purpose of today’s presentation - appa · • the fundamentals ... on the road to psychrometrics...

34
APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc. 1 Utilities Infrastructure Session 301C EU Utility Master Planning (cont.) Heating & Cooling Systems Basics APPA Institute for Facilities Management Bill Nelson PE 2 Purpose of Today’s Presentation To share information about current technologies related to central plants To provide some useful handout material with sizing guides DOE Energy Projections to 2035 To provide a broad understanding of central heating and cooling systems (This is a core course - you may see some duplication in other classes) 3 Agenda The Fundamentals Water Psychometrics Introduction Community energy Advantages of a central energy system Efficiencies Pollution reduction

Upload: hoangphuc

Post on 28-Aug-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

1

Utilities InfrastructureSession 301C EUUtility Master Planning (cont.)Heating & Cooling Systems Basics

APPA Institute for

Facilities Management

Bill Nelson PE

2

Purpose of Today’s Presentation

• To share information about current technologies related to central plants

• To provide some useful handout material with sizing guides

• DOE Energy Projections to 2035

• To provide a broad understanding of central heating and cooling systems (This is a core course - you may see some duplication in other classes)

3

Agenda

• The Fundamentals– Water

– Psychometrics

• Introduction– Community energy

– Advantages of a central energy system

– Efficiencies

– Pollution reduction

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

4

Agenda (cont.)

• Steam and Hot Water Systems– Boilers

– Piping

– Traps & Expansion Joints

• Energy Prices – US Building Stock

• Chilled Water System– Air Handlers & Coils

– Chillers

– Cooling towers

5

Words of WisdomWords of Wisdom

Duct tape is like the force; it has a light side and a dark side, and it holds the universe together

6

Agenda

• Introduction– Community energy

– Advantages of a central energy system

– Efficiencies

– Pollution reduction

• The Fundamentals– Water

– Psychometrics

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

7

Community Energy

Classrooms

Hospital

LibraryLabs

Dormitories

Central Energy System

8

Heating and Cooling Systems

• Less equipment

• Lower service cost

• Better space utilization

• Alternate technological option

Advantages

• Integrated solutions

9

Central Energy System

• Lower operating cost

• Better management and energy control

• Higher overall efficiency

• Multiple fuel capabilities

Advantages (cont)

• Aesthetic options

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

10

Pollution Reduction

• Reduction by avoiding utility transmission losses

• Reduction from EMCS

• Reduction by using cogeneration for heating

• Power production shifted from mostly coal-fired utility plants to natural gas plant

11

Central Energy System Topics

• Steam and hot water systems– components

– fuels

– Combined heat and power

• Chilled water systems– components

– configurations

12

Agenda

• Introduction– Community energy– Advantages of a central energy system– Efficiencies– Pollution reduction

• The Fundamentals– Water– Psychometrics

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

13

Fundamentals: Water--Ideal Heat Transfer Fluid

75ºF 76ºF

Specific Heat 1 BTU/lb

Heat of Fusion 144 BTU/lb

Heat of Vaporization 970 BTU/lb

32ºF 212ºF

14

Water On the Road to Psychrometrics

The bottom end of the steam table

The Power of Steam

15

Psychrometric FormulasStandard Air

At Sea Level

70 oF Dry Bulb

50% Relative Humidity

59 oF Wet Bulb

50 oF Dew Point

52 gr moisture/ LB

25.4 h BTU/LB

Specific Volume

13.5 ft3/LB

Specific Heat

0.244 BTU/LB oF

ONE CUBIC FOOT

Sea Level

Elevation

(feet)

0

2000

4000

6000

7500

10000

Barometric

Pressure

(inHg)

29.92

28.86

25.84

23.98

22.75

20.6

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

16

Psychrometrics:Definitions

2530

4540

35

60

55

50

80

70

65

85 90 95 100 105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

180

150

140

130

120

110

160

170

100

70

60

50

40

80

90

30

20

10

0

80%

60%

40%20%

90%

30%

50%70%

10%

12

9

7

13

18

26

34

48

30

16

2222

44

38

h

WB

%RH

Grains of Moisture

Cu ftDB

ChemicalDehydration

DPOne Cubic Foot

17

Applied Psychrometrics:Properties of Moist Air

• Dry-Bulb Temperature, DB– Temperature of air as registered by an

ordinary thermometer

25 30

4540

35

6055

50

80

70

65

85 90 95 100 105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

Grains of MoisturePer Pound of Dry Air

180

150

140130120110

160

170

100

706050

40

8090

3020100

Dry-Bulbtemp. F

Dewpoint orSaturationTemp. F

DB

18

Applied Psychrometrics:Properties of Moist Air

• Wet-Bulb Temperature, WB– Temperature registered by a

thermometer whose bulb is covered by a wetted wick and exposed to a current of rapidly moving air

25 30

4540

35

6055

50

80

70

85 90 95 100 105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

Grains of MoisturePer Pound of Dry Air

180

150

140130120110

160

170

100

706050

40

8090

3020100

Dry-Bulbtemp. F

Dewpoint orSaturationTemp. F

WB

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

19

Applied Psychrometrics:Properties of Moist Air

• Dew point Temperature, DP– Temp. at which condensation of

moisture begins when air is cooled

25 30

4540

35

6055

50

80

70

65

85 90 95 100 105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

Grains of MoisturePer Pound of Dry Air

180

150

140130120110

160

170

100

706050

40

8090

3020100

Dry-Bulbtemp. F

Dewpoint orSaturationTemp. F

DP

20

Applied Psychrometrics:Properties of Moist Air

• Relative Humidity, %RH– Ratio of actual water vapor

pressure in air to the pressure of saturated water vapor in air at the same temperature

25 30

454035

6055

50

80

70

65

85 90 95100105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

Grains of MoisturePer Pound of Dry Air

180

150

140130120110

160

170

100

706050

40

8090

3020100

Dry-Bulbtemp. F

Dewpoint orSaturationTemp. F

129

713

18

26

34

48

30

16

22

44

38

%RH

21

25 30

454035

6055

50

80

70

65

85 90 95100105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

Grains of MoisturePer Pound of Dry Air

180

150

140130120110

160

170

100

706050

40

8090

3020100

Dry-Bulbtemp. F

Dewpoint orSaturation

Temp. F

129

713

18

26

34

48

30

16

22

44

38

Applied Psychrometrics:Properties of Moist Air

• Specific Humidity, (W)– Moisture content

– Weight of water vapor in grains or pounds per pound of dry air

Grains of Moisture

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

22

25 30

454035

6055

50

80

70

65

85 90 95 100105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

Grains of MoisturePer Pound of Dry Air

180

150

140130120110

160

170

100

706050

40

8090

3020100

Dry-Bulbtemp. F

Dewpoint orSaturationTemp. F

129

713

18

26

34

48

30

16

22

44

38

Applied Psychrometrics:Properties of Moist Air

• Enthalpy (h)– Total heat, BTU per pound of dry air

– Thermal property indicating the quantity of heat in the air above an arbitrary datum

– The datum for dry air is 0 F and, for the moisture content, 32 F water

23

25 30

454035

6055

50

80

70

65

85 90 95100105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

Grains of MoisturePer Pound of Dry Air

180

150

140130120110

160

170

100

706050

40

8090

3020100

Dry-Bulbtemp. F

Dewpoint orSaturationTemp. F

80%60%40%

20%

90%

30%50%

70%

10%

129

713

18

26

34

48

30

16

22

44

38

Applied Psychrometrics:Properties of Moist Air

• Specific Volume, (V)– Cubic feet of the mixture

per pound of dry air

Cu ft

24

2530

4540

35

6055

50

80

70

65

85 90 95 100 105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

180

150

140

130

120

110

160

170

100

70

60

50

40

80

90

30

20

10

0

12

9

7

13

18

26

34

48

30

16

22

44

38

Sensible heating

Humidifying

Evaporative cooling

Sensiblecooling

Dehumidifying

Chemical Dehydration

Psychrometrics: Processes

• Air conditioning processes may be shown graphically on the chart.

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

25

Agenda (cont.)

• Chilled Water System– Air Handlers & Coils

– Chillers

– Cooling towers

– Pumps and piping

• Steam and Hot Water Systems– Boilers

– Piping

– Traps & Expansion Joints

– Combined heat and power (CHP)

26

Chilled Water System Components

• Chillers• Cooling Towers / Condensers• Pumps / Piping

• IT IS ALL ABOUT MOVING BTU’S

• Air Handlers / Coils

27

Chilled Water System

Cooling Tower

Chillers

Air Handler

Pumps & Piping

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

28

Air Handling:All Air Systems

29

Chilled Water System Components: Coils

30

Chilled Water System Components

Chillers

– Centrifugal

– Screw

– Absorption

– Reciprocating

4 Types

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

31

Chilled Water System Components: Chillers

• Centrifugal

Chillers

32

Centrifugal Chillers

33

Chilled Water System Components: Chillers

• Screw Chillers

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

34

Chilled Water System Components: Chillers

• Single Stage

Absorption

Chillers

35

Single Stage Steam-Fired Absorption Unit

36

Chilled Water System Components: Chillers

• Two Stage Absorption Chillers

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

37

Two Stage Steam-Fired Absorption Unit

38

Chilled Water System Components

• Condensers– Water Cooled

– Air Cooled

• Cooling Towers

– Forced Draft

– Induced Draft

39

25 30

4540

35

60

55

50

80

70

65

85 90 95 100 105

25 30 35 40 45 50 55 60 65 70 8580 9590 105100

75

75

Grains of MoisturePer Pound of Dry Air

180

150

140130

120

110

160

170

100

70

60

50

40

80

90

30

20

10

0

Dry-Bulbtemp. F

Dewpoint or

SaturationTemp. F

80%60%40%

20%

90%

30%50%

70%

10%

12

9

7

13

18

26

34

48

30

16

22

44

38

Sample CalculationsCooling Tower

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

40

Sample CalculationsCooling Tower

200 Ton Tower Cool 600 gpm from 90 oF to 80 oF with a 70 oF wb ambient.

BTUHw = 600 gpm x 8.33 LB/gal x 60 min/hr x (90-80)DT = 3,000,000 BTUH

41

Chilled Water System Components

• Cooling Towers

– Forced Draft

– Induced Draft

42

Chilled Water System Components

• Pumps/ Piping– Primary/Secondary

– Direct Primary

– Parallel Pumping

– Series Pumping

– Variable Speed Pumping

– Reverse Return Piping System

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

43

CHILLED WATER PIPING CAPACITY TONS(1000 ft2)

CapacityArea

GPM’s were selected to maintain water velocities (V) below 10 fps, and pressure drop (f) below 1’/100’ for large size pipes. The GPM values for smaller size pipes were selected to maintain water velocities below 7 fps, and pressure drop below 4’/100’. The velocities and friction drop values are according to Cameron. (C=100).

1000’s of gross sq. ft. of building are figured at 300 GSF/ton, I.e. (10,500) indicates that approximately 10,500,000 GSF can be air-conditioned with 35,000 tons. For heavy research areas use 220 GSF/ton.

This chart is intended to be used for obtaining an initial estimate of required pipe size and cost. Actual system design must be based on values obtained specifically for the project. Total installed cost per linear ft. of buried supply & return (2 pipes) piping. Price includes trenching, insulation, fittings, backfill & moderate amounts of surfacing repairs. For total project cost add A-E fees, testing, escalations, contingencies, etc.

HP values to pump the water through 1000’ return calculated using:

HP = GPM x TDH TDH = 2000 x f3940 x 7.5 100

44

Agenda (cont.)

• Chilled Water System– Air Handlers & Coils

– Chillers

– Cooling towers

– Pumps and piping

• Steam and Hot Water Systems– Boilers

– Piping

– Traps and Expansion Joints

– Combined heat and power (CHP)

45

HVAC System:Steam and Condensate

• General Arrangement

Boiler Feed Pumps Condensate Pumps

Deaerator

Condensate Tank

Boiler

Building

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

46

47

• Water circulates around the tubes

• Lower cost

• Higher water volume

• Easier to maintain water level

Steam BoilersFire Tube Boiler vs. Water Tube Boiler

• Water circulates through the tubes

• Larger capacities and pressures available

• Faster start up

• Quicker response

Fire Tube Water Tube

48

• Higher initial cost

• Larger than 150,000 pph

Steam Boilers Field Erected Boiler vs. Package Boiler

Package• Manufactured in

controlled environment

• Higher quality

• Lower capital costs

Field Erected

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

49

Steam Boilers Geometry: D-Type

• Flue gas travels down the furnace, turns at the back wall, and then travels back through the convection section

• The stack connection is on the side of the boiler

• Burner is offset to one side with a single row of tubes on the outside and the convection section on the other side

50

Steam Piping Design• Distribution System Types

• Walking Tunnel

• Shallow Tunnel

• Direct Buried

• Material Types

• Carbon Steel (ANSI B 16.9 A106)

• Other

51

Piping Design• Insulation Types

• Factory applied (Perma Pipe)

• Field applied

• Pitch

• Velocity/pressure limits

• Condensate Returns/Trapping

• Effect of Leaks

• Expansion devices

• Supports/guides/anchors

• Hookups/Accessories

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

52

Condensate Return-Traps• Typical Application

• Types

• Thermostatic

• Liquid expansion

• Balanced pressure

• Bimetallic

53

Condensate Return-Traps• Types (cont’d)

• Mechanical

• Bucket

• Float

• Thermodynamic

• Impulse

• Disc

54

Typical Application

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

55

Mechanical-Float & Thermostatic

56

Expansion-Basic Restraint

57

Expansion-Sliding Joint

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

58

Expansion-Bellows

59

Hookup-Main Drips

Bad

Good

60

Hookup-Takeoff

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

61

Waterhammer-Steam Induced

62

Tunnel Flooding-Condensate Generation

63

STEAM SYSTEM PIPING CAPACITY 1000 lb/hr(1000 ft2)

[HP]

Steam QuantityAreaFeedwater Pump HP

This chart is intended to be used for obtaining an initial estimate of required pipe size and cost. Actual system design must be based on values obtained specifically for the project. Total installed cost per linear ft. of buried supply & return (2 pipes) piping. Price includes trenching, insulation, fittings, backfill & moderate amounts of surfacing repairs. For total project cost add A-E fees, testing, escalations, contingencies, etc.

Building SQFT values are based on 60 Btuh/sqft peak average combined load (building heat and domestic hot water). For winter lows below +25 F: at 0 F multiply building SQFT by 0.8, at -20 F multiply building SQFT by 0.6.

Steam lines are sized to approximately 10,000 ft/min.

Condensate lines are sized to approximately yield pressure drops less than 2’/100’.

Prices shown are construction cost for a direct buried dual conduit piping system.

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

64

A Barrel of Oil(42 Gallons)

• $98.00

65

Fuel Prices (est.)Natural Gas @ 80% Efficiency

• $7.00 / million Btu

Coal @ 75% Efficiency

• $2.60/million Btu

Electric @ 96% Efficiency

• $28.00/million Btu

Liquids @ 80% Efficiency

• Grade $/million BtuGasoline 28.00

Diesel 26.00

Jet Fuel 24.00

Firewood @ 50% Efficiency

• $8.00/million Btu

Corn @ 75% Efficiency

• $19.00/million Btu

www.eia.gov

U.S. Energy Information Administration Independent Statistics & Analysis

December 2013

ANNUAL ENERGY OUTLOOK Reference Case

ANNUAL ENERGY OUTLOOK Reference Case

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

Key results from the AEO2014 Reference case

67

• Growing domestic production of natural gas and oil continues to reshape the U.S. energy economy, with crude oil approaching the 1970 all‐time high of 9.6 million barrels per day

• Light‐duty vehicle energy use declines sharply reflecting slowing growth in vehicle miles traveled and accelerated improvement in vehicle efficiency

• With continued growth in shale gas production, natural gas becomes the largest source of U.S. electric power generation, surpassing coal by 2035, and boosting production and natural gas consumption in manufacturing

• Strong growth in domestic natural gas production supports increased exports of both pipeline and liquefied natural gas

• With strong growth in domestic oil and gas production, U.S. dependence on imported fuels falls sharply

• Improved efficiency of energy use and a shift away from carbon‐intensive fuels keep U.S. energy‐related carbon dioxide emissions below their 2005 level through 2040

Adam Sieminski, December 16, 2013

OVERVIEW OF U.S. ENERGY SUPPLY AND DEMAND

OVERVIEW OF U.S. ENERGY SUPPLY AND DEMAND

Growth in U.S. energy production outstrips growth in consumption leading to a reduction in net imports

69

U.S. energy production and consumption

quadrillion Btu

Source:  EIA, Annual Energy Outlook 2014 Early Release

History Projections2012

4%Consumption

Production

Net imports16%

Adam Sieminski, December 16, 2013

3%

2034 2040

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

Growing tight oil and offshore crude oil production drive U.S. output close to historical high

70

U.S. crude oil production

million barrels per day

Source:  EIA, Annual Energy Outlook 2014 Early Release

Tight oil

Alaska

Other lower 48 onshore

Lower 48 offshore

ProjectionsHistory 2012

Adam Sieminski, December 16, 2013

U.S. maximum production level of9.6 million barrels per day in 1970

Transportation sector motor gasoline demand declines, while diesel fuel accounts for a growing portion of the market

71

transportation energy consumption by fuel

quadrillion Btu

Source:  EIA, Annual Energy Outlook 2014 Early Release

Adam Sieminski, December 16, 2013

ProjectionsHistory2012

59% Motor gasoline

Jet fuel

CNG/LNG

12% 13%3%

44%

31%

3% 4%Other

Diesel22%

2030

47%

13%3%

30%

1%

2040

Ethanol4%5%

5%

Shale gas leads U.S. production growth

72

U.S. dry natural gas production

trillion cubic feet

Source:  EIA, Annual Energy Outlook 2014 Early Release

Associated with oilCoalbed methane

Tight gas

Shale gas

AlaskaNon-associated offshore

Non-associated onshore

ProjectionsHistory 2012

Adam Sieminski, December 16, 2013

billion cubic feet per day

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

Electricity generation from natural gas surpasses coal

electricity generation by fuel

billion kilowatthours

73

History Projections

Coal

Natural gas

Adam Sieminski, December 16, 2013

2012

Source:  EIA, Annual Energy Outlook 2014 Early Release

Manufacturing output and natural gas use grows with low natural gas prices, particularly in the near term

74

manufacturing natural gas consumption

quadrillion Btu

Source: EIA, Annual Energy Outlook 2014 Early Release

Adam Sieminski, December 16, 2013

AluminumGlass

Iron and steel

Paper

Food

Refining andrelated

Bulk chemicals

Other

Metal based

billion cubic feet per day

durables

manufacturing

U.S. natural gas imports and exports

trillion cubic feet per year

Alaska LNG exports

Pipeline exports to Mexico

Pipeline exports to Canada

Lower 48 states LNG exports

Pipeline imports from Canada

LNG imports

Source:  EIA, Annual Energy Outlook 2014 Early Release

Adam Sieminski, December 16, 2013

75

-15

-10

-5

0

5

10

15

20

25

billion cubic feet per day

5.4 tcf of exports(14.8 bcf/day)

2.0 tcf of imports(5.4 bcf/day)

U.S. natural gas gross exports exceed 5 tcf in 2025

ProjectionsHistory 20122025

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

U.S. petroleum product imports and exports

million barrels per day

Other petroleumproduct imports

Distillate exports

Motor gasoline exports

Other petroleumproduct exports

Distillate imports

Motor gasoline imports

Source:  EIA, Annual Energy Outlook 2014 Early Release

Adam Sieminski, December 16, 2013

76

U.S. maintains status as a net exporter of petroleum products

ProjectionsHistory 2012

Total petroleum product net exports

Energy‐related CO2 emissions remain below the 2005 level over the projection period

77

carbon dioxide emissions

billion metric tons

Source:  EIA, Annual Energy Outlook 2014 Early Release

ProjectionsHistory 20122005

Adam Sieminski, December 16, 2013

Energy‐related carbon dioxide emissions are 9% below the 2005 level in 2020 and 7% below the 2005 level in 

2040.

PETROLEUM AND OTHERLIQUID SUPPLY

PETROLEUM AND OTHERLIQUID SUPPLY

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

U.S. dependence on imported liquids declines, particularly in the near term

79

U.S. liquid fuel supply

million barrels per day

Source:  EIA, Annual Energy Outlook 2014 Early Release

Consumption

Domestic supply

Net imports40%

32%

ProjectionsHistory 20122005

60%

Adam Sieminski, December 16, 2013

25%

2016 2040

Increased production of tight oil and greater fuel efficiency drive decline in petroleum and other liquids imports

80

Note: “Other” includes refinery gain, biofuels production, all stock withdrawals, and other domestic sources of liquid fuels

Source:  EIA, Annual Energy Outlook 2014 Early Release

ProjectionsHistory

Natural gas plant liquids

Crude oil production(excluding tight)

Net petroleum and biofuel imports

32%

17%

12%

23%

12%

13%

40%

2012

Other

23%

Tight oil production

16%

12%

U.S. liquid fuels supply

million barrels per day

Adam Sieminski, December 16, 2013

14%

25%

2016

25%

12%

24%

2040

Natural gas use in the transportation sector grows rapidly with the largest share in freight trucks

81

natural gas use by mode

trillion Btu

Source:  EIA, Annual Energy Outlook 2014 Early Release

Adam Sieminski, December 16, 2013

Freight trucks

Buses

Freight rail and marineLight-duty vehicles

22%

billion cubic feet per day

Approximate crude oil equivalent, (thousand barrels per day) 2040

Freight trucksFreight rail and marineBusesLight-duty vehicles

29071389

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

NATURAL GASNATURAL GAS

U.S. natural gas prices remain well below crude oil prices

83

energy spot prices

2012 dollars per million Btu

Source:  EIA, Annual Energy Outlook 2014 Early Release

History Projections2012

Henry Hub spot price

Adam Sieminski, December 16, 2013

Brent crude oil spot price

2018 2040

Ratio:7.1

Oil to gas price ratio:

3.4

Ratio:3.2

U.S. becomes a net exporter of natural gas in the near future

84

U.S. dry natural gas

trillion cubic feet per year

Source:  EIA, Annual Energy Outlook 2014 Early Release

Adam Sieminski, December 16, 2013

ProjectionsHistory 2012

Consumption

Domestic supply

Net exports

100

75

50

25

0

-25

billion cubic feet per day

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

85

U.S. dry gas consumption

trillion cubic feet

Source:  EIA, Annual Energy Outlook 2014 Early Release

ProjectionsHistory

Industrial*

Electricpower

Commercial

Residential

Transportation**

11.2

4.1

1.7

11.0

3.6

9.1

4.2

0.7

8.5

2.9

*Includes combined heat-and-power and lease and plant fuel**Includes pipeline fuel

Natural gas consumption growth is driven by electric power, industrial, and transportation use

Adam Sieminski, December 16, 2013

ELECTRICITYELECTRICITY

Growth in electricity use slows, but still increases by 28% from 2012 to 2040

87

U.S. electricity use

percent growth (3‐year rolling average)

Source:  EIA, Annual Energy Outlook 2014 Early Release

Projections

History 2012

Period Annual Growth__Electricity use GDP

1950s 9.8 4.11960s 7.3 4.41970s 4.7 3.21980s 2.9 3.01990s 2.4 3.22000-2012 0.7 1.82013-2040 0.9 2.4

Adam Sieminski, December 16, 2013

Gross domestic product

Electricity use

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

Over time the electricity mix gradually shifts to lower‐carbon options, led by growth in natural gas and renewable generation 

88

electricity net generation

trillion kilowatthours per year

Source:  EIA, Annual Energy Outlook 2014 Early Release

30%

19%

37%

12%

1% NuclearOil and other liquids

Natural gas

Coal

Renewables

2012ProjectionsHistory

16%

16%

32%

35%

<1%

Adam Sieminski, December 16, 2013

1993

11%13%

19%

53%

4%

30%

17%

37%

15%

1%

2025 2040

Non‐hydro renewable generation more than doubles between 2012 and 2040

89

non‐hydropower renewable generation

billion kilowatthours per year

Source:  EIA, Annual Energy Outlook 2013 Early Release

Wind

Solar

GeothermalMunicipal waste

Biomass

Industrial CHP

Power sector

2012 ProjectionsHistory

Adam Sieminski, December 16, 2013

For more information

90

U.S. Energy Information Administration home page | www.eia.gov

Annual Energy Outlook | www.eia.gov/forecasts/aeo

Short‐Term Energy Outlook | www.eia.gov/forecasts/steo

International Energy Outlook | www.eia.gov/forecasts/ieo

Today In Energy | www.eia.gov/todayinenergy

Monthly Energy Review | www.eia.gov/totalenergy/data/monthly

State Energy Portal | www.eia.gov/state

Adam Sieminski, December 16, 2013

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

U.S. Energy Flow TrendsU.S. Energy Flow Trends

Source: GLHN Architects & Engineers, Inc.

QUADRILLION BTUs (1015)

92

Fossil Fuels & Climate Change

93

Fossil Fuels & Climate Change

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

94

The U.S. Built Environment

Currently the USBuilding stock is approx.200 billion sf.

95

The U.S. Built Environment

Over the next 30 years

52 billion sf will bedemolished

96

The U.S. Built Environment

150 billion sf will beRemodeled

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

97

The U.S. Built Environment

150 billion sf will beNew construction

98

The U.S. Built Environment

Therefore, by the year2035, three-quartersof the building stockwill be new or renovated

99

Can We Do It- Done it before

APPA Institute – Session 301C EU © GLHN Architects & Engineers, Inc.

100

A “SMART” Goal

Over the next 5-7 years the University of Arizona will add 1

million square feet to their built environment; the

consumption of fossil fuels will remain at 2007 levels.

101

[email protected]