proton detection in the spectrometer

32
Proton Detection in the Spectrometer aSPECT [email protected] M. Simson 1,4 , H. Angerer 1 , F. Ayala-Guardia 2 , S. Baeßler 2 , M. Borg 2 , J. Byrne 3 , K. Eberhardt 2 , F. Glück 2 , M. van der Grinten 3 , W. Heil 2 , I. Konorov 1 , G. Konrad 2 , R. Munoz-Horta 2 , G. Petzoldt 1 , Y. Sobolev 2 , H.-F. Wirth 1 , O. Zimmer 1,4 1 TU München 2 Johannes-Gutenberg-Universität Mainz 3 University of Sussex 4 ILL Grenoble

Upload: others

Post on 28-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Proton Detection in the Spectrometer aSPECT

[email protected]

M. Simson1,4, H. Angerer1, F. Ayala-Guardia2, S. Baeßler2, M. Borg2, J. Byrne3, K. Eberhardt2, F. Glück2, M. van der Grinten3, W. Heil2, I. Konorov1, G. Konrad2, R. Munoz-Horta2, G. Petzoldt1, Y. Sobolev2, H.-F. Wirth1, O. Zimmer1,4

1 TU München2 Johannes-Gutenberg-Universität Mainz

3 University of Sussex4ILL Grenoble

2

Outline

• The “old” Detector– Setup– Performance during the

beam times– Systematic investigations

• A new Detector– Detection principle– First results with a test

detector– Outlook: The “new”

detector• Conclusion

3

Detector & Preamplifier(~ -30 kV)

Digital electronics

UHV-gate valve

ExB electrodes

4

The aSPECT Detector

• Si-PIN Diode– 25 Strips – Strip size 0.8 x 25 mm2

– Entrance Window 67 nm (40 nm Si3N4 + 27 nm SiO2)

5

Readout Electronics

6

Pulseheight Spectra

Pulseheight Spectra for 50 V and 800 V at the analyzing plane

Background (800 V) subtracted spectra

Detector at 30 kV

7

Offline Data Analysis

Fit of the events with theoretical known pulse function

Single proton events: High noise, low signal: background-ratio (~10:1)!Bad separation of proton- and background-peak in the pulse height spectrum

8

Diode Characteristics

Det. 2: Does not detect protons any more

Det. 4: Still detecting protons

9

Proton Source

Specs:– Proton energy 10-35 keV– Flux: nA to several CPS– Two monitor detectors– Other ions possible

paff: “proton accelerator with femto ampere flux“

Detector

A.R. Müller et al. submitted to NIM A

10

Between the Strips

Gap between the strips: 200 µm Small, movable aperture ( Ø 0.2 mm) before the detector

Submitted to NIM A

11

Temperature effects

Cooling the setup reduces the amount of noise significantly

12

A new detector type

• New Type: Silicon Drift Detector (SDD)• Principle:

p-doped backsidep-doped rings

P. Lechner et. al. , XRS 2004 33 256-261

Potential Valley

e- drift to a smallanode in the middle

13

SDD Test Detector

• Supplied by HLL / PNSensor• Features:

– Active area: 30 mm2

– Integrated FET– Mounted ready to use

– Mounted on a Peltierelement

– Optimized preamp + shaper

– Integrated temperature diode

– Different entrance windows available

14

First Spectra with the SDD

First protons on the SDD:

Detector at room temperature

Submitted to NIM A

Energy Calibration with a 55Fe source:

Mn-Kα − FWHM @ -13 °C:~ 165 eV

Submitted to NIM A

15

First Spectra with the SDD II

Comparison:

protons – electronic noise

Protons on the cooled detector:

Impact energy 12 keV

Temperature -4 °C

Submitted to NIM A

16

Charge Collection Efficiency

• 3 part function• 4 Parameters

– S : Minimum (starting point)

– τ : Steepness

– c : Shape

– l : Depth

17

Simulations done with SRIM

Simulations

Questions:How much energy is detected for each proton?

How many protons are backscattered?Is there an angular / energy dependence?

18

Artificially broaden thesimulation by the noise

S = 0.41τ = 75 nmc = 2l = 50 nm

Tune the CCE parametersto fit the measurements

From Measurement to CCE

EXYZ-File Calculate ΔEfor each line

Multiply itby the CCE

Integrate over thecomplete track

19

A new detector for aSPECT

active area: 3 x 100 mm²14

mm

34 mm

Temperature diode

20

A new detector for aSPECT II

• Advantages:– Noise performance comparable to the test

detector– HV only ~ 15 kV– New (simplified) detector mechanics– Simplified preamplifier (based on 3 Amptek A250)

• Disadvantages:– Loss of spatial resolution– (Slightly) reduced count rate

21

Conclusion

• First beam times with aSPECT completed

• Present detector performance not satisfying

• New SDD detector successfully tested• SDDs will be ready for the next beam time at

the ILL in autumn

22

Online Trigger

• No external trigger self-triggering system• Signals are shifted through time bins• Trigger settings:

– W1: Long window(baseline): 512 bins

– W2: Short Window(event): 16 bins

– Threshold: 15 ADC-Channels

– Delay: 3

23

Magnetic shield

High magnetic field might disturb other experiments

-> magnetic shield:– 4 poles 0.2x0.2x4 m– 2 plates 1.8x1.8x0.1 m– ~10 t iron

24

Coupling Constants of the Weak Interaction

dn = (ddu)

p = (udu)u

e-

νegV, gA

Coupling Constants in Neutron Decay

e-

νen

p

n + νe → p + e-

Nucleosynthesis

e+

νe

n

p

n + e+ → p + νe

Solar cycle

e+

νe

p + p

2H+

p + p→ 2H+ + e+ + νe

e-

νe

p + p

2H+

p + e- + p → 2H+ + νe

Neutrino Detection (SNO, CC)

νe

e-

2H+

p + p

νe + 2H+→ p + p + e-

n → p + e- + νe

25

Standard Model Test

Cabibbo-Kobayashi-Maskawa-Matrix

Condition of Unitarity

• Superallowed Fermi Decays

• Neutron Decay

• Pion Decay

• Kaon Decays

• Hyperons

• B/D Mesons

26

-1.28-1.27-1.26-1.25λ = gA/gV

0.965

0.970

0.975

0.980V ud

τn [PDG2006]A [PERKEO II]

0+→ 0+

ud u2

u2

s b1V V V= − +Unitarityof the CKM Matrix

Neutron Measurements needed:

• Neutron lifetime τn

• Beta Asymmetry A(λ)

• Neutrino-Electron-Correlation a(λ)

( )21 2n ud

2 1 3FVGτ λ− ∝ +

2

2

Re2

1 3A

λ λλ

+= −

+

2

2

11 3

aλλ

−=

+

Vus [Blucher et al., CKM 2005]

τn [Serebrov 05]

A [PERKEO II]

Situation 2004New Ke3 and Kμ2 measurementsNew Neutron Lifetime Measurement

[Marciano, Sirlin, 2005]; λ = gA/gV

uV

udA F

dFFermi-Transition: Gamow-Teller-Transition:

g Gg

VG V

= ⋅= ⋅ ⋅λ

27

Determination of λ

PERKEO II, 1997

PERKEO II, 2002

Yerozolimskii, 1997

PERKEO, 1986

Liaud, 1997

Serebrov 05

Unitarity,PDG2006

Unitarity,

Unitarity,PDG2004

Stratowa, 1978

Byrne, 2002

-1,285

-1,275

-1,265

-1,255λ

• Different Systematics Measurement of a is independent of possible errors in A

• An accuracy of Δa/a < 1% is needed !

28

Information in the Proton Spectrum

29

The spectrometer aSPECT

SPECTrometer for a

30

31

Properties of the Detector

• Diode IV characteristics• Detection performance

– Different impact angles– Different proton energies– Gaps between the strips

• Temperature effects

32

Diode Characteristics

Det. 2: Does not see protons any more

Det. 4: Still seeing protons