pv systems and farm design

31
PV Systems and Farm Design M. A. Alam [email protected] Electrical and Computer Engineering Purdue University West Lafayette, IN USA 1 Theory and Practice of Solar Cells: A Cell to System Perspective

Upload: others

Post on 10-Jun-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PV Systems and Farm Design

PV Systems and Farm Design

M. A. Alam

[email protected]

Electrical and Computer Engineering

Purdue University

West Lafayette, IN USA

1

Theory and Practice of Solar Cells: A Cell to System Perspective

Page 2: PV Systems and Farm Design

33

Outline

1) Configurations of PV systems

2) Principles of fixed tilt farm design

3) Calculation of yearly energy yield

4) Conclusions

M. A. Alam, PV Lecture Notes

Page 3: PV Systems and Farm Design

Collection of

independent

2-level PV

nm

p-n junction solar cellCell

ModulePanel

Rooftop

PVSolar farm

nm-๐œ‡m cm-m km

Fabrication,

Device physics,

Manufacturing

Reliability, LCOE

Course outline: A multiscale problem

M. A. Alam, PV Lecture Notes

4

Page 4: PV Systems and Farm Design

Cells, modules, panel

CC

Charge

controller

Battery/

storage

Inverter

AC

source/

grid

Distribution

panel

System Integration: Sysmbols

M. A. Alam, PV Lecture Notes

6

Page 5: PV Systems and Farm Design

Stand-alone PV systems

Simple

Low cost

Calculators

Irrigation

More expensive

Off-grid

Many home PV

Variety of electronicsM. A. Alam, PV Lecture Notes

7

Page 6: PV Systems and Farm Design

Solar homes: Grid-connected PV

Hybrid:

Multiple sources

Both AC/DC loads

PV connected to

Power-grid

M. A. Alam, PV Lecture Notes

8

Page 7: PV Systems and Farm Design

Community PV: Microgrid and Solar Farms

M. A. Alam, PV Lecture Notes

9

Page 8: PV Systems and Farm Design

Power

optimizer

Aside: Inverter configurations

Central Micro String Micro with

Power-optimizerM. A. Alam, PV Lecture Notes

10

Page 9: PV Systems and Farm Design

1212

Outline

1) Configurations of PV systems

2) Principles of fixed tilt farm design

3) Calculation of yearly energy yield

4) Conclusions

M. A. Alam, PV Lecture Notes

Page 10: PV Systems and Farm Design

0

100

200

300

4001300

1350

1400

1450

J F M A M J J A S O N DMonth

ly

(kW

-hr/m

2)

๐ผ 0(W

/m2)

Extra-

terrestrial

Monthly GHI

๐ผ0(๐‘‘๐‘›) = ๐ผ0(1 + ฮ” cos 2๐œ‹ ๐‘‘๐‘› /๐ท)

ฮ” = 2(๐‘…maxโ€“ ๐‘…min)/๐‘‘

Sunlight varies with seasons

13

Page 11: PV Systems and Farm Design

How to tilt a solar module (i.e. determine ๐›ฝ)

๐›ผ๐›ฝ๐œƒ๐‘ง

๐ผ๐‘‘๐‘–๐‘Ÿ = ๐ผ๐‘ sin ๐›ผ + ๐›ฝ = ๐ผ๐‘ cos(๐œƒ๐‘ง โˆ’ ๐›ฝ)

๐ผ๐‘

M. A. Alam, PV Lecture Notes 14

Page 12: PV Systems and Farm Design

๐œƒ๐‘ง varies throughout the year

๐›ฟ = 23.450 sin2๐œ‹ ๐‘‘ โˆ’ 80

365

๐›ผ

๐œƒ๐‘ง๐›ฟ

๐›ผ(๐‘‘) = 90 โˆ’ ๐ฟ ยฑ ๐›ฟ(๐‘‘)

๐œƒ๐‘ง(๐‘‘) = ๐ฟ โˆ“ ๐›ฟ(๐‘‘)

North

South

๐œƒ๐‘ง,๐‘ค = ๐ฟ + 23.45

๐œƒ๐‘ง,๐‘  = ๐ฟ โˆ’ 23.45

ฮด โ‰ก Sun declination angle

March 21st (Vernal

Equinox)โ‰ก 80 days

Page 13: PV Systems and Farm Design

An empirical rule for tilt

๐œƒ๐‘ง(๐‘‘) = ๐ฟ โˆ“ ๐›ฟ(๐‘‘)

๐œƒ๐‘ง,๐‘ค = ๐ฟ + 23.45

๐œƒ๐‘ง,๐‘  = ๐ฟ โˆ’ 23.45

๐›ฝ = ๐ฟ โˆ’ 10

๐›ฝ = 0.69๐ฟ + 3.7

๐›ฝ๐‘  = ๐œƒ๐‘ง,๐‘  ๐›ฝ๐‘ค = ๐œƒ๐‘ง,๐‘ค

Optimize integral over daily

intensity and solar angle for given ๐›ฝ

Summer intensity is higher:

Two tilt, summer/winter:

๐›ฝ

16

Page 14: PV Systems and Farm Design

Example: How to tilt a module

๐›ฝ = ๐ฟ โˆ’ 10 30.27 3.50 21.23

๐›ฝ = 0.69๐ฟ + 3.6 31.79 12.92 24. 83

๐›ฝ๐‘  = ๐œƒ๐‘ง,๐‘ 

Lafayette Madras Shanghai

40.27๐‘ 13.5 ๐‘ 31.23 ๐‘

๐›ฝ๐‘ค = ๐œƒ๐‘ง,๐‘ค 63.72

16.82

36.95

โˆ’9.95

54.68

7.78

17

Page 15: PV Systems and Farm Design

18

Tilt angle, Electrical vs. mechanical, Air vs. water cleaning

Aside: Cleaning considerations

M. A. Alam, PV Lecture Notes

Page 16: PV Systems and Farm Design

Three components of irradiance

19

๐ผ๐‘‡ = ๐ผ๐‘‘๐‘–๐‘Ÿ + ๐ผ๐‘‘๐‘–๐‘“๐‘“ + ๐ผ๐‘Ž๐‘™๐‘๐‘˜๐‘‡ = ๐ผ๐บ๐ป๐ผ/๐ผ0cos(๐œƒ๐‘)

Page 17: PV Systems and Farm Design

Standalone yield: Direct light

๐›ผ๐›ฝ๐œƒ๐‘ง

๐ผ๐‘‘๐‘–๐‘Ÿ = ๐ผ๐‘ sin ๐›ผ + ๐›ฝ = ๐ผ๐‘ cos ๐œƒ๐‘ง โˆ’ ๐›ฝ

๐ผ๐‘‡ = ๐ผ๐‘‘๐‘–๐‘Ÿ + ๐ผ๐‘‘๐‘–๐‘“๐‘“ + ๐ผ๐‘Ž๐‘™๐‘

๐ผ๐‘

M. A. Alam, PV Lecture Notes 20

Page 18: PV Systems and Farm Design

Stand-alone yield: diffuse component

๐›ฝ

๐ผ๐‘‘๐‘–๐‘“๐‘“ =๐ผ๐‘‘2เถฑ๐›ฝ

๐œ‹

sin ๐œƒ ๐‘‘๐œƒ =๐ผ๐‘‘ 1 + cos ๐›ฝ

2

๐ผ๐‘‡ = ๐ผ๐‘‘๐‘–๐‘Ÿ + ๐ผ๐‘‘๐‘–๐‘“๐‘“ + ๐ผ๐‘Ž๐‘™๐‘

๐ผ๐‘‘

๐›ฝ

๐ผ๐‘‘

21M. A. Alam, PV Lecture Notes

Page 19: PV Systems and Farm Design

Stand-alone yield: albedo

๐›ฝ

๐ผ๐‘‡ = ๐ผ๐‘‘๐‘–๐‘Ÿ + ๐ผ๐‘‘๐‘–๐‘“๐‘“ + ๐ผ๐‘Ž๐‘™๐‘โ„Ž

๐‘‰๐น =๐‘†1 + ๐‘†2 โ€“ ๐‘†3 + ๐‘†4

2โ„Ž

๐‘†1

๐‘†2

๐‘†3

๐‘†4

๐‘‰๐น =โ„Ž + ๐‘  โ€“ (0 + ๐‘ 2 + โ„Ž2 + 2๐‘ โ„Ž cos ๐›ฝ)

2โ„Ž

๐‘‰๐น =1

21 + ๐‘Ÿ โˆ’ 1 + ๐‘Ÿ2 + 2๐‘Ÿ cos ๐›ฝ โ†’ (1 โˆ’ cos ๐›ฝ)/2

๐‘Ÿ = ฮค๐‘  โ„Ž โ†’ โˆž

๐‘ 

โ„Ž

๐ผ๐‘Ž๐‘™๐‘ = ๐ผ๐บ๐ป๐ผ ๐‘…๐ด ๐‘‰๐น

M. A. Alam, PV Lecture Notes 22

Page 20: PV Systems and Farm Design

Stand-alone module: Energy yield

๐›ผ๐›ฝ๐œƒ๐‘ง

๐ผ๐‘‘๐‘–๐‘Ÿ = ๐ผ๐‘ cos(๐œƒ๐‘ง โˆ’ ๐›ฝ)

๐ผ๐‘

๐ผ๐‘‘๐‘–๐‘“๐‘“ =๐ผ๐‘‘ 1 + cos ๐›ฝ

2

๐ผ๐‘Ž๐‘™๐‘ = ๐ผ๐บ๐ป๐ผ ๐‘…๐ด(1 โˆ’ cos ๐›ฝ)/2

๐ผ๐‘‡ = ๐ผ๐‘‘๐‘–๐‘Ÿ + ๐ผ๐‘‘๐‘–๐‘“๐‘“ + ๐ผ๐‘Ž๐‘™๐‘

23M. A. Alam, PV Lecture Notes

Page 21: PV Systems and Farm Design

Summer zenith: ๐œƒ๐‘๐‘ Winter zenith: ๐œƒ๐‘๐‘ค

๐œƒ๐‘๐‘ ๐œƒ๐‘๐‘ค

โ„Žโ„Ž๐‘ฆ

โ„Ž๐‘ฅ๐œƒ๐‘๐‘ค

๐‘Ÿ๐‘ 

๐‘

๐›ฝ

Row spacing in Lafayette, IN

SBR โ‰ก ๐‘Ÿ๐‘ /โ„Ž๐‘ฆ = tan 90 โˆ’ ๐›ผ = tan ๐œƒ๐‘ง๐‘ค,๐‘

๐‘/โ„Ž = cos(๐›ฝ) + sin(๐›ฝ) tan ๐œƒ๐‘ง๐‘ค,๐‘

SBR โ‰ก ๐‘Ÿ๐‘ /โ„Ž๐‘ฆ = tan 90 โˆ’ 18.14 =3.05

M. A. Alam, PV Lecture Notes 27

Page 22: PV Systems and Farm Design

Farm yield per unit area: direct beam

๐›ผ๐›ฝ๐œƒ๐‘ง

๐ผ๐‘‘๐‘–๐‘Ÿ = ๐ผ๐‘ sin ๐›ผ + ๐›ฝ โ„Ž/๐‘ = ๐ผ๐‘ cos ๐œƒ๐‘ง โˆ’ ๐›ฝ ร— โ„Ž/๐‘

๐ผ๐‘‡ = ๐ผ๐‘‘๐‘–๐‘Ÿ + ๐ผ๐‘‘๐‘–๐‘“๐‘“ + ๐ผ๐‘Ž๐‘™๐‘

๐ผ๐‘

๐‘

โ„Ž

M. A. Alam, PV Lecture Notes 30

Page 23: PV Systems and Farm Design

Farm yield: diffused energy collection

๐›ฝ

๐ผ๐‘‡ = ๐ผ๐‘‘๐‘–๐‘Ÿ + ๐ผ๐‘‘๐‘–๐‘“๐‘“ + ๐ผ๐‘Ž๐‘™๐‘

๐ผ๐‘‘

๐›ผ + ๐›ฝ

๐ผ๐‘‘

๐›ผ

๐ผ๐‘‘๐‘–๐‘“๐‘“(๐œ‰) =๐‘

โ„Žร—๐ผ๐‘‘2เถฑ๐›ฝ+๐›ผ(๐œ‰)

๐œ‹

sin ๐œƒ ๐‘‘๐œƒ =๐‘

โ„Žร—๐ผ๐‘‘ 1 + cos(๐›ผ +๐›ฝ )

2

M. A. Alam, PV Lecture Notes 31

Page 24: PV Systems and Farm Design

3333

Outline

1) Configurations of PV systems

2) Principles of fixed tilt farm design

3) Calculation of yearly energy yield

4) Conclusions

M. A. Alam, PV Lecture Notes

Page 25: PV Systems and Farm Design

Variety of Solar Farms

M. A. Alam, PV Lecture Notes 34

Page 26: PV Systems and Farm Design

-80 -60 -40 -20 0 20 40 60 800

20

40

60

80

-80 -60 -40 -20 0 20 40 60 800

1

2

3

4

-80 -60 -40 -20 0 20 40 60 800

12345

period

Row spacing

Northern hemisphere,

South facing panels

Southern hemisphere,

North facing panels

Latitude (deg.)

SBR

(m)

Pan

el tilt (

deg.

)

Yearly Yield (kW-hr/m2)

Monofacial solar farms

M. A. Alam, PV Lecture Notes

35

W

Page 27: PV Systems and Farm Design

Albedo contribution to Monofacial Farms

โ€ข ๐‘…๐ด = 0.2โ€ข 1-2 % gain in YY

โ€ข 1-2o increase in optimum tilt angle

โ€ข < 1% reduction in LCOE*

M. A. Alam, PV Lecture Notes

36

Page 28: PV Systems and Farm Design

(c) (d)

1 2

(e) (f)

๐‘

โ„Ž๐‘Ÿ

0 1 2 30.1

0.2

0.3

0.4

0.5

p/h

Daily

Energ

y/farm

are

a

(kW

-hr/

m2)

(g) (h)

๐‘Ÿ = 0

๐‘Ÿ = 0.5โ„Ž

(a)(i)

(a)(ii)

0

20

40

Impro

vem

ent,

%0.4 0.45 0.5 0.55 0.6 0.65

80

100

120

140

160

Annual mean-clearness indexA

nnual Y

ield

(kW

-hr/

m2)

Monofacial

(10% soiling loss)

Latitude 40 N

GvBF vs. mono

GvBF vs. vBF-1

-180-120-60

060

120180

Longitude

(b)

W

Ground-sculpted bifacial farms

M. A. Alam, PV Lecture Notes

39

Page 29: PV Systems and Farm Design

Land-cost inclusive optimization

40

(a) = 0 = 15(b) (c) = 100

M. A. Alam, PV Lecture Notes

Page 30: PV Systems and Farm Design

4141

Conclusions

PV design must be understood in a system context.

Given the weather information, it is relatively easy to

calculate the energy yield for stand-alone modules as

well as solar farms.

The increasing cost of land and wide-spread PV

deployment are encouraging the PV industry to

explore novel technologies (e.g. bifacial PV) and farm

topologies (e.g. floating solar).

An end-to-end cost-benefit analysis is essential to

create a farm that is ideally suited to a location. M. A. Alam, PV Lecture Notes

Page 31: PV Systems and Farm Design

Self-study Quiz

Which direction does 90 degrees Azimuth indicate?

Names the light-components one must sum to calculate the

energy yield.

What is the cross-string method? Why do we need this

technique?

How does the albedo light collection by a module in a farm

compare to that of an stand-alone module?

What type of solar benefit the most from ground-sculpting?

When should one use floating solar farms compared to

normally tilted solar farms?

42

M. A. Alam, PV Lecture Notes