proton sponges: a simple organic motif for revealing the quantum structure of the intramolecular...

17
Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H + H + H + H + H + H + H + H + H + H + H + H + H + H + N N H 3 C H 3 C CH 3 CH 3 N N H 3 C H 3 C CH 3 CH 3 H Andrew F. DeBlase, Christopher M. Leavitt, Timothy L. Guasco, Michael T. Scerba, Thomas Lectka, and Mark A. Johnson June 23, 2011 Ohio State University International Ohio State University International Symposium on Molecular Spectroscopy Symposium on Molecular Spectroscopy

Upload: dorcas-jordan

Post on 13-Dec-2015

247 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Proton Sponges A Simple Organic Motif for Revealing the Quantum Structure of

the Intramolecular Proton Bond

H+ H+

H+

H+

H+

H+

H+

H+

H+

H+

H+H+

H+

H+N N

H3CH3C CH3

CH3

N N

H3CH3C CH3

CH3H

Andrew F DeBlase Christopher M Leavitt Timothy L Guasco Michael T Scerba Thomas Lectka and Mark A Johnson

June 23 2011

Ohio State University International Ohio State University International Symposium on Molecular SpectroscopySymposium on Molecular Spectroscopy

Ar

Pre

dis

soci

atio

n Y

ield

The Shared ProtonThe Shared ProtonShared proton vibrational frequency well characterized by vibrational predissociation spectroscopy

Roscioli et al Science 2007

1000 1500 2000 2500 3000 3500

Photon Energy (cm-1)

Stoyanov and Reed J Phys Chem A 2006

Ab

sorp

tio

n

O H+

OCH2CH3

CH2CH3

CH3CH2

CH3CH2

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

- Imidazole wires for anhydrous membranes

+

N N

C C

C

N N

C C

C

N N

C C

C

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

Gerardi et al J Chem Phys Lett 2011

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

bull Proposed increase in binding affinity of pharmaceuticals

- Neutral H-bond 15-fold increase

- Charged H-bond 3000-fold increase

N H F R N H C R

R

R

F

bull Enhancement of organic bases (proton sponges)

- Destabilized base

- Stabilized conjugate acid intramolecular proton bond

N N

H3CH3C CH3

CH3H

N N

H3CH3C CH3

CH3H

H+ldquoSmeared outrdquo QM particle

N N

H3CH3C CH3

CH3

1 8

What to ExpectWhat to Expect

ldquoUniversal Trendrdquo For intermolecular A∙H+∙B Gas Phase Dimers

Letrsquos start in easiest range to measureLetrsquos start in easiest range to measure

FN

Roscioli et al Science 2007

PA[(CH3)3N] = 9391 kJmol-1

PA[CH3F] = 6318 kJmol-1

Parrillo et Al J Am Chem Soc 1993

Beauchamp Annu Rev Phys Chem 1971

∆PA = 3073 kJmol-1

asymp 3200 cm-1

Experimental SetupExperimental Setup

Ion optics

ElectrosprayNeedle

RF Only Quadrupoles

Octopoles

Pressure (Torr)

3D Quadrupole Ion Trap with Temperature Control to 8 K

TOF to IR Spectrometer

New Cryogenic Ion Source

3times10-7 1times10-5 15times10-2 15 760

HeatedCapillary

90deg Ion Bender

Wiley-McLarenExtraction Region

2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600

Photon Energy (cm-1)

Loss D2

Loss 2H2

NH3CH3C H

NH3CH3C

FH

CndashHStretches

NndashH+∙∙∙FStretch

Predissociation

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)

Free

D2 CndashHStretches

NndashH+

stretch

ResultsResults ldquoThe Lone Rangerrdquo

ExpD2

600 800 1000 1200 1400 1600 2600 2800 3000 3200 3400

Photon Energy (cm-1)

Ca

lcu

late

d In

ten

sity

Pre

diss

oci

atio

n Y

ield

NH3 CH3C

FH

NndashH+∙∙∙FStretch

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)(BendingDeformations 0977)

Loss 2H2Loss D2

CH and NHBending

ResultsResults

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 2: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Ar

Pre

dis

soci

atio

n Y

ield

The Shared ProtonThe Shared ProtonShared proton vibrational frequency well characterized by vibrational predissociation spectroscopy

Roscioli et al Science 2007

1000 1500 2000 2500 3000 3500

Photon Energy (cm-1)

Stoyanov and Reed J Phys Chem A 2006

Ab

sorp

tio

n

O H+

OCH2CH3

CH2CH3

CH3CH2

CH3CH2

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

- Imidazole wires for anhydrous membranes

+

N N

C C

C

N N

C C

C

N N

C C

C

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

Gerardi et al J Chem Phys Lett 2011

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

bull Proposed increase in binding affinity of pharmaceuticals

- Neutral H-bond 15-fold increase

- Charged H-bond 3000-fold increase

N H F R N H C R

R

R

F

bull Enhancement of organic bases (proton sponges)

- Destabilized base

- Stabilized conjugate acid intramolecular proton bond

N N

H3CH3C CH3

CH3H

N N

H3CH3C CH3

CH3H

H+ldquoSmeared outrdquo QM particle

N N

H3CH3C CH3

CH3

1 8

What to ExpectWhat to Expect

ldquoUniversal Trendrdquo For intermolecular A∙H+∙B Gas Phase Dimers

Letrsquos start in easiest range to measureLetrsquos start in easiest range to measure

FN

Roscioli et al Science 2007

PA[(CH3)3N] = 9391 kJmol-1

PA[CH3F] = 6318 kJmol-1

Parrillo et Al J Am Chem Soc 1993

Beauchamp Annu Rev Phys Chem 1971

∆PA = 3073 kJmol-1

asymp 3200 cm-1

Experimental SetupExperimental Setup

Ion optics

ElectrosprayNeedle

RF Only Quadrupoles

Octopoles

Pressure (Torr)

3D Quadrupole Ion Trap with Temperature Control to 8 K

TOF to IR Spectrometer

New Cryogenic Ion Source

3times10-7 1times10-5 15times10-2 15 760

HeatedCapillary

90deg Ion Bender

Wiley-McLarenExtraction Region

2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600

Photon Energy (cm-1)

Loss D2

Loss 2H2

NH3CH3C H

NH3CH3C

FH

CndashHStretches

NndashH+∙∙∙FStretch

Predissociation

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)

Free

D2 CndashHStretches

NndashH+

stretch

ResultsResults ldquoThe Lone Rangerrdquo

ExpD2

600 800 1000 1200 1400 1600 2600 2800 3000 3200 3400

Photon Energy (cm-1)

Ca

lcu

late

d In

ten

sity

Pre

diss

oci

atio

n Y

ield

NH3 CH3C

FH

NndashH+∙∙∙FStretch

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)(BendingDeformations 0977)

Loss 2H2Loss D2

CH and NHBending

ResultsResults

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 3: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

- Imidazole wires for anhydrous membranes

+

N N

C C

C

N N

C C

C

N N

C C

C

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

Gerardi et al J Chem Phys Lett 2011

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

bull Proposed increase in binding affinity of pharmaceuticals

- Neutral H-bond 15-fold increase

- Charged H-bond 3000-fold increase

N H F R N H C R

R

R

F

bull Enhancement of organic bases (proton sponges)

- Destabilized base

- Stabilized conjugate acid intramolecular proton bond

N N

H3CH3C CH3

CH3H

N N

H3CH3C CH3

CH3H

H+ldquoSmeared outrdquo QM particle

N N

H3CH3C CH3

CH3

1 8

What to ExpectWhat to Expect

ldquoUniversal Trendrdquo For intermolecular A∙H+∙B Gas Phase Dimers

Letrsquos start in easiest range to measureLetrsquos start in easiest range to measure

FN

Roscioli et al Science 2007

PA[(CH3)3N] = 9391 kJmol-1

PA[CH3F] = 6318 kJmol-1

Parrillo et Al J Am Chem Soc 1993

Beauchamp Annu Rev Phys Chem 1971

∆PA = 3073 kJmol-1

asymp 3200 cm-1

Experimental SetupExperimental Setup

Ion optics

ElectrosprayNeedle

RF Only Quadrupoles

Octopoles

Pressure (Torr)

3D Quadrupole Ion Trap with Temperature Control to 8 K

TOF to IR Spectrometer

New Cryogenic Ion Source

3times10-7 1times10-5 15times10-2 15 760

HeatedCapillary

90deg Ion Bender

Wiley-McLarenExtraction Region

2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600

Photon Energy (cm-1)

Loss D2

Loss 2H2

NH3CH3C H

NH3CH3C

FH

CndashHStretches

NndashH+∙∙∙FStretch

Predissociation

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)

Free

D2 CndashHStretches

NndashH+

stretch

ResultsResults ldquoThe Lone Rangerrdquo

ExpD2

600 800 1000 1200 1400 1600 2600 2800 3000 3200 3400

Photon Energy (cm-1)

Ca

lcu

late

d In

ten

sity

Pre

diss

oci

atio

n Y

ield

NH3 CH3C

FH

NndashH+∙∙∙FStretch

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)(BendingDeformations 0977)

Loss 2H2Loss D2

CH and NHBending

ResultsResults

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 4: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

Gerardi et al J Chem Phys Lett 2011

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

bull Proposed increase in binding affinity of pharmaceuticals

- Neutral H-bond 15-fold increase

- Charged H-bond 3000-fold increase

N H F R N H C R

R

R

F

bull Enhancement of organic bases (proton sponges)

- Destabilized base

- Stabilized conjugate acid intramolecular proton bond

N N

H3CH3C CH3

CH3H

N N

H3CH3C CH3

CH3H

H+ldquoSmeared outrdquo QM particle

N N

H3CH3C CH3

CH3

1 8

What to ExpectWhat to Expect

ldquoUniversal Trendrdquo For intermolecular A∙H+∙B Gas Phase Dimers

Letrsquos start in easiest range to measureLetrsquos start in easiest range to measure

FN

Roscioli et al Science 2007

PA[(CH3)3N] = 9391 kJmol-1

PA[CH3F] = 6318 kJmol-1

Parrillo et Al J Am Chem Soc 1993

Beauchamp Annu Rev Phys Chem 1971

∆PA = 3073 kJmol-1

asymp 3200 cm-1

Experimental SetupExperimental Setup

Ion optics

ElectrosprayNeedle

RF Only Quadrupoles

Octopoles

Pressure (Torr)

3D Quadrupole Ion Trap with Temperature Control to 8 K

TOF to IR Spectrometer

New Cryogenic Ion Source

3times10-7 1times10-5 15times10-2 15 760

HeatedCapillary

90deg Ion Bender

Wiley-McLarenExtraction Region

2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600

Photon Energy (cm-1)

Loss D2

Loss 2H2

NH3CH3C H

NH3CH3C

FH

CndashHStretches

NndashH+∙∙∙FStretch

Predissociation

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)

Free

D2 CndashHStretches

NndashH+

stretch

ResultsResults ldquoThe Lone Rangerrdquo

ExpD2

600 800 1000 1200 1400 1600 2600 2800 3000 3200 3400

Photon Energy (cm-1)

Ca

lcu

late

d In

ten

sity

Pre

diss

oci

atio

n Y

ield

NH3 CH3C

FH

NndashH+∙∙∙FStretch

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)(BendingDeformations 0977)

Loss 2H2Loss D2

CH and NHBending

ResultsResults

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 5: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Applications of Shared Proton BondsApplications of Shared Proton Bondsbull Fuel Cell Membranes

bull Proposed increase in binding affinity of pharmaceuticals

- Neutral H-bond 15-fold increase

- Charged H-bond 3000-fold increase

N H F R N H C R

R

R

F

bull Enhancement of organic bases (proton sponges)

- Destabilized base

- Stabilized conjugate acid intramolecular proton bond

N N

H3CH3C CH3

CH3H

N N

H3CH3C CH3

CH3H

H+ldquoSmeared outrdquo QM particle

N N

H3CH3C CH3

CH3

1 8

What to ExpectWhat to Expect

ldquoUniversal Trendrdquo For intermolecular A∙H+∙B Gas Phase Dimers

Letrsquos start in easiest range to measureLetrsquos start in easiest range to measure

FN

Roscioli et al Science 2007

PA[(CH3)3N] = 9391 kJmol-1

PA[CH3F] = 6318 kJmol-1

Parrillo et Al J Am Chem Soc 1993

Beauchamp Annu Rev Phys Chem 1971

∆PA = 3073 kJmol-1

asymp 3200 cm-1

Experimental SetupExperimental Setup

Ion optics

ElectrosprayNeedle

RF Only Quadrupoles

Octopoles

Pressure (Torr)

3D Quadrupole Ion Trap with Temperature Control to 8 K

TOF to IR Spectrometer

New Cryogenic Ion Source

3times10-7 1times10-5 15times10-2 15 760

HeatedCapillary

90deg Ion Bender

Wiley-McLarenExtraction Region

2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600

Photon Energy (cm-1)

Loss D2

Loss 2H2

NH3CH3C H

NH3CH3C

FH

CndashHStretches

NndashH+∙∙∙FStretch

Predissociation

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)

Free

D2 CndashHStretches

NndashH+

stretch

ResultsResults ldquoThe Lone Rangerrdquo

ExpD2

600 800 1000 1200 1400 1600 2600 2800 3000 3200 3400

Photon Energy (cm-1)

Ca

lcu

late

d In

ten

sity

Pre

diss

oci

atio

n Y

ield

NH3 CH3C

FH

NndashH+∙∙∙FStretch

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)(BendingDeformations 0977)

Loss 2H2Loss D2

CH and NHBending

ResultsResults

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 6: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

What to ExpectWhat to Expect

ldquoUniversal Trendrdquo For intermolecular A∙H+∙B Gas Phase Dimers

Letrsquos start in easiest range to measureLetrsquos start in easiest range to measure

FN

Roscioli et al Science 2007

PA[(CH3)3N] = 9391 kJmol-1

PA[CH3F] = 6318 kJmol-1

Parrillo et Al J Am Chem Soc 1993

Beauchamp Annu Rev Phys Chem 1971

∆PA = 3073 kJmol-1

asymp 3200 cm-1

Experimental SetupExperimental Setup

Ion optics

ElectrosprayNeedle

RF Only Quadrupoles

Octopoles

Pressure (Torr)

3D Quadrupole Ion Trap with Temperature Control to 8 K

TOF to IR Spectrometer

New Cryogenic Ion Source

3times10-7 1times10-5 15times10-2 15 760

HeatedCapillary

90deg Ion Bender

Wiley-McLarenExtraction Region

2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600

Photon Energy (cm-1)

Loss D2

Loss 2H2

NH3CH3C H

NH3CH3C

FH

CndashHStretches

NndashH+∙∙∙FStretch

Predissociation

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)

Free

D2 CndashHStretches

NndashH+

stretch

ResultsResults ldquoThe Lone Rangerrdquo

ExpD2

600 800 1000 1200 1400 1600 2600 2800 3000 3200 3400

Photon Energy (cm-1)

Ca

lcu

late

d In

ten

sity

Pre

diss

oci

atio

n Y

ield

NH3 CH3C

FH

NndashH+∙∙∙FStretch

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)(BendingDeformations 0977)

Loss 2H2Loss D2

CH and NHBending

ResultsResults

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 7: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Experimental SetupExperimental Setup

Ion optics

ElectrosprayNeedle

RF Only Quadrupoles

Octopoles

Pressure (Torr)

3D Quadrupole Ion Trap with Temperature Control to 8 K

TOF to IR Spectrometer

New Cryogenic Ion Source

3times10-7 1times10-5 15times10-2 15 760

HeatedCapillary

90deg Ion Bender

Wiley-McLarenExtraction Region

2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600

Photon Energy (cm-1)

Loss D2

Loss 2H2

NH3CH3C H

NH3CH3C

FH

CndashHStretches

NndashH+∙∙∙FStretch

Predissociation

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)

Free

D2 CndashHStretches

NndashH+

stretch

ResultsResults ldquoThe Lone Rangerrdquo

ExpD2

600 800 1000 1200 1400 1600 2600 2800 3000 3200 3400

Photon Energy (cm-1)

Ca

lcu

late

d In

ten

sity

Pre

diss

oci

atio

n Y

ield

NH3 CH3C

FH

NndashH+∙∙∙FStretch

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)(BendingDeformations 0977)

Loss 2H2Loss D2

CH and NHBending

ResultsResults

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 8: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600

Photon Energy (cm-1)

Loss D2

Loss 2H2

NH3CH3C H

NH3CH3C

FH

CndashHStretches

NndashH+∙∙∙FStretch

Predissociation

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)

Free

D2 CndashHStretches

NndashH+

stretch

ResultsResults ldquoThe Lone Rangerrdquo

ExpD2

600 800 1000 1200 1400 1600 2600 2800 3000 3200 3400

Photon Energy (cm-1)

Ca

lcu

late

d In

ten

sity

Pre

diss

oci

atio

n Y

ield

NH3 CH3C

FH

NndashH+∙∙∙FStretch

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)(BendingDeformations 0977)

Loss 2H2Loss D2

CH and NHBending

ResultsResults

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 9: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

600 800 1000 1200 1400 1600 2600 2800 3000 3200 3400

Photon Energy (cm-1)

Ca

lcu

late

d In

ten

sity

Pre

diss

oci

atio

n Y

ield

NH3 CH3C

FH

NndashH+∙∙∙FStretch

MP26-311+G(NH Scaled 0943)(CH Scaled 0957)(BendingDeformations 0977)

Loss 2H2Loss D2

CH and NHBending

ResultsResults

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 10: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

MP2aug-cc-pVTZ

N N

Minimal energy PT path(1)N-N contraction(2)Ammonium N-H elongation

Asmis et al Angew Chem Int Ed 2007

AnharmonicitiesN-H 464 cm-1 calcN-H + N-N = 743 cm-1

N-H + 2N-N = 1069 cm-1

N-H + 3N-N = 1440 cm-1

Potential Energy SurfacesPotential Energy Surfaces

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 11: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Potential Energy SurfacesPotential Energy Surfaces

N

H

H

H

N

H

HH

H

r

y

x

R

y = 0

x = 0Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

R (

Aring)

y (Aring

)

x (Aring)

N N

H3CH3C CH3

CH3HR

x (Aring)

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 12: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

04 06 08 10 12 14 16 18 20 22-20

0

20

40

60

80

100

120

V(x

) (k

cal∙m

ol-1)

x (Aring)

R1 R2

H+

R1 = (CH3)2N R2 = F

R1 = (CH3)2N R2 = OH

x

y

R1 = R2 = (CH3)2N

Potential Energy SurfacesPotential Energy Surfaces

∆E1larr0797 cm-1

2744 cm-1

2897 cm-1

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 13: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Future WorkFuture Workbull Get spectra

- Compounds in the fridge

- Others being synthesized

Substitution

R1 R2

N(CH3)2 N(CH3)2

N(CH3)2OH

N(CH3)2OMe

N(CH3)2OEt

NH2OH

NH2OMe

NH2OEt

N(CH3)2 OCF3

NH2 OCF3

bull Question When will shared proton couple

to aromatic vibrations

bull Use motiffs that increasedecrease

proton donor-acceptor distance

eg R1 R2

H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 14: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

AcknowledgementsAcknowledgementsbull Labmates Especially Tim Guasco and Chris Leavittbull Mark New science new hobbiesbull Tom Lectkarsquos group at JHU for making the moleculesbull Funding National Science Foundation Air Force

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 15: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Supplemental SlidesSupplemental Slides

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 16: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Potential Energy SurfacesPotential Energy Surfaces

U(r

) (k

cal∙m

ol-1)

r(N-H) Aring

R = 300 Aring

R = 287 Aring

R = 275 Aring

R = 250 Aring

EquilibriumR asymp 275 Aring R = 275 Aring

N

H

H

H

N

H

HH

H

r

y

x

R Jaroszewski Lesyng Tanner McCammon Chem Phys Lett 1990

Image fromFoces-Foces et alJ Mol Struct 1990

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 17: Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+

Deviation from Universal TrendDeviation from Universal Trend

Breaks down if ∆PA is small and ∆μ is large

Gardenier Roscioli and Johnson J Phys Chem A 2008

PA = 882 kJmol = 205 D

Photon Energy (cm-1)

800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600800 1200 1600 2000 2400 2800 3200 3600

x20x20x20x20

Predicted Shared-Proton

Transition

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17