common Choke

PXB15-48DXX

Component Value Voltage ReferenceC1,C3 2.2μF 100V 1812 MLCCC2 2.2μF 100V 1812 MLCCC4,C5 1000pF 2KV 1808 MLCCL1 325μH ---- Common Choke

Data SheetJul. 20, 2010

PXB15-xxDxx26

15W, Dual Output

Input Source Impedance

The power module should be connected to a low impedance input source. Highly inductive source impedance can

affect the stability of the power module. The addition of an external C-L-C filter is recommended to minimize input

reflected ripple current. The inductor is simulated source impedance of 12μH and capacitor is Nippon chemi-con KZE

series 10μF/100V&10μF/100V. The capacitor must be located as close as possible to the input terminals of the power

module for lower impedance.

Output Over Current Protection

When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally,

overload current is maintained at approximately 150 percent of rated current for PXB15 dual output series.

Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being

damaged during an over-current fault condition. It also allows the power supply to restart when the fault is removed.

One of theproblems resulting from over current is that excessive heatmay be generated in power devices; especially

MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection

mechanism has to be used to prevent those power devices from being damaged.

Output Over Voltage Protection

The outputover-voltage protectionconsists of aZener diode thatmonitors theoutput voltage on the feedback loop. If

the voltage on the output terminals exceeds the over-voltage protection threshold, then the Zener diode will send a

signal to the control IC to limit the output voltage.

Data SheetJul. 20, 2010

PXB15-xxDxx27

15W, Dual Output

Short Circuit Protection

Continuous, hiccup and auto-recovery mode.

During ashort circuit condition the converter will shut down. The averagecurrent during this condition will be very low

and damage to this device should not occur.

Thermal Consideration

The power module operates in a variety of thermal environments. However, sufficient cooling should be provided to

help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding

Environment. Proper cooling can be verified by measuring the point as shown in the figure below. The temperature at

this location should not exceed 105 ºC. When Operating, adequate cooling must be provided to maintain the test point

temperature at or below 105 ºC. Although the maximum point Temperature of the power modules is 105 ºC,

maintaining a lower operating temperature will increase the reliability of this device.

Heat Sink Consideration

The addition of a heat sink may be needed to decrease the temperature of the module; thus increasing its reliability.

Temperature Measurement Point

All dimensions in millimeters

7G-0047C-F

Data SheetJul. 20, 2010

PXB15-xxDxx28

15W, Dual Output

Remote ON/OFF Control

The Remote ON/OFF Pin is used t o turn the DC/DC power module on and off. The user must connect a switch

between the on/off pin and the Vi (-) pin. The switch can be an open collector transistor, FET, or Photo-Coupler. The

switch must be capable of sinking up to 1 mA when using a low logic level voltage. When using a high logic level,

the maximum signal voltage is 15V and the maximum allowable leakage current of the switch is 50 uA.

Remote ON/OFF Implementation Circuits

Isolated-Closure Remote ON/OFF Level Control UsingTTLOutput

Level Control Using Line Voltage

There are two remote control options available, positive logic and negative logic.

a. Positive logic - The DC/DC module is turned on when the ON/OFF pin is at a high logic level.Alow logic signal is

needed to turn off the device.

When PXB15 module is turned off at

Low logic level

When PXB15 module is turned on at

High logic level

b. Negative logic – The DC/DCmodule is turned on when the ON/OFF pin is at low logic level.Ahigh logic level signal is

needed to turn off the device.

When PXB15 module is turned on at

Low logic level

When PXB15 module is turned off at

High logic level

Data SheetJul. 20, 2010

PXB15-xxDxx29

15W, Dual Output

Mechanical Data

1.All dimensions in inches(mm)2.Tolerance : x.xx±0.02(x.x±0.5)

x.xxx±0.010(x.xx±0.25)3.Pin pitch tolerance ±0.014(0.35)

PIN CONNECTION

PIN PXB15D Series

1 + INPUT

2 - INPUT

3 ON/OFF

4 +VOUT

5 COMMON

6 -VOUT

OPTIONS

Suffix Description

P Positive Logic

N Negative Logic

T Trim

-NT as standard, Delete suffix if not

required

Data SheetJul. 20, 2010

PXB15-xxDxx30

15W, Dual Output

Recommended Pad Layout

Soldering Considerations

Lead free wave solder profile for PXB15-SERIES

Zone Reference Parameter.Preheat zone Rise temp. speed: 3 ºC /sec max.

Preheat temp.: 100~130ºCActual heating Peak temp.: 250~260ºC

Peak time(T1+T2 time): 4~6 sec

Reference Solder: Sn-Ag-Cu; Sn-Cu

Hand Welding: Soldering iron: Power 90W

Welding Time: 2~4 sec

Temp.: 380 ~400 ºC

Data SheetJul. 20, 2010

PXB15-xxDxx31

15W, Dual Output

Packaging Information

All dimensions in millimeters

10 PCS per TUBE

Part Number Structure

PXB 15 – 48 D 05 -A

Note 1. Maximum value at nominal input voltage and full load.

Note 2. Typical value at nominal input voltage and full load.

Output Current Input CurrentModelNumber

InputRange

OutputVoltage Full Load Full Load

(1)Eff

(2)

(%)PXB15-12D05 9 - 18 VDC ±5VDC ±1500mA 1543mA 85

PXB15-12D12 9 - 18 VDC ±12VDC ±625mA 1506mA 87

PXB15-12D15 9 - 18 VDC ±15VDC ±500mA 1488mA 88

PXB15-24D05 18 - 36 VDC ±5VDC ±1500mA 772mA 85

PXB15-12D12 18 - 36 VDC ±12VDC ±625mA 744mA 88

PXB15-24D15 18 - 36 VDC ±15VDC ±500mA 744mA 88

PXB15-48D05 36 - 75 VDC ±5VDC ±1500mA 386mA 85

PXB15-48D12 36 - 75 VDC ±12VDC ±625mA 368mA 89

PXB15-48D15 36 - 75 VDC ±15VDC ±500mA 372mA 88

Total Output power15Watt

Input Voltage Range12xxx : 9~18V24xxx : 18~36V48xxx : 36~75V Dual Output

Output Voltage05 : ±5V12 : ±12V15 : ±15V

OptionSuffix

300

26.519

6

Data SheetJul. 20, 2010

PXB15-xxDxx32

15W, Dual Output

Safety and Installation Instruction

Fusing Consideration

Caution: This power module is not internally fused.An input line fuse must always be used.

This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone

operation to an integrated part of sophisticated power architecture. For maximum flexibility, internal fusing is not

included; however, to achieve maximum safety and system protection, always use an input line fuse. The safety

agencies require a normal-blow fuse with maximum rating of 3A for PXB15-12DXX modules and 1.5A for

PXB15-24DXX modules and 1Afor PXB15-48DXX modules. Based on the information provided in this data sheet on

Inrush energy and maximum DC input current; the same type of fuse with lower rating can be used. Refer to the fuse

manufacturer’s data for further information.

MTBF and Reliability

The MTBF of PXB15D SERIES of DC/DC converters has been calculated using

Bellcore TR-NWT-000332 Case I: 50% stress, Operating Temperature at 40 ºC (Ground fixed and controlled

environment ). The resulting figure for MTBF is 1.330×106hours.

MIL-HDBK 217F NOTICE2 FULLLOAD, Operating Temperature at 25 ºC . The resulting figure for MTBF is

5.630×105hours.