proposal of a benchmark for core burnup...

57
PROPOSAL OF A BENCHMARK FOR CORE BURNUP CALCULATIONS FOR A VVER-1000 REACTOR CORE T. Lötsch 1) , V. Khalimonchuk 2) , A. Kuchin 2) , 1): TÜV SÜD Industrie Service GmbH, Energy and Technology (IS-ET), Westendst. 199, 80686 Munich, Germany; 2): State Scientific and Technical Centre for Nuclear and Radiation Safety of Ukraine (SSTC N&RS), Stusa st. 35-37, 03142 Kyiv, Ukraine Abstract: In the framework of a project supported by the German BMU 3) the code DYN3D should be further validated and verified. During the work a lack of a benchmark on core burnup calculations for VVER-1000 reactors was noticed. Such a benchmark is useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including fuel assembly modelling, fuel assembly data preparation, few group data parametrisation and reactor core modelling. The benchmark proposed specifies the core loading patterns of burnup cycles for a VVER-1000 reactor core as well as a set of operational data such as load follow, boron concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions. The reactor core characteristics chosen for comparison and the first results obtained during the work with the reactor physics code DYN3D are presented. This work presents the continuation of efforts of the projects mentioned 3) to estimate the accuracy of calculated characteristics of VVER-1000 reactor cores. In addition, the codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. 3): The work was performed in framework of orders BMU SR 2511 and BMU R0801504 (SR2611). The report describes the opinion and view of the contractor - TÜV SÜD Industrie Service GmbH, IS- ET - and does not necessarily represent the opinion of the ordering party - BMU-BfS/GRS. - Munich, 2009 -

Upload: others

Post on 15-Mar-2020

12 views

Category:

Documents


1 download

TRANSCRIPT

PROPOSAL OF A BENCHMARK FOR CORE BURNUP CALCULATIONS FOR A

VVER-1000 REACTOR CORE

T. Lötsch1), V. Khalimonchuk2), A. Kuchin2),

1): TÜV SÜD Industrie Service GmbH, Energy and Technology (IS-ET), Westendst. 199, 80686 Munich, Germany; 2): State Scientific and Technical Centre for Nuclear and Radiation Safety of

Ukraine (SSTC N&RS), Stusa st. 35-37, 03142 Kyiv, Ukraine

Abstract: In the framework of a project supported by the German BMU3) the code DYN3D should be further validated and verified. During the work a lack of a benchmark on core burnup calculations for VVER-1000 reactors was noticed. Such a benchmark is useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including fuel assembly modelling, fuel assembly data preparation, few group data parametrisation and reactor core modelling. The benchmark proposed specifies the core loading patterns of burnup cycles for a VVER-1000 reactor core as well as a set of operational data such as load follow, boron concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions. The reactor core characteristics chosen for comparison and the first results obtained during the work with the reactor physics code DYN3D are presented. This work presents the continuation of efforts of the projects mentioned3) to estimate the accuracy of calculated characteristics of VVER-1000 reactor cores. In addition, the codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. 3): The work was performed in framework of orders

BMU SR 2511 and BMU R0801504 (SR2611). The report describes the opinion and view of the

contractor - TÜV SÜD Industrie Service GmbH, IS-ET - and does not necessarily represent the opinion of the ordering party - BMU-BfS/GRS.

- Munich, 2009 -

Table of contents 1 Introduction ...................................................................................................... 3

2 Description of the reactor core......................................................................... 6

3 Description of the fuel assemblies used in the reactor core............................. 7

4 Loading patterns and reshuffling schemes ...................................................... 7

4.1 Loading pattern and FA types for the first cycle ........................................... 7 4.2 Loading pattern and FA types for the second cycle...................................... 7

5 The relevant operation cycle data for comparison ........................................... 8

5.1 Operational data for the 1. cylce .................................................................. 8 5.2 Operational data for the 2. cycle .................................................................. 9

6 First results obtained with the help of the code DYN3D................................... 9

7 Conclusions ................................................................................................... 12

8 Bibliography ................................................................................................... 14

9 Tables and figures ......................................................................................... 16

9.1 Main reactor core characteristics ............................................................... 16 9.2 General characteristics of the radial and axial top and bottom

reflectors .................................................................................................... 18 9.3 Design data for the control rods and the burnable absorber ...................... 19 9.4 Design data of the fuel assemblies of TVSA type....................................... 20 9.5 Design data of the stiffening plates ............................................................ 22 9.6 TVSA types used in the core loadings........................................................ 23 9.7 Fuel assemblies loaded and the core loading pattern for the

first fuel cycle ............................................................................................. 26 9.8 Fuel assemblies loaded , core loading and the reshuffling

scheme for the second cycle ..................................................................... 27 9.9 Temperature reactivity coefficient and operation data for the

first cycle.................................................................................................... 29 9.10 Measured and operation data for the second cycle.................................... 44

1 INTRODUCTION In the framework of the project SR2611 supported by the German BMU1 the code DYN3D and the associated data libraries should be further validated and verified. The project is based on the results of the work done in the framework of previous BMU projects dealing with the validation and verification of the code packages used for reactor physics calculation within the scope of safety related evaluations and assessments of VVER-1000 reactors. This work presents the continuation of efforts of the projects mentioned to estimate the accuracy of calculated core characteristics of VVER-1000 reactor cores. The codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. E.g. the German KTA Safety standard 3101.2 [1] states: “... Nuclear calculation systems shall be capable of determining the safety-related characteristics of the reactor core, in as far as they are due to the design of the reactor core, as well as measurements required for the validation of the calculation systems. ... ... Calculation systems which are used for safety-related demonstrations shall have been validated for the respective scopes of application.” Further this general requirement is extended with the explanation of the means by which the validation and verification of the code systems should be carried out:

• integral validation: application of the code system to reference problems for which either theoretical reference solutions or qualified reference measurement are gained

• partial validation: separate application of parts of the code system to individual reference problems and solutions, e.g. criticality calculations against experiments, FA burnup benchmarks, theoretical core burnup benchmarks, transient calculation benchmarks etc.

“... The results of the calculation system to be validated shall be compared with the reference solutions or the measured reference results. This comparison shall be used to derive the deviations between these results and the reference values and the deviations shall then be evaluated considering the problem-dependent application of the calculation system. ...” The results of the validation and verification process are the uncertainties of the calculated core characteristics significant for the safety of the reactor operation and the safety set points and margins of the reactor protection system derived from them. These uncertainties should be taken into consideration when the specific set points of the reactor protection system are defined for the current core loading and adjusted accordingly during the reshuffling, in-service maintenance and inspections of the reactor facility (see e.g. [2]).

1 BMU-Vorhaben R0801504 (SR2611), UA-2820 „Verifizierung und Validierung von

Reaktorphysikcodes und Datenbibliotheken für WWER-1000 (AP 8)“

During recent years this approach has been published in new safety standards and guides of the IAEA concerning safety assessments and evaluations of the NPP, the reactor core and fuel management as well as the reactor safety systems ensuring safe operation. These national and international safety standards comprise requirements analogous to the ones mentioned in the KTA safety standards. The international requirements developed by the IAEA are generally same. E.g. IAEA Safety Standard No. NS-G-1.2 “Safety Assessment and Verification for Nuclear Power Plants” [3] says: “The computer codes which are used to carry out the anticipated operational occurrences and DBA analysis should be properly verified and validated. This includes the codes used to predict the behaviour of the reactor core, thermal-hydraulic codes and the radiological release and consequence codes. In addition, the analysts and users of the codes should be suitably qualified, experienced and trained.” That process of verification and validation should contain the following subjects:

• The physical models used to describe the processes are justified together with the associated simplifying assumptions.

• The correlations used to represent physical processes are justified and their limits of applicability identified.

• The limits of application of the code have been identified. This is important when the calculation method is only designed to model physical processes over a defined range and should not be applied outside this range.

• The numerical methods used would provide a sufficiently accurate solution. Regarding the outputs of the computer codes, it should be confirmed that the predictions of the code have been compared with:

• Experimental data for the significant phenomena modelled. This would typically include a comparison against ‘separate effects’ and larger ‘integral’ experiments.

• Plant data, including tests carried out during commissioning or startup and operational occurrences or accidents.

• Other codes which have been developed independently and use different methods. This is particularly important in modelling severe accident phenomena.

• Standard problems and/or numerical benchmarks with sufficiently accurate results being obtained.

The IAEA Safety Standard No. NS-G-2.5: “Core Management and Fuel Handling for Nuclear Power Plants” [4] explains the requirements in more detail: “... It should be ensured that appropriate numerical methods and techniques are available and will be used to predict reactor behaviour during operation so as to make sure that the reactor will be operated within operational limits and conditions. ... Computational models, numerical methods and nuclear data should be verified, validated and approved and uncertainties in measurement should be taken into account. ... The results should be compared with measured characteristics to confirm the sufficient capability for control and ensuring the safe operation and shut down of the nuclear reactor under all conditions normal or faulty.

... Special emphasis should be placed on the qualification of methods to address items such as extended burnups, new materials, design modifications and power upratings.” The calculations should, at least, provide reliable information before the reactor startup on the fulfilment of the main safety goals which should be ensured during the reactor operation:

1. Reactivity control 2. Cooling of the fuel assemblies 3. Confinement of radioactive materials 4. Limitation of radiation exposure

Other requirements from reactor physics calculations concerning the properties needed to be calculated before a reactor core loading can be approved by the Regulatory authority are formulated in more detail in [5]. Such characteristics are:

• operational limits and conditions • action set points for reactor control and safety protection systems • reactor operation ensuring the compliance with design limits, including core

design parameters, throughout the service life of the reactor core In cases when safety related core parameters and operational characteristics, such as the fuel and cladding temperatures and the peak linear heat rate, are not directly measurable, calculations are required to specify such parameter values for the safe reactor operation. Over the period of the projects mentioned, many efforts were made by the fuel suppliers and utilities to modernise the fuel assembly (FA) design. This included inventing burnable absorbers, such as Gadolinium (Gd), updating the VVER-1000 core design to improve fuel utilization, increasing the discharge burnup of the FA and extending the fuel cycle length. For all these cases the code packages for reactor physics calculations should be tested, validated and verified. The aim of the work done within the scope of the project R0801504 (SR2611) together with the previous projects (see, e.g., [6]-[10]) is to estimate the range of applicability and of the uncertainties of the package of codes and data libraries used for data preparation and reactor core calculations both for steady state and transients in the framework of safety related assessments and evaluation for VVER-1000 reactors in the Ukraine. The project results should make the code package applicable for data preparation of FA for the new TVSA type, stationary core burnup calculations as well as dynamic calculations for transients, reactivity initiated accidents (RIA) and other accidents (see e.g. papers presented in the AER-Symposiums by the Ukraine SSTC, Kiev) in accordance with national and international requirements. During the work a lack of a benchmark for core burnup calculations for VVER-1000 reactors was noticed. Whereas well defined benchmarks for FA and core burnup calculations for reactors of the VVER-440 type exist (see, e.g., [11]-[16]), for VVER-1000 only a OECD/NEA benchmark on burnup calculations of theoretical FA with U2O and MOX fuel [17] and a benchmark investigating the physics of a whole VVER-1000 reactor core using two-thirds low-enriched uranium (LEU) and one-third MOX fuel [18] are published.

The benchmark proposed for burnup up calculation of a VVER-1000 reactor core should be useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including FA modelling, FA data preparation, few group data parametrisation and reactor core modelling. The paper presents such a proposal for VVER-1000 core burnup calculations on the basis of operational data. The benchmark can be used for integral investigations on the applicability and accuracy of the code package for reactor physics calculations for VVER-1000 reactors. This comprises the FA burnup calculation and few group data preparation as well as the core modelling and cycle burnup calculation. All input data necessary for the FA and core modelling, i.e. FA and reactor core characteristics, loading patterns, load follow etc., are provided. The benchmark proposal specifies a set of operational data such as boron concentration in the coolant, cycle length, measured reactivity coefficients and power density as well as burnup distributions. So the basic data chosen for comparison are given. For calculating the benchmark, at first, the few group data of the FA used in the loadings of the VVER-1000 reactor core should be prepared with the help of codes such as NESSEL [19], CASMO [20], HELIOS [21], WIMS [22] or others. The few group data processing for the preparation of the FA few group data library used in the core calculation is the following step in the benchmark. Next step is the modelling of the reactor core and the cycle burnup. At several burnup steps (usually beginning of cycle - BOC, middle of cycle - MOC, end of cycle -EOC - when the boron concentration Cb ≈ 0, effective end of cycle - EOCeff) core characteristics should be calculated, e.g. reactivity coefficients, power density distributions etc. The reference values for the comparisons are given in the following sections. Some of the characteristics related to nuclear safety evaluations in reactor physics are investigated during the benchmark formulation. This takes into consideration the requirements stated in the safety standards mentioned above. First results obtained during the work with the reactor physics code DYN3D and the respective FA data libraries are presented. 2 DESCRIPTION OF THE REACTOR CORE The main core characteristics are given in Table 1. The VVER-1000 reactor chosen for the benchmark is from the beginning of first cycle with only TVSA FAs in the core. This excludes the necessity of the investigation of so-called mixed reactor cores (see [5], 3.106.). The figures Fig. 5 - Fig. 7 show the configuration of the control rod groups (CRD), i.e. the positions of the control rods in the core, and of the in-core instrumentation, i.e. the positions of the self powered neutron detectors (SPND) and of the thermocouples in the core. The radial, top and bottom axial reflector configuration and the respective materials are given in Table 2.

The design data of other core internals such as

• control rod design, materials and configuration • burnable absorber rod design, materials and configuration

are shown in Table 3. 3 DESCRIPTION OF THE FUEL ASSEMBLIES USED IN THE REACTOR CORE Beginning with the first core loading fuel assemblies of the TVSA design were used. The general view of the TVSA FA is shown in Fig. 8. The relevant design characteristics and material data of the TVSA needed for modelling are provided in the Table 4. The design of the fuel assemblies of the TVSA type uses stiffening plates in the FA corners to improve geometric stability (see Fig. 8). The design details of the stiffening angels are shown in Fig. 9 and Fig. 10. Data of the materials and compositions used in the design of the stiffening angels are provided in Table 5. The several core loadings use TVSA assemblies with different enrichment, different numbers of fuel pins with different enrichment (radial profiling) as well as different pin numbers with burnable absorber and weight percentage of the burnable absorber Gd2O3. The TVSA FA designs used in the reactor core loading patterns are listed in Table 6. The pin lattice layouts of the different FA types are shown in the figures Fig. 11 - Fig. 15. 4 LOADING PATTERNS AND RESHUFFLING SCHEMES The following paragraph presents the reactor core loading patterns for the cycles to be modelled and the FA tpes used together with the reshuffling schemes. 4.1 Loading pattern and FA types for the first cycle The loading pattern for the first cycle consists of 5 different FA types of TVSA design. Table 7 shows the main design characteristics of the fresh fuel. The core configuration is presented in the Fig. 16. 4.2 Loading pattern and FA types for the second cycle After the EOCeff of the first cycle the following FA are discharged:

38 FA of the type 22AU (averaged burnup: 26.39MWd/kg), 2 FA of the type 30AV5 (29.89 MWd/kg), 2 FA of the type 390GO (26.72 MWd/kg). The loading pattern consists of 42 fresh FA: 36 TVSA of the type 439GT and 6 of the type 398GO. 121 fuel assemblies of the TVSA design are used in the previous cycles: 48 FA in the 2. cycle and 73 FA in the 1. cycle. An overview of the FA used in the core of the second cycle are given in the Table 8. Fig. 17 presents the reactor core loading pattern. The configuration of the control rods, SPND and thermocouples remains unchanged. The reshuffling scheme for the second fuel loading is presented in Fig. 18. 5 THE RELEVANT OPERATION CYCLE DATA FOR COMPARISON For the first comparisons the following data were chosen:

• critical boron concentration • FA averaged power density distribution at the BOC and EOC • FA averaged burnup distribution at BOC and EOC • temperature reactivity coefficients at the BOC, hot zero power state (HZP) • cycle length in EFPD, i.e. the moment in the cycle when Cb ≈ 0 g/kg in the

coolant is the EOC, plus the time when the reactor operates in strech out mode (operating on the power reactivity effect up to the reactor shut down for reloading) - EOC-eff).

The respective data presented in tables and figures in the following sections. 5.1 Operational data for the 1. cylce The effective cycle length (EOCeff) is 311.74 EFPD including the strech out operation time. The calculated value was 313.6 EFPD (∆calc = ±1.86 EFPD). In fact the boron concentration became lower 0.01 g/kg after 305 EFPD (EOC). The reactor was shutdown for reloading and maintenance at EOCeff. The Table 9 presents the comparison of the temperature reactivity coefficient measured at the BOC of the first cycle and the values calculated by the utility. The data presented for modelling of the cycle such as power load, core inlet temperature and position of the CRD working group are shown in the Fig. 1. The burnup distribution at the beginning and the end of the first cycle are provided in Fig. 19. 2D power density distributions are presented in the figures Fig. 20 - Fig. 31. The maximum standard deviation for the comparison of the calculated FA power density distribution with the reconstructed distribution equals 1.12%. The maximum difference is equal to 3.53%. The data of the reactor operation during the first cycle are provided in the Table 10.

It has to be taken in to consideration that during the first cycle a lot of experiments were carried out in order to gain data for confirmation of the fulfilment of the safety requirements. 5.2 Operational data for the 2. cycle The cycle length is 324,31 EFPD (EOCeff). During the cycle the boron concentration reached 0 g/kg after 301.8 EFPD (EOC). The preliminary calculation made by the utility obtained 292.53 ± 8.78 EFPD for the EOC and a strech out operation phase of 30.00 ± 0.9 EFPD. The main operation parameters in course of the second cycle are represented in the Fig. 2. The 2D FA averaged burnup distribution for the BOC, EOC and EOCeff are given in Fig. 34. For comparison with calculations the measured data for the critical reactor state at BOC of the second cycle are given in the Table 11. The Table 12 presents the measured temperature reactivity coefficient for HZP conditions at the beginning of the second cycle. 2D power density distributions are presented in the figures Fig. 20 - Fig. 31. The maximum standard deviation between calculation and measurements of the power density distribution equals 1.69%. The maximum difference between calculated and measured power densities in the FA is 0,05. The maximum standard deviation between calculated and measured power density of the volume of the reactor core is equal to 2.16%. The relevant operation data for the core burnup modelling are provided in Table 13. 6 FIRST RESULTS OBTAINED WITH THE HELP OF THE CODE DYN3D The FA data were prepared with the codes NESSEL [19], CASMO [20] and HELIOS [21]. The core calculations were carried out with the code DYN3D [23]. Some preliminary results of the core burnup calculation for the first and second cycle are presented. For the burnup calculations two few group data libraries were used: The first library was prepared with the help of the code NESSEL and the second one with the code HELIOS. These calculations were compared with the measured data and the results of the calculations carried out by the utility. The differences between the calculated boron concentrations are evident, but at first sight acceptable. Further, more detailed analysis is necessary to explain and improve the results.

Fig. 1: Operational data of the first cycle

Fig. 2: Operational data of the second cycle

Fig. 3: Boron concentration vs. core burnup for the first cycle

7 CONCLUSIONS A benchmark for core burnup calculation for a VVER-1000 reactor core is proposed. The relevant data for the calculations and the comparisons are provided. First results show an acceptable agreement with measured data. But further investigations are necessary to make a conclusion about the quality of the calculations. Statistical analysis is necessary to explain and improve the results as well as to conclude about the accuracy and reliability of the calculation results. Future work comprises the preparation of the data for the third and fourth cycles. This will make it possible to carry out a more reliable statistical analysis of the several sets of calculations. The whole complex of codes used for reactor physics calculations such as codes for FA data preparation and data libraries as well as steady state core calculations can be analysed in relation to the accuracy of the calculated safety parameters for VVER-

1000 reactors. The benchmark can be extended with other tasks or exercises if required. The benchmark should be completed with information about the measuring errors for a reliable assessment of the quality of the measured and calculated parameters. Such data were not always available during the preparation of the paper presented. The BMU project mentioned in the introduction is going to be continued. So the additional data and analysis will be provided in the near future.

Fig. 4: Boron concentration vs. burnup for the second cycle

8 BIBLIOGRAPHY [1] KTA - Safety Standard of the Nuclear Safety Standards Commission

(KTA), KTA 3101.2 (Issue 12/87): Design of Reactor Cores of Pressurized Water and Boiling Water Reactors, Part 2: Neutron-Physical Requirements for Design and Operation of the Reactor Core and Adjacent Systems (December 1987)

[2] T. Lötsch: Evaluations of Reactor Physical Design of Core Fuel Reloadings of Pressurized Water Reactors, Proceedings of the 5th Symposium of AER, Dobogokö, Hungary, October 15-20, 1995, p. 97

[3] IAEA Safety Standard No. NS-G-1.2: Safety Assessment and Verification for Nuclear Power Plants, Safety Guide, IAEA, Vienna, 2001

[4] IAEA Safety Standard No. NS-G-2.5: Core Management and Fuel Handling for Nuclear Power Plants, IAEA, Vienna, 2002

[5] IAEA Safety Standard No. NS-G-1.12: Design of the Reactor Core for Nuclear Power Plants, Safety Guide, IAEA, VIENNA, 2005

[6] T. Lötsch, Yu. P. Kovbasenko, M. L. Yeremenko: Calculation Modelling of Fuel Assemblies of VVER1000 Type with the Use of Burnable Absorbers Gadolinium; Comparative Analysis, Proceedings of the 11th AER Symposium on VVER Reactor Physics and Reactor Safety, Csopak, Hungary, Sept. 24÷28, 2001, p.763-778

[7] T. Lötsch, Yu. P. Kovbasenko: Results of Benchmark Calculation with the Codes NESSEL and CASMO, Proceedings of the 13th Symposium of AER, Dresden, Germany, Sept. 22-26, 2003, p. 123

[8] T. Lötsch, Yu. P. Kovbasenko: Benchmark Calculation with the Codes NESSEL and CASMO, Proceedings of the 14th Symposium of AER, Espoo, Finland, 13-17.09.2004, p. 81

[9] T. Lötsch, M. Nuding: Measurement of Reactivity Coefficients for Code Validation, Proceedings of the 15th Symposium of AER, Znojmo, Czech Republic, October 3 - 7, 2005, p. 349

[10] T. Lötsch, A. Kuchin, Yu. Ovdiyenko: Comparison of CASMO and NESSEL few group cross section libraries and their usage in DYN3D, Proceedings of the 17th Symposium of AER, Yalta, Crimea, Ukraine, September 24-29, 2007, p. 217

[11] P. Mikolas: Spectral Calculations of VVER-440 FA with Gd Burnable Absorbers, 10th AER Symposium on WER Reactor Physics and Reactor Safety, Moscow, Russia, September 18 - 22. 2000

[12] P. Mikolas: First results of the benchmark for VVER440 with Gd2O3+UO2 pins burnup comparison, 11th AER Symposium on VVER Reactor Physics and reactor safety, Csopak, Hungary, Sept. 24. – 28. 2001

[13] P. Mikolas: Results of the benchmark for VVER440 with Gd2O3+UO2 pins burnup comparison, Proceedings of the 12th AER Symposium on VVER Reactor Physics and reactor safety, Sunny Beach, Bulgaria, Sept. 22. – 28. 2002, p. 163

[14] P. Mikolas: Summary of Benchmark for VVER-440 with Gd2O3 + UO2 Pins Burnup Comparisons, Proceedings of the 13th Symposium of AER, Dresden, Germany, 22-26 Sept. 2003, p. 29

[15] György Hegyi, András Keresztúri, Csaba Maráczy: Solution of the new Dukovany Benchmark using the new version of KARATE-440 code Proceedings of the 18th Symposium of AER, Eger, Hungary, October 6-10, 2008

[16] Gy. Hegyi, G. Hordósy, A. Keresztúri, Cs. Maráczy, E. Temesvári: Solution of the Dimitrovgrad Fuel Composition Benchmark with the KARATE-440 Code System, Proceedings of the 18th Symposium of AER, Eger, Hungary, October 6-10, 2008

[17] OECD/NEA: A VVER-1000 LEU and MOX Assembly Computational Benchmark. Specification and Results, NEA/NSC/DOC(2002)10, OECD 2002

[18] OECD/NEA No. 6088: VVER-1000 MOX Core Computational Benchmark. Specification and Results, NEA/NSC/DOC(2005)17, OECD 2006

[19] Schulz G.: NESSEL Code Manual Version 6.09a, K.A.B. GmbH, Berlin, 1998

[20] Studsvik: CASMO-4 - A fuel assembly burn up program, Version 1.28.05, Studsvik/SOA-95/1, 1995

[21] Casal, J.J. et. al, “HELIOS: Geometric Capabilities of a New Fuel-Assembly Program”, Proc. Int. Topl. Mtg. Advances in Mathematics, Computations, and Reactor Physics, Pittsburgh, Pennsylvania, April 28-May 2, 1991, Vol. 2, p. 10.2.1-1

[22] Coll.: WIMS - A Modular Scheme for Neutronics Calculations, User Guide for Version 8, ANSWERS/WIMS(99)9, Winfrith, 1999

[23] U.Grundmann, U.Rohde, S.Mittag, S.Kliem: DYN3D Version 3.2, Code for Calculation of Transients in Light Water Reactor with Hexagonal or Quadratic Fuel Elements, FZR, August 2005

9 TABLES AND FIGURES 9.1 Main reactor core characteristics Table 1: Main reactor core characteristics

No. Characteristic

Type of Reactor VVER-1000/320

1 Core Lattice Type Hexagonal

2 Fuel assembly pitch, cm 23.6

3 Number of fuel assembly 163

4 Number of fuel assemblies with control rod cluster

61

5 Height of the Fuel in the core, cm 355

6 Inner diameter of of the Reactor pressure vessel (in cylindrical part), cm 415

7 Location of the channel for the incore detectors in the FA

central

7 Thermal Power, MW 3000

8 Coolant (Moderator) H2O + H3BO3 (water + boron acid)

9 Coolant flow rate, m3/h 88000

10 Coolant pressure at core outlet, MPa 15,7

11 Average coolant temperature, K 578

12 Coolant temperature at core inlet, K 563,15

13 Coolant temperature at core outlet, K 592,75

Fig. 5: Positions of the Control Rod Groups in the reactor core

Fig. 6: Positions of the Self Powered Neutron Detectors in the reactor core

Fig. 7: Positions of the Thermocouples in the reactor core 9.2 General characteristics of the radial and axial top and bottom reflectors Table 2: Characteristics of the radial and axial top and bottom reflectors

Radial reflector

1-st layer inner radius 158.2 cm 1-st layer outer radius 162.2 cm 1-st layer composition Steel (Fe – 69.5, Cr – 18., Ni – 11., Mn – 1.5 wt%) 2-d layer outer radius 173.5 cm 2-d layer composition Moderator – 45.6, Steel – 54.4 vol% 3-d layer outer radius 174.5 cm 3-d layer composition Moderator 4-th layer outer radius 180.5 cm 4-th layer composition Steel (Fe – 69.5, Cr – 18., Ni – 11., Mn – 1.5 wt%) 5-th layer outer radius 206.95 cm 5-th layer composition Moderator 6-th layer outer radius 226.75 cm 6-th layer composition Steel (Fe – 69.5, Cr – 18., Ni – 11., Mn – 1.5 wt%)

Axial bottom reflector

1-st layer inner radius 177.5 cm 1-st layer outer radius 179.8 cm 1-st layer composition Moderator – 58, Steel – 7, Zircaloy - 35 vol% 2-d layer outer radius 181.5 cm 2-d layer composition Moderator – 57, Steel – 33, Zircaloy - 10 vol% 3-d layer outer radius 206.5 cm 3-d layer composition Moderator – 67, Steel – 33 vol%

Axial top reflector

1-st layer inner radius 177.5 cm 1-st layer outer radius 199.7 cm 1-st layer composition Moderator – 56, Steel - 2.0, Zircaloy - 11.8 vol% 2-d layer outer radius 204.2 cm 2-d layer composition Moderator – 56, Steel - 1.9, Zircaloy - 30.6 vol% 3-d layer outer radius 209.7 cm 3-d layer composition Moderator – 98.9, Steel - 1.1 vol% 9.3 Design data for the control rods and the burnable absorber Table 3: Design data of the control rods and the burnable absorber rods

Control rod

Pellet B4C Outer radius 0.35 cm Density 1.8 g/cm3 Composition B10 (19.8 %), B11 (80.2 %) wt%

Control rod cladding

Inner radius 0.35 cm Outer radius 0.41 cm Density 7.8 g/cm3 Composition Steel (Fe – 69.5, Cr – 18., Ni – 11., Mn – 1.5 wt%)

Burnable absorber

Outer radius 0.379 cm Composition Cr – 0.087, B – 0.036, Al – 2.5646, Zr – 0.0535,

Fe – 0.0054, Ni – 0.0535 g/cm3

Burnable absorber cladding

Inner radius 0.386 cm Outer radius 0.455 cm Density 6.4516 g/cm3 Composition Zr (98.97 %), Nb (1 %), Hf (0.03 %) wt%

Control rod/Burnable absorber tube

Inner radius 0.55 cm Outer radius 0.63 cm Density 7.8 g/cm3 Composition Steel (Fe – 69.5, Cr – 18., Ni – 11., Mn – 1.5 wt%)

Spacer grid

Thickness 2.0 cm Density 1.205 g/cm3 (homogenized) Composition Steel Weight 0.7 kg Dimension 23.6 cm 9.4 Design data of the fuel assemblies of TVSA type

Fuel assembly top nozzle Guide tube Stiffening angle Spacer grid Fuel assembly bottom nozzle

Fig. 8 : General view of the TVSA

Table 4: Design data of the TVSA fuel assemblies

General Characteristics Lattice type hexagonal Pitch of fuel assembly* 234.8 mm Assembly lattice pitch in the core 236.0 mmMass of the TVSA ca. 730 kg Mass of the UO2 491.5 ± 5.0 kg

Fuel pin Fuel pin pitch 12.75 mm Outer diameter of the cladding 9.10 mm Inner diameter of the cladding 7.73 mm Cladding material, composition, density

alloy Э110 98.97%Zr+1%Nb+0.03%Hf,

6.4516 g/cm3 Outer diameter of the fuel pellet 7.57 mm Diameter of the central hole 1.50 mm Density of the UO2 fuel 10.4 - 10.7 g/cm3 Mass of the UO2 in the fuel pin ~1.575 kg Height of the fuel column 3530 mm

Guide tube Material, composition, density

alloy Э635 98.47%Zr+1%Nb+1.3%Sn+0.3%Fe

6.55 g/cm3 Inner diameter of the guide tube 10.9 mm Outer diameter of the duide tube 12.6 mm

Central guide tube Material, composition, density

alloy Э635 98.47%Zr+1%Nb+1.3%Sn+0.3%Fe

6.55 g/cm3 Inner diameter of the guide tube 11 mm Outer diameter of the guide tube 13 mm

Spacer grid Material, composition, density

alloy Э110 98.97%Zr+1%Nb+0.03%Hf,

6.4516 g/cm3 Number of spacer grids 15 Number of grids in the fuel area 13 Mass of one spacer grid 0.55 kg * Assembly pitch along the corner edges, maximum

9.5 Design data of the stiffening plates Table 5: Design data of the stiffening plates

Material, composition, density

alloy Э635 98.47%Zr+1%Nb+1.3%Sn+0.3%Fe;

6.55 g/cm3 Number of the plates 6 Thicknessof the plate 0.65 mm Length of the plate 25 mm Mass of one stiffening angle 1.4 kg

Fig. 9: FA stiffening plate in the corner edges

Fig. 10: TVSA FA design with stiffening plates

9.6 TVSA types used in the core loadings Table 6: TVSA FA types used in the reactor core loading patterns

FA Design

FA Type

Enrichment/ Pufiss-content

(w/o %)

No. of UO2 pins /

enrichment

Number of Gd-pins

(w/o Gd2O3/235U)

Diameter of the central hole, (mm)

TVSA 13AU 1.30 312 / 1.30 -- 1.5 TVSA 22AU 2.20 312 / 2.20 -- 1.5 TVSA 30AV5 2.99 303 / 3.00 9 (5.0/2.4) 1.5 TVSA 39AWU 3.90 243 / 4.00

60 / 3.60 9 (5.0/3.3) 1.5

TVSA 390GO 3.90 240 / 4.00 66 / 3.60

6 (5.0/3.3) 1.5

TVSA 430GO 4.30 240 / 4.40 66 / 4.00

6 (5.0/3.6) 1.5

TVSA 439GT 4.39 306 / 4.40 6 (5.0/3.6) 1.5

fuel pin with enrichment 1.3% (2.2%) 235U

guide tube / central guide tube

Fig. 11: Pin layout of the FA types 13AU and 22AU

fuel pin with enrichment 3.0% 235U

guide tube / central guide tube

burnable absorber pin with 2.4% 235U and 5.0% Gd2O3

Fig. 12: Pin layout of the FA type 30AV5

fuel pin with enrichment 4.0% 235U

fuel pin with enrichment 3.6% 235U

guide tube / central guide tube

burnable absorber pin with 3.3% 235U and 5.0% Gd2O3

Fig. 13: Pin layout of the FA type 39AWU

fuel pin with enrichment 4.4% 235U guide tube burnable absorber pin with 3.6% 235U and 5.0% Gd2O3 fuel pin with enrichment 4.0% 235U central guide tube

Fig. 14: Pin layout of the FA type 390GO

fuel pin with enrichment 4.4% 235U

guide tube

burnable absorber pin with 3.6% 235U and 5.0% Gd2O3

Fig. 15: Pin layout of the FA type 439GT

9.7 Fuel assemblies loaded and the core loading pattern for the first fuel cycle Table 7: FA loaded for the first cycle

FA Design

FA Type

Enrichment/ (w/o %)

No. of UO2 pins /

enrichment

Number of Gd-pins

(w/o Gd2O3/235U)

No. of FA in the

core

Resi-dence time

Diameter of the central hole (mm)

TVSA 13AU 1.30 312 / 1.30 - 48 0 1.5 TVSA 22AU 2.20 312 / 2.20 - 42 0 1.5 TVSA 30AV5 2.99 303 / 3.00 9 (5.0/2.4) 37 0 1.5 TVSA 39AWU 3.90 243 / 4.00

60 / 3.60 9 (5.0/3.3) 24 0 1.5

TVSA 390GO 3.90 240 / 4.00 66 / 3.60

6 (5.0/3.3) 12 0 1.5

Total 163

Fig. 16: Core loading pattern for the first cycle

9.8 Fuel assemblies loaded , core loading and the reshuffling scheme for the

second cycle Table 8: FA loaded for the second cycle

FA Design

FA Type

Enrichment (w/o %)

No. of UO2 pins /

enrichment

Number of Gd-pins

(w/o Gd2O3/235U)

No. of FA in the

core

Resi-dence time

Diameter of the central

hole (mm)

TVSA 22AU 2.20 312 / 2.20 - 42 1 1.5 TVSA 30AV5 2.99 303 / 3.00 9 (5.0/2.4) 37 1 1.5 TVSA 39AWU 3.90 243 / 4.00

60 / 3.60 9 (5.0/3.3) 24 1 1.5

TVSA 390GO 3.90 240 / 4.00 66 / 3.60

6 (5.0/3.3) 12 1 1.5

TVSA 390GO 3.90 240 / 4.00 66 / 3.60

6 (5.0/3.3) 18 0 1.5

TVSA 430GO 4.30 240 / 4,40 66 / 4,00

6 (5.0/3.6) 30 0 1.5

Total 163

Fig. 17: Core loading pattern for the 2. cycle

Fresh fuel assemblies 430GO ---> 2 ---> 32 ---> 43 ---> ---> 3 ---> 29 ---> ---> 4 ---> 41 ---> 22 ---> ---> 5 ---> 30 ---> 12 ---> 6 ---> 11 ---> 19 ---> ---> 8 ---> 20 ---> ---> 14 ---> 46 ---> ---> 16 ---> 65 ---> 27 ---> 7 ---> 38 ---> 64 ---> ---> 25 ---> 72 ---> 71 ---> ---> 26 ---> 79 ---> 28 ---> ---> 36 ---> 33 ---> ---> 37 ---> 78 ---> ---> 48 ---> 44 ---> 73 ---> ---> 49 ---> 40 ---> 53 ---> ---> 61 ---> 45 ---> 60 ---> 75 ---> 47 ---> 34 ---> ---> 76 ---> 51 ---> ---> 88 ---> 113 ---> ---> 103 ---> 119 ---> 104 ---> 89 ---> 117 ---> 130 ---> ---> 115 ---> 124 ---> 111 ---> ---> 116 ---> 120 ---> 91 ---> ---> 127 ---> 86 ---> ---> 128 ---> 131 ---> ---> 138 ---> 85 ---> 136 ---> ---> 139 ---> 92 ---> 93 ---> ---> 148 ---> 99 ---> 137 ---> 157 ---> 126 ---> 100 ---> ---> 150 ---> 118 ---> ---> 156 ---> 144 ---> ---> 159 ---> 134 ---> 152 ---> 158 ---> 153 ---> 145 ---> ---> 160 ---> 123 ---> 142 ---> ---> 161 ---> 135 ---> ---> 162 ---> 132 ---> 121 --->

Fresh fuel assemblies 390GO ---> 9 ---> 54 ---> 10 ---> 1 ---> 31 ---> 42 ---> ---> 13 ---> 68 ---> ---> 17 ---> 81 ---> ---> 24 ---> 56 ---> 35 ---> 15 ---> 58 ---> 57 ---> ---> 55 ---> 18 ---> 21 ---> ---> 63 ---> 80 ---> 50 ---> 62 ---> 52 ---> 66 ---> ---> 67 ---> 77 ---> 39 ---> ---> 70 ---> 23 ---> 59 ---> ---> 74 ---> 69 ---> ---> 90 ---> 95 ---> ---> 94 ---> 141 ---> 105 ---> ---> 97 ---> 87 ---> 125 ---> ---> 101 ---> 84 ---> 114 ---> 102 ---> 112 ---> 98 ---> ---> 109 ---> 146 ---> 143 ---> ---> 140 ---> 108 ---> 129 ---> 149 ---> 106 ---> 107 ---> ---> 147 ---> 83 ---> ---> 151 ---> 96 ---> ---> 155 ---> 110 ---> 154 ---> 163 ---> 133 ---> 122 --->

Fig. 18: Reshuffling scheme for the reloading for the 2. cycle

9.9 Temperature reactivity coefficient and operation data for the first cycle Table 9: Temperature reactivity coefficient measured at BOC of the first cycle

H10 H9 H8 H7 Cb Tin P Calc.* ∂ρ/∂t

Measur. ∂ρ/∂t

% % % % g/kg °C kgf/cm2 (10-3 %/°C) (10-3 %/°C)

76 0 0 0 6.75 280.4-276.0 160.1-160.8 -6.93 -6.68±2.0%

76 0 0 0 6,75 276.7-280.2 160.1-160.8 -6.93 -7.38±2.7%

100 100 31 80 5.80 280.1-276.0 161.4-160.2 -16.03 -18.60±1.48%

100 100 31 80 5.80 276.0-280.1 161.4-160.2 -16.03 -20.10±1.05%

* utilities calcuation 0 % - control rods withdrawn (Upper core end position) 100 % - fully inserted control rods (core bottom position) P1 - pressure above the core Reactor state: BOC 01, EFPD=0, HZP (Nt=0.3 MW), no Xe135, no SM149, CRD

groups 1-6 withdrawn (0 %), 4 Main coolant pumps functioning, ßeff=0.73%

No. fuel type Burnup BOC Burnup EOC Burnup EOC eff

28 390GO

0.00 10.16 11.00

26 27

22AU 39AWU 0.00 0.00

13.61 12.52 14.66 13.53

23 24 25

13AU 30AV5 39AWU 0.00 0.00 0.00

11.04 15.63 13.04 11.94 16.84 14.09

19 20 21 22

30AV5 13AU 22AU 39AWU 0.00 0.00 0.00 0.00

15.53 11.10 14.15 13.04 16.72 12.00 15.24 14.09

14 15 16 17 18

13AU 22AU 13AU 30AV5 39AWU 0.00 0.00 0.00 0.00 0.00

11.43 13.81 11.10 15.63 12.52 12.33 14.85 12.00 16.84 13.53

8 9 10 11 12 13

22AU 13AU 30AV5 13AU 22AU 390GO 0.00 0.00 0.00 0.00 0.00 0.00

14.07 11.43 15.53 11.04 13.61 10.16 15.13 12.33 16.72 11.94 14.66 11.00

1 2 3 4 5 6 7

30AV5 13AU 30AV5 22AU 13AU 22AU 30AV5 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14.57 10.93 15.99 14.42 11.05 13.77 13.03 15.73 11.82 17.19 15.50 11.94 14.82 14.07

Fig. 19: 2D Burnup distribution for the first cycle

EFPD 13.40 Thermal reactor power Nt 2243 MW Coolant flow rate 88185 m3/h Core inlet temperature Tin 285 °C Boron concentration 4.6 gH3BO3/kg H2O Position of CRD working group H10 302 cm Coolant heat up 22.9 K Legend: Number of the FA in the core

Measured value / Calculated value

Fig. 20: Calculated 2D Power density distribution vs. SPND readings (EFPD=13.4)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 21: Calculated 2D Power density distribution vs. reconstructed 2D distribution

EFPD = 29.8 Thermal reactor power Nt 2667 MW Coolant flow rate 88380 m3/h Core inlet temperature Tin 287 °С Boron concentration 4.4 g H3BO3/kg H2O Position of CRD working group H10 294 cm Coolant heat up 27.0 K Legend: Number of the FA in the core

Measured value / Calculated value

Fig. 22: Calculated 2D Power density distribution vs. SPND readings (EFPD=29.8)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 23: Calculated 2D Power density distribution vs. reconstructed distribution

EFPD 90.8 Thermal reactor power Nt 2976 MW Coolant flow rate 88042 m3/h Core inlet temperature Tin 287 °C Boron concentration 3.9 gH3BO3/kg H2O Working group of CRD H10 Position of working CRD group 301 cm Coolant heat up 29.7 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 24: Calculated 2D Power density distribution vs. SPND readings (EFPD=90.8)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 25: Calculated 2D Power density distribution vs. reconstructed 2D distribution

EFPD 148.2 Thermal reactor power Nt 2978 MW Coolant flow rate 88069 m3/h Core inlet temperature Tin 288 °C Boron concentration 3.2 gH3BO3/kg H2O Position of CRD working group H10 302 cm Coolant heat up 29.5 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 26: Calculated 2D Power density distribution vs. SPND readings (EFPD=148.2)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 27: Calculated 2D Power density distribution vs. reconstructed 2D distribution

EFPD 208.7 Thermal reactor power Nt 3000 MW Coolant flow rate 88147 m3/h Core inlet temperature Tin 288 °C Boron concentration 2.1 gH3BO3/kg H2O Position of CRD working group H10 315 cm Coolant heat up 29.5 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 28: Calculated 2D Power density distribution vs. SPND readings (EFPD=208.7)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 29: Calculated 2D Power density distribution vs. reconstructed 2D distribution

EFPD 264.2 Thermal reactor power Nt 2803 MW Coolant flow rate 88199 m3/h Core inlet temperature Tin 287 °C Boron concentration 1.1 gH3BO3/kg H2O Position of CRD working group H10 299 cm Coolant heat up 27.7 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 30: Calculated 2D Power density distribution vs. SPND readings (EFPD=264.2)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 31: Calculated 2D Power density distribution vs. reconstructed 2D distribution

EFPD 310.9 Thermal reactor power Nt 2958 MW Coolant flow rate 87871 m3/h Core inlet temperature Tin 287 °C Boron concentration 0.04 gH3BO3/kg H2O Position of CRD working group H10 319 cm Coolant heat up 29.3 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 32: Calculated 2D Power density distribution vs. SPND readings (EFPD=310.9)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 33: Calculated 2D Power density distribution vs. reconstructed distribution

Table 10: Operation data for the first cycle

EFPD tin Nt Cb exp

Сb calc G Н10 Kq NK Kv NK NZ RO Offset

°C MW g/kg G/kg *10-2 m3/h cm % %

0.0 281.0 275. 6.55 6.14 880. 247.8 1.37 24 1.98 24 5 -.880 -8.710.0 280.9 302. 6.43 6.13 880. 283.2 1.36 24 1.93 24 5 -.659 -5.370.1 282.0 455. 6.22 5.90 880. 247.8 1.35 24 1.94 24 5 -.696 -9.340.2 283.0 638. 5.84 5.70 880. 247.8 1.33 17 1.90 17 5 -.297 -10.020.4 283.1 924. 5.41 5.48 880. 247.8 1.31 17 1.87 17 5 0.169 -11.120.7 283.2 965. 5.63 5.44 880. 247.8 1.31 17 1.86 17 5 -.406 -11.210.9 282.6 573. 5.78 5.73 880. 247.8 1.33 17 1.90 17 5 -.118 -9.630.9 282.0 318. 5.94 5.99 880. 212.4 1.37 17 1.99 17 5 0.110 -12.420.9 282.6 528. 6.16 5.73 880. 212.А 1.35 24 1.94 17 5 -.944 -13.141.2 283.0 994. 5.73 5.38 880. 247.8 1.31 17 1.85 17 5 -.768 -11.161.6 282.5 1195. 5.35 5.28 880. 283.2 1.29 17 1.79 17 5 -.152 -8.332.0 282.4 1194. 5.20 5.27 880. 283.2 1.29 17 1.79 17 5 0.157 -8.252.4 282.4 1230. 5.16 5.23 880. 283.2 1.28 24 1.78 17 5 0.141 -8.312.8 282.8 1377. 5.14 5.13 880. 283.2 1.28 17 1.77 17 5 -.009 -8.743.3 283.2 1495. 5.70 5.05 880. 283.2 1.27 24 1.75 24 5 ***** -9.093.5 282.6 1181. 5.88 5.20 880. 283.2 1.28 17 1.77 24 5 ***** -8.044.0 282.4 1198. 5.20 5.17 880. 283.2 1.28 17 1.77 17 5 -.064 -8.064.5 282.6 1513. 1.95 4.99 880. 283.2 1.27 24 1.75 24 5 0.095 -9.134.9 282.5 1493. 1.97 4.99 880. 283.2 1.27 17 1.75 24 5 0.030 -9.115.4 282.5 1498. 1.97 4.97 880. 283.2 1.27 24 1.74 24 5 -.003 -9.155.9 282.3 1497. 1.95 4.96 880. 283.2 1.26 17 1.74 17 5 0.025 -9.166.4 282.3 1495. 1.80 4.95 880. 283.2 1.26 24 1.74 17 5 0.346 -9.166.9 282.4 1488. 1.68 4.94 880. 283.2 1.26 17 1.74 24 5 0.578 -9.127.4 282.7 1487. 1.84 4.93 880. 283.2 1.26. 24 1.74 24 5 0.183 -9.087.8 282.7 1501. 1.82 4.91 880. 283.2 1.26 17 1.74 17 5 0.213 -9.138.3 282.6 1513. 4.65 4.89 880. 283.2 1.26 24 1.74 24 5 0.549 -9.188.8 283.9 1883. 4.54 4.73 880. 283.2 1.24 17 1.71 17 4 0.422 -10.249.5 285.0 2258. 4.40 4.58 880. 283.2 1.23 17 1.70 17 4 0.412 -11.25

10.3 285.0 2270. 4.34 4.58 880. 283.2 1.23 17 1.71 17 4 0.541 -11.3710.9 285.0 2273. 4.40 4.58 880. 283.2 1.23 17 1.71 24 4 0.397 -11.3911.7 283.1 1752. 4.53 4.77 880. 283.2 1.25 17 1.72 17 5 0.533 -10.0912.1 281.3 1235. 4.74 4.99 880. 283.2 1.27 17 1.75 24 5 0.549 -8.3612.6 283.2 1745. 4.84 4.73 880. 283.2 1.25 24 1.71 17 5 -.259 -9.7613.1 285.0 2264. 4.61 4.54 880. 318.6 1.22 24 1.66 17 4 -.175 -8.5713.9 284.9 2276. 4.45 4.54 880. 318.6 1.22 17 1.66 17 4 0.213 -8.6314.6 284.9 2273. 4.44 4.52 880. 283.2 1.22 24 1.70 17 4 0.181 -11.1415.4 284.9 2270. 4.45 4.51 880. 283.2 1.22 17 1.70 24 4 0.134 -11.2116.2 284.8 2267. 4.47 4.53 880. 318.6 1.22 17 1.66 24 4 0.133 -8.7416.9 284.8 2270. 4.45 4.52 880. 318.6 1.22 17 1.66 24 4 0.153 -8.6517.7 285.0 2278. 4.43 4.51 880. 318.6 1.22 17 1.66 17 4 0.189 -8.5918.4 284.1 1894. 4.45 4.62 880. 283.2 1.23 17 1.70 17 5 0.371 -10.0719.1 284.1 1888. 4.48 4.60 880. 283.2 1.23 17 1.70 17 5 0.280 -10.0419.9 285.1 2270. 4.47 4.45 880. 283.2 1.22 24 1.69 24 4 -.047 -11.0420.6 285.1 2276. 4.45 4.45 880. 283.2 1.22 17 1.69 24 4 -.013 -11.1221.4 285.2 2282. 4.46 4.45 880. 283.2 1.22 17 1.69 24 4 -.033 -11.1622.1 283.6 1298. 4.36 4.84 880. 283.2 1.25 24 1.72 24 5 1.062 -8.2122.6 283.6 1275. 4.61 4.82 880. 283.2 1.25 17 1.72 24 5 0.466 -7.8723.1 285.2 2253. 4.74 4.39 880. 283.2 1.22 17 1.67 17 4 -.778 -10.7423.8 285.1 2273. 4.54 4.41 880. 283.2 1.22 24 1.68 3 5 -.300 -10.9724.5 285.3 2279. 4.55 4.41 880. 283.2 1.22 3 1.69 3 5 -.312 -11.0425.3 285.6 2276. 4.53 4.41 880. 283.2 1.22 3 1.69 3 5 -.262 -11.0126.0 285.7 2273. 4.50 4.41 880. 283.2 1.22 3 1.69 3 5 -.200 -10.9826.8 285.6 2296. 4.47 4.40 880. 283.2 1.22 3 1.69 3 5 -.168 -11.0227.5 286.1 2507. 4.47 4.32 880. 283.2 1.23 3 1.70 3 5 -.344 -11.4928.4 286.7 2702. 4.45 4.25 880. 283.2 1.24 3 1.71 3 5 -.430 -11.8829.3 286.9 2702. 4.41 4 .25 880. 283.2 1.24 3 1.71 3 5 -.359 -11.84

EFPD tin Nt Cb exp

Сb calc G Н10 Kq NK Kv NK NZ RO Offset

°C MW g/kg G/kg *10-2 m3/h cm % %

30.2 287.0 2689. 4.36 4.25 880. 283.2 1.24 3 1.71 3 5 -.266 -11.7431. 1 287.0 2696. 4.32 4.23 880. 283.2 1.24 3 1.71 3 5 -.203 -11.6732.0 287.1 2719. 4.32 4.22 880. 283.2 1.24 3 1.71 3 5 -.230 -11.6432.9 287. 1 2725. 4.32 4.21 880. 283.2 1.24 3 1.71 3 5 -.268 -11.59

33.8 287.1 2731. 4.32 4.19 880. 283.2 1.24 3 1.71 3 5 -.294 -11.5334.8 287.1 2733. 4.33 4.18 880. 283.2 1.24 3 1.71 3 5 -.327 -11.4535.7 287.1 2807. 4.32 4.15 880. 283.2 1.25 3 1.71 3 5 -.377 -11.5736.6 287.1 2881. 4.30 4.12 880. 283.2 1.25 3 1.71 3 4 -.401 -11.7037.5 287.2 2878. 4.30 4.11 880. 283.2 1.25 3 1.71 3 4 -.432 -11.6438.5 287.3 2879. 4.30 4.10 880. 283.2 1.25 3 1.71 3 4 -.429 -11.5739.5 287.3 2887. 4.28 4.09 880. 283.2 1.25 3 1.71 3 4 -.438 -11.5340.4 287.2 2894. 4.28 4.08 880. 283.2 1.25 3 1.71 3 4 -.452 -11.5041.4 287.1 2890. 4.27 4.07 880. 283.2 1.25 3 1.71 3 4 -.451 -11.4642.4 287.1 2906. 4.28 4.05 880. 283.2 1.26 3 1.71 3 4 -.490 -11.4343.3 285.1 1723. 5.09 4.43 880. 247.8 1.23 24 1.70 24 4 ***** -12.2244.0 285.4 1695. 5.28 4.39 880. 247.8 1.23 24 1.69 24 4 ***** -11.9044.9 287.7 2926. 4.53 3.96 880. 283.2 1.26 3 1.70 3 4 ***** -11.0645.8 287.6 2978. 4.36 3.97 880. 283.2 1.26 3 1.71 3 4 -.857 -11.2946.8 287.5 2975. 4.34 3.98 880. 283.2 1.26 3 1.71 3 4 -.787 -11.3047.8 287.4 2969. 4.36 3.98 880. 283.2 1.26 3 1.71 3 4 -.842 -11.2548.8 287.5 2975. 4.34 3.97 880. 283.2 1.26 3 1.70 3 4 -.821 -11.1749.8 286.4 2366. 4.57 4.16 880. 283.2 1.25 3 1.68 3 5 -.908 -9.5750.5 283.5 1211. 5.07 4.60 880. 247.8 1.25 24 1.70 24 5 ***** -9.8251.2 281.9 1039. 4.95 4.64 880. 247.8 1.26 24 1.71 24 5 -.689 -8.7851.9 283.9 1880. 4.70 4.23 880. 283.2 1.22 17 1.62 3 5 ***** -7.5652.5 285.3 1968. 4.64 4.20 880. 283.2 1.23 3 1.64 3 5 -.954 -7.7453.3 285.6 2062. 4.42 4.19 880. 283.2 1.24 3 1.65 3 5 -.518 -8.0954.2 286.0 2396. 4.43 4.08 880. 283.2 1.25 3 1.67 3 5 -.763 -9.1755.0 286.7 2606. 4.49 4.02 880. 283.2 1.26 3 1.68 3 5 ***** -9.7855.9 287.7 2963. 4.39 3.90 880. 283.2 1.27 3 1.70 3 4 ***** -10.6656.9 287.5 2962. 4.27 3.91 880. 283.2 1.27 3 1.70 3 4 -.799 -10.7657.9 287.4 2966. 4.27 3.93 880. 318.6 1.27 3 1.65 3 5 -.759 -7.8358.8 287.5 2983. 4.25 3.91 880. 318.6 1.27 3 1.65 3 5 -.745 -7.6359.8 287.6 2990. 4.23 3.89 880. 318.6 1.27 3 1.64 3 5 -.738 -7.4860.8 287.6 2994. 4.22 3.88 880. 318.6 1.27 3 1.64 3 5 -.735 -7.3861.8 287.5 2984. 4.20 3.86 880. 318.6 1.27 3 1.63 3 5 -.737 -7.2962.8 287.5 2977. 4.18 3.85 880. 318.6 1.27 3 1.63 3 5 -.729 -7.2163.8 287.5 2987. 4.16 3.84 880. 318.6 1.27 3 1.63 3 4 -.701 -7.2064.8 287.5 2993. 4.14 3.82 880. 318.6 1.27 3 1.63 3 4 -.703 -7.1865.8 287.5 2996. 4.13 3.81 880. 318.6 1.27 3 1.63 3 4 -.698 -7.1666.8 287.5 2996. 4.11 3.79 880. 318.6 1.27 3 1.63 3 4 -.695 -7.1367.8 287.5 2994. 4.09 3.78 880. 318.6 1.27 3 1.62 3 4 -.693 -7.1068.8 287.3 2990. 4.08 3.77 880. 318.6 1.27 3 1.62 3 4 -.686 -7.1169.8 287.3 2993. 4.07 3.76 880. 318.6 1.27 3 1.62 3 4 -.674 -7.1074.8 287.3 2996. 4.05 3.70 880. 318.6 1.28 3 1.62 3 4 -.775 -6.9775.8 287.3 2996. 4.02 3.68 880. 318.6 1.28 3 1.62 3 4 -.735 -6.9776.8 287.4 2996. 3.99 3.67 880. 318.6 1.28 3 1.62 3 4 -.693 -6.9377.8 287.4 2996. 3.99 3.66 880. 318.6 1.28 3 1.62 3 4 -.719 -6.9378.8 287.3 2997. 3.99 3.65 880. 318.6 1.28 3 1.62 3 4 -.744 -6.9379.8 287.4 2999. 3.97 3.64 880. 318.6 1.28 3 1.62 3 4 -.734 -6.9280.8 287.3 2995. 3.96 3-63 880. 318.6 1.28 3 1.62 3 4 -.728 -6.9281.8 287.3 2993. 3.96 3.62 880. 318.6 1.28 3 1.62 3 4 -.748 -6.9282.8 287.4 2999. 3.96 3.60 880. 318.6 1.28 3 1.62 3 4 -.776 -6.9383.8 287.2 2999. 3.94 3.59 880. 318.6 1.28 3 1.62 3 4 -.765 -6.9684.8 287.1 3001. 3.93 3.58 880. 318.6 1.28 3 1.62 3 4 -.753 -6.9985.8 287.2 3002. 3.93 3.57 880. 318.6 1.28 3 1.62 3 4 -.774 -6.9886.8 287.3 3002. 3.91 3.56 880. 318.6 1.28 3 1.62 3 4 -.772 -6.9687.8 287.4 2977 . 3.90 3.55 880. 318.6 1.28 3 1.61 3 4 -.749 -6.8488.8 287.5 2959. 3.90 3.52 880. 283.2 1.28 3 1.66 3 4 -.829 -10.0289.8 287.5 2969. 3.90 3.53 880. 318.6 1.28 3 1.62 3 4 -.803 -6.9290.8 287.5 2967. 3.88 3.52 880. 318.6 1.28 3 1.61 3 4 -.776 -6.79

EFPD tin Nt Cb exp

Сb calc G Н10 Kq NK Kv NK NZ RO Offset

°C MW g/kg G/kg *10-2 m3/h cm % %

91.8 286.8 2716. 4.00 3.57 880. 283.2 1.27 3 1.65 3 4 -.933 -9.3192.5 286. 5 2648. 4.05 3.58 880. 283.2 1.27 3 1.64 3 4 **** -9.1893.4 287.2 2882. 3.91 3.48 880. 283.2 1.28 3 1.65 3 4 -.924 -9.8694.4 287.4 2942. 3.86 3.46 880. 283.2 1.28 3 1.66 3 4 -.874 -10.0895. 4 287.5 2955. 3. 86 3.47 880. 318.6 1.28 3 1.61 3 4 -.842 -6.8196.3 287.5 2957. 3.85 3.47 880. 318.6 1.28 3 1.61 3 4 -.821 -6.5897.3 287.5 2951. 3.83 3.46 880. 318.6 1.28 3 1.60 3 4 -.809 -6.4098. 3 287.4 2949. 3. 82 3.42 880. 283.2 1.28 3 1.65 3 4 -.862 -9.6799. 3 287.4 2968. 3.79 3.40 880. 283.2 1.28 3 1.65 3 4 -.831 -9.87100.3 287.4 2984. 3.77 3.41 880. 318.6 1.28 3 1.60 3 4 -.771 -6.64101.3 287.3 2976. 3.74 3.38 880. 283.2 1.28 3 1.65 3 4 -.786 -9.82102.3 287.4 2970. 3.72 3.36 880. 283.2 1.28 3 1.65 3 4 -.776 -9.87103.3 287.5 2980. 3.74 3.35 880. 283.2 1.28 3 1.65 3 4 -.840 -9.91104.3 287.4 2990. 3.71 3.34 880. 283.2 1.28 3 1.65 3 4 -.805 -9.95105.3 287.3 2987. 3.68 3.36 880. 318.6 1.28 3 1.60 3 4 -.693 -6.52106.3 287.3 2984. 3.68 3.35 880. 318.6 1.28 3 1.59 3 4 -.714 -6.25107.3 287.4 2983. 3.68 3.34 880. 318.6 1.29 3 1.59 3 4 -.734 -6.08108.2 287.5 2981. 3.66 3.29 880. 283.2 1.28 3 1.64 3 4 -.802 -9.43109.2 287.4 2989. 3.65 3.28 880. 283.2 1.28 3 1.64 3 4 -.797 -9.61110.2 287.4 2993. 3.62 3.27 880. 283.2 1.28 3 1.64 3 4 -.755 -9.70111.2 287.5 2991. 3.59 3.26 880. 283.2 1.28 3 1.64 3 4 -.717 -9.71112.2 287.5 2991. 3.59 3.24 880. 283.2 1.28 3 1.63 3 4 -.742 -9.69113.2 287.5 2988. 3.59 3.23 880. 283.2 1.28 3 1.63 3 4 -.767 -9.63114.2 287.5 2988. 3.59 3.22 880. 283.2 1.28 3 1.63 3 4 -.792 -9.58115.2 287.4 2984. 3.58 3.21 880. 283.2 1.28 3 1.63 3 4 -.785 -9.52116.2 287.4 2981. 3.56 3.23 880. 318.6 1.28 3 1.57 3 4 -.702 -5.92117.2 287.3 2983. 3.55 3.22 880. 318.6 1.28 3 1.57 3 4 -.692 -5.64118.2 287.3 2984. 3.53 3.17 880. 283.2 1.28 3 1.61 3 4 -.761 -9.01119.2 287.4 2984. 3.53 3.16 880. 283.2 1.28 3 1.61 3 4 -.784 -9.09120.2 287.3 2981. 3.53 3.15 880. 283.2 1.28 3 1.61 3 4 -.811 -9.12121.2 287.4 2984. 3.52 3.14 880. 283.2 1.28 3 1.61 3 4 -.807 -9.11122.2 287.4 2986. 3.50 3.13 880. 283.2 1.28 3 1.60 3 4 -.799 -9.06123.2 287.4 2982. 3.50 3.11 880. 283.2 1.28 3 1.60 3 4 -.827 -8.99124.2 287.4 2984. 3.48 3.10 880. 283.2 1.28 3 1.60 3 4 -.813 -8.92125.2 287.5 2989. 3.46 3.12 880. 318.6 1.28 3 1.54 3 4 -.730 -5.20126.2 287.5 2994. 3.44 3.10 880. 318.6 1.28 3 1.53 3 4 -.728 -4.90127.2 287.4 2993. 3.43 3.09 880. 318.6 1.28 3 1.53 3 4 -.720 -4.71128.1 287.3 2989. 3.41 3.05 880. 283.2 1.28 3 1.57 3 4 -.784 -8.28129.1 284.4 1660. 3.63 3.52 880. 247.8 1.27 24 1.60 24 4 -.229 -7.91129.8 284.5 1534. 3.90 3.48 880. 212.4 1.28 17 1.65 24 4 -.903 -11.51130.3 287.6 2831. 3.70 3.01 880. 283.2 1.27 3 1.56 3 3 ***** -7.81131.3 287.7 2947. 3.44 2.98 880. 283.2 1.28 3 1.57 3 3 -.984 -8.23132.2 287.7 2969. 3.41 2.98 880. 283.2 1.28 3 1.57 3 3 -.919 -8.27133.2 287.7 2987. 3.38 2.98 880. 283.2 1.28 3 1.57 3 3 -.872 -8.25134.2 287.6 2998. 3.36 2.96 880. 283.2 1.28 3 1.57 3 3 -.830 -8.20135.2 287.6 2984. 3.34 2.96 880. 283.2 1.28 3 1.56 3 3 -.813 -8.02136.2 287.6 2977 . 3.32 2.95 880. 283.2 1.27 3 1.55 3 3 -.796 -7.84137.2 287.6 2981. 3.30 2.93 880. 283.2 1.27 3 1.55 3 3 -.781 -7.70138.2 287.5 2986. 3.29 2.91 880. 283.2 1.27 3 1.55 3 3 -.800 -7.59139.2 287.6 2993. 3.28 2.90 880. 283.2 1.27 3 1.54 3 3 -.818 -7.47140.2 287.6 2993. 3.27 2.88 880. 283.2 1.27 3 1.54 3 3 -.822 -7.32141.2 287.7 2987. 3.23 2.86 880. 283.2 1.27 3 1.53 3 3 -.789 -7.15142.2 287.6 2985. 3.22 2.85 880. 283.2 1.27 3 1.53 3 3 -.788 -7.04143.2 287.5 2987. 3.22 2.87 880. 318.6 1.27 3 1.48 3 7 -.735 -2.98144.2 287.5 2990. 3.21 2.86 880. 318.6 1.27 3 1.48 3 7 -.748 -2.61145.2 287.5 2990. 3.19 2.84 880. 318.6 1.27 3 1.48 3 7 -.734 -2.37146.2 287.5 2986. 3.18 2.79 880. 283.2 1.26 3 1.51 3 3 -.830 -6.27147.2 287.6 2986. 3.16 2.77 880. 283.2 1.26 3 1.51 3 3 -.834 -6.42148.1 287.6 2987. 3.13 2.80 880. 318.6 1.27 3 1.47 3 7 -.721 -2.43149.1 287.5 2988. 3.11 2.74 880. 283.2 1.26 3 1.50 3 3 -.774 -6.29150.1 287.5 2986. 3.09 2.73 880. 283.2 1.26 3 1.50 3 3 -.772 -6.37

EFPD tin Nt Cb exp

Сb calc G Н10 Kq NK Kv NK NZ RO Offset

°C MW g/kg G/kg *10-2 m3/h cm % %

151.1 287.6 2983. 3.08 2.75 880. 318.6 1.26 3 1.46 3 7 -.689 -2.26152.1 287.6 2981. 3.06 2.74 880. 318.6 1.26 3 1.47 3 8 -.685 -1.95153.1 287.6 2988. 3.05 2.72 880. 318.6 1.26 3 1.47 3 8 -.691 -1.78154. 1 287. 6 2987. 3.02 2.71 880. 318.6 1.26 3 1.47 3 8 -.657 -1.64155.1 287.6 2975. 2.98 2.69 880. 318.6 1.26 3 1.47 3 8 -.621 -1.52156.1 287. 5 2977. 2.97 2.68 880. 318.6 1.26 3 1.47 3 8 -.619 -1.51157. 1 287. 5 2984. 2.95 2.66 880. 318.6 1.26 3 1.47 3 8 -.625 -1.51153 . 1 287. 5 2987. 2.94 2. 64 880. 318.6 1.26 3 1.47 3 8 -.632 -1.49159. 1 287.5 2979. 2.94 2.63 880. 318.6 1.26 3 1.47 3 8 -.663 -1.45160.1 287. 5 2972. 2.94 2.61 880. 318.6 1.25 3 1.47 3 8 -.689 -1.37161. 1 287.6 2977 . 2.98 2.55 880. 283.2 1.25 3 1.48 17 3 -.916 -5.65162.9 287.5 2983. 2.97 2.52 880. 283.2 1.25 3 1.49 24 3 -.948 -5.96163.9 287. 5 2989. 2.86 2.55 880. 318.6 1.25 3 1.46 3 8 -.666 -1.66164.9 287.6 2984. 2.81 2.53 880. 318.6 1.25 3 1.47 3 8 -.589 -1.26165. 9 287. 6 2978. 2.80 2.52 880. 318.6 1.25 3 1.47 3 8 -.589 -0.98166.9 2 8 7.6 2987. 2.78 2. 50 880. 318.6 1.25 3 1.47 3 8 -. 598 -0.84167.9 287.6 2992. 2.77 2.48 880. 318.6 1.25 3 1.47 3 8 -.604 -0.75168.9 287.5 2987. 2.75 2.46 880. 318.6 1.25 3 1.47 3 8 -.604 -0.67169.8 287.5 2983. 2.75 2.45 880. 318.6 1.25 3 1.47 3 8 -.634 -0.62170.8 287.5 2990. 2.75 2.43 880. 318.6 1.24 3 1.47 3 8 -.673 -0.63171.8 287.6 2999. 2.73 2.41 880. 318.6 1.24 3 1.47 3 8 -.687 -0.62172.8 287.6 2938. 2.70 2.41 880. 318.6 1.24 3 1.47 3 8 -.617 -0.30173.8 287.3 2869. 2.69 2.43 880. 318.6 1.24 3 1.47 3 8 -.556 0.02174.8 287.2 2876. 2.69 2.41 880. 318.6 1.24 3 1.47 3 8 -.596 0.00175.7 287.2 2849. 2.70 2.40 880. 318.6 1.24 3 1.47 3 8 -.645 0.18176.7 287.2 2828. 2.70 2.39 880. 318.6 1.23 3 1.47 3 8 -.666 0.32177.6 287.4 2851. 2.69 2.37 880. 318.6 1.23 3 1.47 3 8 -.687 0.25178.6 287.4 2852. 2.69 2.35 880. 318.6 1.23 3 1.47 3 8 -.724 0.26179.5 287.2 2840. 2.69 2.34 880. 318.6 1.23 3 1.47 3 8 -.742 0.30180.5 287.2 2878. 2.69 2.31 880. 318.6 1.23 3 1.47 3 8 -.799 0.10181.4 287.2 2867. 2.67 2.30 880. 318.6 1.23 3 1.46 3 8 -.792 0.16182.4 287.2 2893. 2.66 2.28 880. 318.6 1.23 3 1.46 3 8 -.812 0.03183.3 287.5 2985. 2.64 2.22 880. 318 -6 1.23 3 1.46 3 8 -.895 -0.40184.3 287.6 2891. 2.85 2.24 880. 318.6 1.23 3 1.46 3 8 ***** 0.11185.3 287.4 2790. 2.85 2.22 880. 283.2 1.23 24 1.45 17 3 ***** -4.08186.2 287.1 2792. 2.62 2.20 880. 283.2 1.23 17 1.45 24 3 -.880 -4.35187.1 287.1 2787. 2.60 2.23 880. 318.6 1.22 3 1.45 3 8 -.782 0.29188.1 284.5 1937. 3.43 2.44 880. 212.4 1.27 17 1.55 24 3 ***** -9.27188.9 282.3 918. 3.45 2.91 880. 141.6 1.34 24 1.54 24 3 ***** -3.94188.9 285.3 1868. 2.64 2.46 880. 247.8 1.27 24 1.48 17 3 -.393 -4.77189.7 287.8 3002. 2.59 2.05 880. 318.6 1.23 3 1.43 3 8 * •*+* -0.78190.7 287.7 3004. 2.51 2.07 880. 318.6 1.23 3 1.44 3 8 -.935 -0.33191.7 287.6 3000. 2.47 2.07 880. 318.6 1.23 3 1.45 3 8 -.852 -0.02192.7 287.5 2996. 2.44 2.07 880. 318.6 1.23 3 1.45 3 8 -.792 0.17193.7 287.5 2994. 2.42 2.06 880. 318.6 1.23 3 1.45 3 8 -.780 0.27194.7 287.5 2993. 2.39 2.04 880. 318.6 1.23 3 1.45 3 8 -.748 0.33195.7 287.5 2990. 2.38 2.02 880. 318.6 1.22 3 1.45 3 8 -.755 0.35196.7 287.5 2992. 2.37 2.00 880. 318.6 1.22 3 1.45 3 8 -.761 0.32197.7 287.5 2997. 2.32 1.98 880. 318.6 1.22 3 1.44 3 8 -.715 0.25198.7 287.5 2995. 2.29 1.96 880. 318.6 1.22 3 1.44 3 8 -.689 0.25199.7 287.5 2992. 2.28 1.94 880. 318.6 1.22 3 1.44 3 8 -.698 0.23200.7 287.5 2991. 2.24 1.93 880. 318.6 1.22 3 1.44 3 8 -.674 0.20201.7 287.5 2992. 2.23 1.91 880. 318.6 1.22 3 1.43 3 8 -.686 0.17202.7 287.5 2993. 2.21 1.89 880. 318.6 1.22 3 1.43 3 8 -.697 0.16203.7 287.5 2995. 2.20 1.87 880. 318.6 1.22 3 1.43 3 8 -.707 0.13204.7 287.5 2998. 2.18 1.85 880. 318.6 1.22 3 1.43 3 8 -.707 0.10205.7 287.5 2998. 2.14 1.83 880. 318.6 1.22 3 1.42 3 8 -.668 0.09206.7 287.5 2998. 2.12 1.81 880. 318.6 1.22 3 1.42 3 8 -.644 0.06207.7 287.5 2996. 2.09 1.79 880. 318.6 1.22 3 1.42 3 8 -.619 0.04208.7 287.4 2995. 2.07 1.77 880. 318.6 1.21 3 1.42 3 8 -.624 0.02209.7 287.5 2993. 2.06 1.76 880. 318.6 1.21 24 1.41 3 8 -.628 0.02

EFPD tin Nt Cb exp

Сb calc G Н10 Kq NK Kv NK NZ RO Offset

°C MW g/kg G/kg *10-2 m3/h cm % %

210.7 287.5 2993. 2.04 1.74 880. 318.6 1.21 17 1.41 3 8 -.640 0.00211.7 287.5 2996. 2.02 1.72 880. 318.6 1.21 17 1.41 3 8 -.640 -0.04212.7 287.5 2999. 2.00 1.70 880. 318.6 1.21 24 1.41 3 8 -.633 -0.07213.7 287.5 3000. 1.99 1.68 880. 318.6 1.21 24 1.41 3 8 -.650 -0.10214.7 287.5 3000. 1.98 1.66 880. 318.6 1.21 24 1.40 3 8 -.669 -0.12215.7 287.5 2999. 1.97 1.64 880. 318.6 1.21 24 1.40 3 8 -.676 -0.13216.7 287.5 2999. 1.95 1.62 880. 318.6 1.21 24 1.40 3 8 -.690 -0.14217.7 287.5 2999. 1.93 1.61 880. 318.6 1.21 24 1.40 3 8 -.694 -0.15218.7 287.5 2999. 1.91 1.59 880. 318.6 1.21 24 1.40 3 8 -.679 -0.18219.7 287.5 3000. 1.89 1.57 880. 318.6 1.21 24 1.39 3 8 -.674 -0.20220.7 287.5 3001. 1.87 1.55 880. 318.6 1.21 24 1.39 3 8 -.660 -0.23221.7 287.5 3000. 1.84 1.53 880. 318.6 1.21 24 1.39 3 8 -.636 -0.25222.7 287.4 2999. 1.80 1.52 880. 318.6 1.21 24 1.39 3 8 -.609 -0.28223.7 287.4 2999. 1.79 1.50 880. 318.6 1.21 24 1.39 3 8 -.614 -0.30224.7 287.4 2999. 1.77 1.48 880. 318.6 1.21 17 1.38 3 8 -.624 -0.32225. 7 287.4 2999. 1.75 1.46 880. 318.6 1.21 24 1.38 3 8 -.596 -0.34226.7 287.4 2999. 1.73 1.44 880. 318.6 1.21 24 1.38 3 8 -.602 -0.37227.7 287.4 3001. 1.72 1.42 880. 318.6 1.21 17 1.38 3 8 -.616 -0.40228.7 287.5 3002. 1. 68 1.40 880. 318.6 1.21 17 1. 38 3 8 -.594 -0.43229.7 287.5 3005. 1.67 1.38 880. 318.6 1.21 17 1.37 3 8 -. 603 -0. 47230.7 287.4 3002. 1.65 1.37 880. 318.6 1.21 24 1.37 3 8 -.607 -0.48231.7 287.4 2999. 1.63 1.35 880. 318.6 1.21 24 1.37 3 8 -.579 -0.47232.7 286.8 2806. 1. 65 1.42 880. 318.6 1.21 17 1. 39 17 3 -.502 0.67233.6 286.5 2643. 1.72 1.41 880. 283.2 1.22 17 1.41 24 2 -.640 -3.49234.5 285.6 2391. 1.78 1.51 880. 283.2 1.23 17 1.39 24 2 -.570 -2.12235.2 284.3 2108. 1.85 1.58 880. 247.8 1.25 17 1.45 24 2 -.566 -5.77235.9 284.3 2116. 1.86 1.55 880. 247.8 1.25 24 1.46 17 2 -.653 -6.02236.6 284.3 2102. 1.86 1.54 880. 247.8 1.25 24 1.46 24 2 -.679 -6.02237.3 284.2 2079. 1.86 1.54 880. 247.8 1.25 17 1.45 24 2 -.684 -5.87238.0 284.1 2086. 1.86 1.53 880. 247.8 1.25 17 1.46 17 2 -.711 -5.88238.7 284.2 2099. 1.88 1.51 880. 247.8 1.25 17 1.46 17 2 -.776 -5.90239.4 284.3 2114. 1.89 1.49 880. 247.8 1.25 24 1.46 17 2 -.843 -5.90240.1 284.3 2105. 1.88 1.49 880. 247.8 1.25 24 1.45 24 2 -.824 -5.71240.9 285.4 2419. 1.83 1.38 880. 283.2 1.23 24 1.39 17 2 -.944 -2.25241.6 287.0 2873. 1.65 1.22 880. 318.6 1.21 24 1.38 24 8 -.924 0.46242.6 287.4 2998. 1.47 1.16 880. 318.6 1.21 3 1.38 3 9 -.651 0.12243.6 287.4 2999. 1.42 1.16 880. 318.6 1.21 3 1.38 3 9 -.559 0.28244.6 287.4 2999. 1.40 1.14 880. 318.6 1.21 3 1.38 3 9 -.556 0.33245.6 287.4 2999. 1.38 1.12 880. 318.6 1.21 3 1.38 3 9 -.532 0.31246.6 287.4 2996. 1.36 1.11 880. 318.6 1.20 3 1.38 3 9 -.539 0.27247.6 286.3 2683. 1.39 1.17 880. 283.2 1.22 17 1.41 24 2 -.459 -3.22248.4 285.3 2370. 1.47 1.24 880. 247.8 1.23 17 1.47 24 2 -.479 -6.91249.2 285.3 2368. 1.51 1.27 880. 283.2 1.23 17 1.39 24 2 -.511 -1.66250.0 285.1 2321. 1.52 1.22 880. 247.8 1.23 17 1.47 17 2 -.655 -6.75250.8 284.5 2162. 1.54 1.28 880. 247.8 1.24 17 1.45 24 2 -.561 -5.78251.5 284.2 2056. 1.57 1.31 880. 247.8 1.24 17 1.44 24 2 -.553 -4.99252.2 284.3 2064. 1.60 1.29 880. 247.8 1.24 24 1.44 17 2 -.665 -4.96252.9 284.5 2083. 1.59 1.26 880. 247.8 1.24 17 1.44 17 2 -.688 -4.99253.6 284.6 2087. 1.57 1.25 880. 247.8 1.24 17 1.44 17 2 -.688 -4.93254.3 284.5 2074. 1.57 1.24 880. 247,8 1.24 17 1.43 24 2 -.698 -4.73254.9 284.5 2065. 1.57 1.24 880. 247.8 1.24 24 1.43 24 2 -.709 -4.56255.6 284.5 2059. 1.57 1.23 880. 247.8 1.24 17 1.43 24 2 -.728 -4.42256.3 284.5 2065. 1.55 1.22 880. 247.8 1.24 17 1.43 17 2 -.719 -4.36257.0 284.6 2081. 1.54 1.20 880. 247.8 1.24 24 1.43 17 2 -.727 -4.39257.7 282.8 1278. 2.29 1.62 880. 247.8 1.27 17 1.50 17 8 ***** 2.39258.2 284.3 1599. 2.22 1.39 880. 247.8 1.25 24 1.44 24 8 ***** 0.04259.0 287.7 2866. 1.30 0.86 880. 318.6 1.20 3 1.41 3 9 -.923 1.84260.0 287.7 2996. 1.13 0.83 880. 318.6 1.21 3 1.41 3 9 -.635 1.12261.0 287.6 2996. 1.08 0.83 880. 318.6 1.21 3 1.41 3 9 -.523 1.11262.0 287.4 2887. 1.08 0.87 880. 318.6 1.21 3 1.42 3 9 -.439 1.78263.0 286.6 2694. 1.08 0.95 880. 318.6 1.20 17 1.43 3 9 -.281 3.01

EFPD tin Nt Cb exp

Сb calc G Н10 Kq NK Kv NK NZ RO Offset

°C MW g/kg G/kg *10-2 m3/h cm % %

265.7 286.1 2610. 1.07 0.93 880. 318.6 1.20 17 1.43 3 9 -.301 3.29266.6 286.1 2610. 1.05 0.91 880. 318.6 1.20 24 1.43 3 9 -.300 3.17267.4 286.1 2610. 1.03 0.89 880. 318.6 1.20 17 1.43 3 9 -.301 3.06268.3 286.1 2610. 1.01 0.87 880. 318.6 1.20 24 1.42 3 9 -.301 2.94269.2 286.1 2610. 0.99 0.85 880. 318.6 1.20 24 1.42 3 9 -.302 2.82270.1 286.1 2610. 0.97 0.83 880. 318.6 1.20 24 1.42 3 9 -.295 2.71270.9 286.1 2610. 0.95 0.82 880. 318.6 1.20 24 1.42 3 9 -.285 2.61271.8 286.1 2610. 0.93 0.80 880. 318.6 1.20 24 1.41 3 9 -.278 2.52272.7 286.1 2610. 0.91 0.78 880. 318.6 1.20 17 1.41 3 9 -.271 2.43273.5 286.1 2610. 0.89 0.77 880. 318.6 1.20 24 1.41 3 9 -.260 2.36274.4 286.1 2610. 0.87 0.75 880. 318.6 1.20 24 1.41 3 9 -.254 2.28275.3 286.1 2610. 0.85 0.73 880. 318.6 1.20 24 1.41 3 9 -.252 2.21276.1 286.1 2610. 0.83 0.71 880. 318.6 1.20 24 1.41 3 9 -.246 2.15277.0 286.1 2610. 0.81 0.70 880. 318.6 1.20 24 1.40 3 9 -.247 2.09277.9 286.1 2610. 0.80 0.68 880. 318.6 1.20 24 1.40 3 9 -.249 2.03278.8 286.1 2610. 0.78 0.67 880. 318.6 1.20 24 1.40 3 9 -.240 1.97279.6 286.1 2610. 0.76 0.65 880. 318.6 1.20 17 1.40 3 9 -.233 1.92280.5 286.1 2610. 0.74 0.63 880. 318.6 1.20 17 1.40 3 9 -.230 1.86281.4 286.1 2610. 0.72 0.62 880. 318.6 1.20 24 1.40 3 9 -.221 1.82282.2 286.1 2610. 0.70 0.60 880. 318.6 1.20 24 1.40 3 9 -.208 1.77283.1 286.1 2610. 0.68 0.59 880. 318.6 1.20 24 1.40 3 9 -. 199 1.73284.0 286.1 2610. 0.66 0.57 880. 318.6 1.20 17 1.40 3 9 -.196 1.68284.8 286.1 2610. 0.64 0.55 880. 318.6 1.20 24 1.39 3 9 -.187 1.64285.7 286. 1 2610. 0.62 0.53 880. 318. 6 1.20 3 1.39 3 9 -. 184 1.59286. 6 286.1 2610. 0.60 0.52 880. 318.6 1.20 3 1.39 3 9 -.173 1.562S7.5 286.1 2610. 0.58 0.50 880. 318.6 1.20 3 1.39 3 9 -.162 1.52288. 3 286.1 2610. 0.56 0.4 9 880. 318.6 1.20 3 1.39 3 9 -.154 1.48289.2 286.1 2610. 0.54 0.47 880. 318.6 1.20 3 1.39 3 9 -.149 1.442 50. 1 286.1 2610. 0.52 0.45 880. 318.6 1.20 3 1.39 3 9 -.145 1.40240.9 286.1 2610. 0.50 0. 44 880. 318 . 6 1.20 3 1.3 9 3 9 -. 131 1. 37291.8 286.1 2610. 0.48 0.42 880. 318.6 1.20 3 1.39 3 9 -.119 1.33292.7 286.1 2610. 0.46 0.41 880. 318.6 1.20 3 1.39 3 9 -.115 1.29293.5 286.1 2610. 0.44 0.39 880. 318.6 1.20 3 1.39 3 9 -.107 1.25294.4 286.1 2610. 0.42 0.37 880. 318.6 1.20 3 1.38 3 9 -.102 1.21295.3 286.1 2610. 0.40 0.36 880. 318.6 1.20 3 1.38 3 9 -.092 1.18296.2 286.1 2610. 0.38 0.34 880. 318.6 1.20 3 1.38 3 9 -.082 1.14297.0 286.1 2610. 0.36 0.33 880. 318.6 1.20 3 1.38 3 9 -.068 1.12297.9 286.1 2610. 0.34 0.31 880. 318.6 1.20 3 1.38 3 9 -.066 1.08298.8 286.1 2610. 0.32 0.29 880. 318.6 1.20 3 1.38 3 9 -.063 1.04299.6 286.1 2610. 0.30 0.28 880. 318.6 1.20 3 1.38 3 9 -.050 1.02300.5 286.1 2610. 0.28 0.26 880. 318.6 1.20 3 1.38 3 9 -.040 0.98301.4 286.1 2610. 0.26 0.25 880. 318.6 1.20 3 1.38 3 9 -.041 0.95302.2 286.1 2610. 0.25 0.23 880. 318.6 1.20 3 1.38 3 9 -.045 0.92303.1 286.1 2610. 0.23 0.21 880. 318.6 1.20 3 1.38 3 9 -.043 0.88304.0 286.1 2610. 0.21 0.19 880. 318.6 1.20 3 1.38 3 9 -.033 0.86304.9 286.1 2610. 0.19 0.18 880. 318.6 1.20 3 1.37 3 9 -.023 0.82305.7 286.1 2610. 0.17 0.17 880. 318.6 1.20 3 1.37 3 9 -.009 0.80306.6 286.1 2610. 0.15 0.15 880. 318.6 1.20 3 1.37 3 9 -.006 0.76307.5 286.1 2610. 0.13 0.13 880, 318.6 1.20 3 1.37 3 9 -.003 0.73308.3 286.1 2610. 0.11 0.11 880. 318.6 1.20 3 1.37 3 9 0.010 0.71309.2 286.1 2610. 0.09 0.10 880. 318.6 1.20 3 1.37 3 9 0.020 0.68310.1 286.1 2610. 0.07 0.08 880. 318.6 1.20 3 1.37 3 9 0.029 0.65310.9 286.1 2610. 0.05 0.07 880. 318.6 1.20 3 1.37 3 9 0.037 0.63311.8 286.1 2610. 0.03 0.05 880. 318.6 1.20 3 1.37 3 9 0.040 0.59312.7 286.1 2610. 0.01 0.03 880. 318.6 1.20 3 1.37 3 9 0.049 0.57313.6 286.1 2610. 0.01 0.02 880. 318.6 1.20 3 1.37 3 9 0.016 0.54

9.10 Measured and operation data for the second cycle Table 11: Characteristics of the critical reactor state at BOC of the second cycle

H10 Tin P Cнзвоз, g/kg % (°С) (kgf/cm2) Measur. Calc*

70 279.4 161.8 8.81 8.71

* utility’s calcuation Reactor state: EFPD = 0, HZP, no Xe-135 0 % - control rods withdrawn (Upper core end position) 100 % - fully inserted control rods (core bottom position) P1 - pressure above the core Table 12: Temperature reactivity coefficient at BOC of the second cycle

Н10 Тin Р dρ/dT, *10-3 %/°C

(averaged)% °С kgf/cm2 Measur. Calc*

30 277-281 159-161 -10.5 -9.41

83 276-281 159-161 -4.3 -5.73

Reactor state: BOC 02, EFPD=0, HZP, no Xe135, CRD groups 1-6 withdrawn (0 %), 4 Main coolant pumps functioning, ßeff=0.65%

FA No. Fuel type Burnup at BOC Burnup at EOC Burnup at EOC-eff

28 30AV5 16.22 23.05 23.81

26 27

390GO 430GO 0.00 0.00

15.59 11.96 17.24 13.27

23 24 25

22AU 30AV5 430GO 14.84 16.00 0.00 25.50 27.97 12.76 26.62 29.23 14.13

19 20 21 22

39AWU 22AU 390GO 430GO 13.05 14.23 10.59 0.00 27.69 25.01 25.13 12.81 29.13 26.12 26.61 14.18

14 15 16 17 18

30AV5 390GO 30AV5 30AV5 430GO 16.00 10.59 13.55 16.49 0.00 28.59 25.42 26.15 28.65 12.05 29.85 26.87 27.42 29.91 13.36

8 9 10 11 12 13

390GO 22AU 39AWU 22AU 390GO 30AV5 0.00 14.06 13.05 14.66 0.00 16.22

15.59 25.29 27.82 25.57 15.71 23.08 17.21 26.44 29.26 26.70 17.36 23.84

1 2 3 4 5 6 7

30AV5 22AU 22AU 39AWU 39AWU 22AU 430GO 15.07 14.11 14.11 13.59 13.59 14.49 0.00 25.22 24.13 24.99 28.24 28.01 25.56 14.24 26.35 25.22 26.12 29.68 29.44 26.73 15.76

Fig. 34: 2D FA burnup distribution for the second cycle

EFPD 29.0 Thermal reactor power Nt 2918 MW Coolant flow rate 87674 m3/h Core inlet temperature Tin 287 °C Boron concentration 5.5 gH3BO3/kg H2O Position of CRD working group H10 297 cm Coolant heat up 29.0 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 35: Calculated 2D Power density distribution vs. SPND readings (EFPD=29.0)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 36: Calculated 2D Power density distribution vs. reconstructed distribution

EFPD 63.9 Thermal reactor power Nt 2910 MW Coolant flow rate 88039 m3/h Core inlet temperature Tin 287 °C Boron concentration 4.9 gH3BO3/kg H2O Position of CRD working group H10 303 cm Coolant heat up 28.9 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 37: Calculated 2D Power density distribution vs. SPND readings (EFPD=63.9)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 38: Calculated 2D Power density distribution vs. reconstructed distribution

EFPD 105.8 Thermal reactor power Nt 2987 MW Coolant flow rate 87833 m3/h Core inlet temperature Tin 287 °C Boron concentration 4.1 gH3BO3/kg H2O Position of CRD working group H10 319 cm Coolant heat up 29.5 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 39: Calculated 2D Power density distribution vs. SPND readings (EFPD=105.8)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 40: Calculated 2D Power density distribution vs. reconstructed distribution

EFPD 164.0 Thermal reactor power Nt 2998 MW Coolant flow rate 87893 m3/h Core inlet temperature Tin 287 °C Boron concentration 2.9 gH3BO3/kg H2O Position of CRD working group H10 321 cm Coolant heat up 29.6 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 41: Calculated 2D Power density distribution vs. SPND readings (EFPD=164)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 42: Calculated 2D Power density distribution vs. reconstructed distribution

EFPD 218.4 Thermal reactor power Nt 3000 MW Coolant flow rate 88087 m3/h Core inlet temperature Tin 287 °C Boron concentration 1.8 gH3BO3/kg H2O Working group of CRD H10 Position of working CRD group 316 cm Coolant heat up 29.6 K Legend:Number of the FA in the core

Measured value / Calculated value

Fig. 43: Calculated 2D Power density distribution vs. SPND readings (EFPD=218.4)

Legend: Number of the FA in the core Calculated value / Reconstructed value

Fig. 44: Calculated 2D Power density distribution vs. reconstructed distribution

Table 13: Operational data for the second cycle

EFPD tin

°C Nt

MW Cbexp g/kg

Cbcalcg/kg

G *10-2m3/h

Н10 см

Kq NK Kv NK NZ RO %

Offset %

0.0 282.9 686 7.87 7.33 880 247.8 1.35 12 1.64 12 6 -.861 0.59 0.2 284.4 1496 7.46 6.63 880 247.8 1.32 12 1.59 12 5 ***** -4.36 0.8 286.4 2600 6.71 6.09 880 283.2 1.27 12 1.52 12 4 ***** -4.33 1.7 287.0 2911 6.34 5.97 880 283.2 1.26 12 1.52 12 3 -.593 -5.47 2.7 287.1 2930 6.25 5.98 880 283.2 1.25 12 1.50 12 3 -.436 -5.43 3.6 287.1 2930 6.13 5.98 880 283.2 1.24 10 1.49 12 3 -.235 -5.28 4.6 287.0 2926 6.03 5.96 880 283.2 1.25 10 1.49 12 3 -.101 -5.14 5.6 287.0 2924 5.99 5.94 880 283.2 1.25 10 1.48 12 3 -.079 -5.00 6.6 287.1 2927 5.97 5.91 880 283.2 1.25 10 1.47 12 3 -.090 -4.87 7.5 287.1 2926 5.94 5.88 880 283.2 1.25 10 1.47 12 3 -.102 -4.75 8.5 287.1 2922 5.94 5.84 880 283.2 1.25 10 1.46 12 3 -.155 -4.66 9.5 287.0 2918 5.88 5.82 880 283.2 1.25 10 1.46 12 3 -.094 -4.57 10.1 287.0 2918 5.88 5.80 880 283.2 1.25 10 1.46 12 3 -.125 -4.53 10.4 287.0 2911 5.81 5.79 880 283.2 1.25 10 1.45 12 3 -.036 -4.48 11.4 287.0 2915 5.78 5.75 880 283.2 1.25 10 1.45 12 3 -.041 -4.45 12.4 287.0 2920 5.75 5.72 880 283.2 1.25 10 1.45 12 3 -.046 -4.43 13.4 287.0 2920 5.75 5.69 880 283.2 1.25 10 1.45 12 3 -.095 -4.39 14.4 287.0 2921 5.72 5.66 880 283.2 1.25 10 1.45 12 3 -.101 -4.38 15.0 287.0 2921 5.72 5.65 880 283.2 1.25 10 1.45 12 3 -.128 -4.37 15.3 287.0 2921 5.70 5.64 880 283.2 1.25 10 1.45 12 3 -.101 -4.36 16.3 287.0 2920 5.70 5.61 880 283.2 1.25 10 1.45 12 3 -.142 -4.34 17.3 287.0 2918 5.70 5.59 880 283.2 1.25 10 1.45 12 3 -.184 -4.32 18.2 287.0 2917 5.70 5.56 880 283.2 1.25 10 1.45 12 3 -.224 -4.32 19.2 286.9 2917 5.66 5.54 880 283.2 1.25 10 1.45 12 3 -.204 -4.32 19.9 286.9 2917 5.66 5.52 880 283.2 1.25 10 1.45 12 3 -.234 -4.32 20.2 286.9 2920 5.63 5.51 880 283.2 1.25 10 1.45 12 3 -.188 -4.33 21.2 286.9 2924 5.63 5.49 880 283.2 1.25 10 1.45 12 3 -.234 -4.35 22.1 287.0 2927 5.63 5.46 880 283.2 1.25 10 1.45 12 3 -.275 -4.35 23.1 287.0 2927 5.63 5.44 880 283.2 1.25 10 1.45 12 3 -.309 -4.32 24.1 287.0 2924 5.63 5.42 880 283.2 1.25 10 1.45 12 3 -.347 -4.30 25.0 287.0 2924 5.63 5.40 880 283.2 1.25 10 1.45 12 3 -.378 -4.30 25.0 287.0 2921 5.57 5.40 880 283.2 1.25 10 1.45 12 3 -.276 -4.30 26.0 287.0 2924 5.50 5.37 880 283.2 1.25 10 1.45 12 3 -.209 -4.29 27.0 287.0 2924 5.50 5.35 880 283.2 1.25 10 1.45 12 3 -.242 -4.28 28.0 287.0 2923 5.50 5.33 880 283.2 1.25 10 1.45 12 3 -.278 -4.28 29.0 287.0 2923 5.50 5.31 880 283.2 1.25 10 1.45 12 3 -.311 -4.27 29.9 287.0 2920 5.50 5.29 880 283.2 1.25 10 1.45 12 3 -.346 -4.25 30.9 287.0 2918 5.50 5.27 880 283.2 1.24 10 1.45 12 3 -.380 -4.22 31.9 287.0 2918 5.47 5.25 880 283.2 1.24 10 1.45 12 3 -.366 -4.20 32.8 287.0 2917 5.44 5.22 880 283.2 1.24 10 1.45 12 3 -.352 -4.19

EFPD tin

°C Nt

MW Cbexp g/kg

Cbcalcg/kg

G *10-2m3/h

Н10 см

Kq NK Kv NK NZ RO %

Offset %

33.8 287.0 2916 5.44 5.20 880 283.2 1.24 10 1.45 12 3 -.386 -4.18 34.8 287.0 2915 5.44 5.18 880 283.2 1.24 10 1.45 12 3 -.419 -4.17 35.8 287.0 2915 5.41 5.16 880 283.2 1.24 10 1.45 12 3 -.404 -4.17 36.7 287.0 2918 5.38 5.14 880 283.2 1.24 10 1.45 12 3 -.396 -4.17 37.7 287.1 2920 5.38 5.11 880 283.2 1.24 10 1.45 12 3 -.433 -4.16 38.7 287.1 2921 5.38 5.10 880 283.2 1.24 10 1.45 12 3 -.464 -4.15 39.7 287.1 2921 5.38 5.07 880 283.2 1.24 10 1.45 12 3 -.499 -4.14 40.6 287.0 2920 5.35 5.05 880 283.2 1.24 10 1.45 12 3 -.486 -4.14 41.6 287.0 2920 5.32 5.03 880 283.2 1.24 10 1.45 12 3 -.469 -4.13 42.6 287.0 2919 5.32 5.01 880 283.2 1.24 8 1.45 12 3 -.502 -4.13 43.5 287.0 2909 5.38 4.99 880 283.2 1.24 8 1.45 12 3 -.633 -4.07 44.5 287.0 2906 5.34 4.98 880 283.2 1.24 8 1.45 12 3 -.602 -4.02 45.5 287.0 2914 5.25 4.95 880 283.2 1.24 8 1.45 12 3 -.490 -4.05 46.5 287.0 2915 5.25 4.93 880 283.2 1.24 8 1.45 12 3 -.522 -4.05 47.4 287.0 2917 5.22 4.91 880 283.2 1.24 8 1.45 12 3 -.515 -4.05 48.4 287.0 2919 5.22 4.89 880 283.2 1.24 8 1.45 12 3 -.550 -4.06 49.4 286.9 2918 5.22 4.94 880 318.6 1.25 15 1.45 15 8 -.454 1.40 50.3 287.0 2920 5.19 4.92 880 318.6 1.25 15 1.46 15 8 -.438 1.66 51.3 287.0 2922 5.19 4.90 880 318.6 1.25 15 1.46 15 8 -.476 1.80 52.3 287.1 2921 5.16 4.88 880 318.6 1.25 15 1.46 15 8 -.457 1.83 53.3 287.0 2918 5.13 4.78 880 283.2 1.24 8 1.45 12 3 -.567 -3.75 54.2 286.9 2917 5.13 4.77 880 283.2 1.24 8 1.45 12 3 -.600 -4.06 55.2 286.9 2918 5.13 4.75 880 283.2 1.24 12 1.46 12 3 -.631 -4.26 56.2 286.9 2915 5.10 4.72 880 283.2 1.24 12 1.46 12 3 -.617 -4.39 57.2 286.9 2914 5.07 4.78 880 318.6 1.25 15 1.44 15 8 -.478 1.04 58.1 286.9 2915 5.03 4.76 880 318.6 1.25 15 1.44 15 8 -.453 1.26 59.1 286.8 2889 5.03 4.75 880 318.6 1.25 15 1.44 15 8 -.466 1.51 60.1 286.8 2879 5.03 4.73 880 318.6 1.25 15 1.44 15 8 -.495 1.60 61.0 286.9 2907 5.00 4.70 880 318.6 1.24 15 1.44 15 8 -.490 1.45 62.0 287.0 2919 4.97 4.67 880 318.6 1.24 15 1.44 15 8 -.495 1.31 63.0 286.9 2917 4.95 4.66 880 318.6 1.24 8 1.43 15 8 -.485 1.23 63.9 287.2 2888 5.20 4.57 880 283.2 1.24 12 1.46 12 3 ***** -4.22 65.1 287.4 2930 5.07 4.52 880 283.2 1.24 12 1.47 12 3 -.908 -4.77 66.1 287.3 2992 4.73 4.54 880 318.6 1.25 8 1.41 15 8 -.307 0.18 67.1 287.3 2989 4.76 4.53 880 318.6 1.25 8 1.41 15 8 -.383 0.35 68.1 287.5 2993 4.76 4.50 880 318.6 1.25 8 1.41 15 8 -.428 0.43 69.1 287.4 2990 4.76 4.48 880 318.6 1.25 8 1.41 4 9 -.459 0.46 70.1 287.3 2986 4.74 4.46 880 318.6 1.25 8 1.41 4 9 -.465 0.44 71.1 287.3 2986 4.73 4.45 880 318.6 1.25 8 1.41 4 9 -.469 0.41 72.1 287.3 2992 4.72 4.42 880 318.6 1.25 8 1.41 4 9 -.487 0.32 73.1 287.3 2996 4.70 4.40 880 318.6 1.25 8 1.40 4 9 -.501 0.23 74.1 287.3 2996 4.68 4.38 880 318.6 1.25 8 1.40 8 8 -.501 0.17 75.1 287.3 2992 4.61 4.36 880 318.6 1.25 8 1.40 8 8 -.428 0.11

EFPD tin

°C Nt

MW Cbexp g/kg

Cbcalcg/kg

G *10-2m3/h

Н10 см

Kq NK Kv NK NZ RO %

Offset %

76.1 287.3 2987 4.57 4.34 880 318.6 1.25 8 1.40 12 3 -.385 0.06 77.1 287.3 2988 4.57 4.32 880 318.6 1.25 8 1.40 12 3 -.416 -0.01 78.1 287.3 2990 4.55 4.29 880 318.6 1.25 8 1.40 12 3 -.432 -0.09 79.1 287.2 2991 4.54 4.27 880 318.6 1.25 8 1.40 12 3 -.439 -0.16 80.1 287.2 2990 4.54 4.25 880 318.6 1.25 8 1.40 12 3 -.474 -0.22 81.1 287.3 2987 4.54 4.23 880 318.6 1.25 8 1.41 12 3 -.508 -0.24 82.0 287.3 2990 4.53 4.21 880 318.6 1.25 8 1.41 12 3 -.526 -0.30 83.0 287.4 2995 4.51 4.18 880 318.6 1.25 8 1.41 12 3 -.540 -0.37 84.0 287.3 2989 4.49 4.17 880 318.6 1.25 8 1.41 12 3 -.547 -0.39 85.0 287.2 2981 4.48 4.15 880 318.6 1.25 8 1.41 12 3 -.546 -0.41 86.0 287.3 2985 4.45 4.13 880 318.6 1.25 8 1.41 12 3 -.534 -0.47 87.0 287.3 2992 4.42 4.10 880 318.6 1.25 8 1.41 12 3 -.526 -0.54 88.0 287.3 2987 4.41 4.08 880 318.6 1.25 8 1.41 12 3 -.532 -0.56 89.0 287.3 2987 4.38 4.07 880 318.6 1.25 8 1.41 12 3 -.513 -0.59 90.0 287.3 2992 4.34 4.04 880 318.6 1.25 8 1.41 12 3 -.505 -0.67 91.0 287.3 2993 4.32 4.02 880 318.6 1.25 8 1.42 12 3 -.493 -0.71 92.0 287.4 2995 4.28 4.00 880 318.6 1.25 8 1.42 12 3 -.479 -0.74 93.0 287.3 2993 4.25 3.98 880 318.6 1.25 8 1.42 12 3 -.453 -0.78 94.0 287.3 2995 4.22 3.96 880 318.6 1.25 8 1.42 12 3 -.426 -0.82 95.0 287.3 2995 4.20 3.94 880 318.6 1.25 8 1.42 12 3 -.436 -0.86 96.0 287.3 2995 4.20 3.92 880 318.6 1.25 8 1.42 12 3 -.471 -0.90 97.0 287.3 2996 4.18 3.90 880 318.6 1.25 8 1.42 12 3 -.480 -0.94 98.0 287.3 2993 4.17 3.88 880 318.6 1.25 8 1.42 12 3 -.489 -0.96 99.0 286.9 2861 4.20 3.93 880 318.6 1.25 8 1.41 12 3 -.452 -0.24 99.9 286.9 2860 4.20 3.91 880 318.6 1.25 12 1.41 12 3 -.484 -0.23

100.9 287.3 2992 4.16 3.81 880 318.6 1.25 8 1.42 12 3 -.571 -1.01 101.9 287.3 2993 4.14 3.80 880 318.6 1.25 8 1.43 12 3 -.574 -1.07 102.9 287.3 2996 4.14 3.77 880 318.6 1.25 8 1.43 12 3 -.603 -1.15 103.9 287.3 2996 4.11 3.76 880 318.6 1.25 8 1.43 12 3 -.582 -1.19 104.9 287.3 2993 4.07 3.74 880 318.6 1.25 8 1.43 12 3 -.549 -1.21 105.8 287.3 2993 4.07 3.72 880 318.6 1.25 8 1.43 12 3 -.578 -1.24 105.9 286.7 2746 4.02 3.85 880 318.6 1.25 12 1.41 12 3 -.281 0.23 106.8 286.1 2499 4.01 3.90 880 283.2 1.27 12 1.48 12 3 -.184 -3.88 107.8 285.9 2489 3.99 3.88 880 283.2 1.28 12 1.48 12 3 -.189 -4.05 108.7 285.6 2495 3.96 3.86 880 283.2 1.28 12 1.48 12 3 -.173 -4.23 109.6 286.5 2749 3.92 3.76 880 318.6 1.26 12 1.42 12 3 -.273 -0.19 110.6 287.3 2987 3.89 3.61 880 318.6 1.25 8 1.43 12 3 -.468 -1.36 111.6 287.4 2990 3.88 3.60 880 318.6 1.25 8 1.43 12 3 -.465 -1.32 112.6 287.3 2993 3.85 3.59 880 318.6 1.25 8 1.43 12 3 -.436 -1.32 113.6 286.6 2787 3.87 3.69 880 318.6 1.26 12 1.42 12 3 -.297 -0.13 114.6 286.2 2600 3.90 3.69 880 283.2 1.28 12 1.49 12 3 -.348 -4.56 115.4 286.5 2618 3.90 3.66 880 283.2 1.28 12 1.49 12 3 -.406 -4.78 116.3 286.5 2609 3.90 3.64 880 283.2 1.28 12 1.49 12 3 -.435 -4.83

EFPD tin

°C Nt

MW Cbexp g/kg

Cbcalcg/kg

G *10-2m3/h

Н10 см

Kq NK Kv NK NZ RO %

Offset %

117.2 286.5 2609 3.90 3.63 880 283.2 1.28 12 1.50 12 3 -.462 -4.87 118.0 286.5 2609 3.88 3.61 880 283.2 1.28 12 1.50 12 3 -.459 -4.88 118.9 286.5 2609 3.86 3.59 880 283.2 1.28 12 1.50 12 3 -.454 -4.87 119.8 286.5 2612 3.85 3.57 880 283.2 1.28 12 1.50 12 3 -.470 -4.84 120.6 286.5 2607 3.84 3.56 880 283.2 1.28 12 1.50 12 3 -.470 -4.77 121.5 286.5 2608 3.82 3.54 880 283.2 1.28 12 1.50 12 3 -.458 -4.71 122.4 286.6 2630 3.80 3.51 880 283.2 1.28 12 1.50 12 3 -.483 -4.80 123.2 287.0 2795 3.79 3.48 880 318.6 1.26 12 1.43 12 3 -.518 -0.12 124.2 287.4 2960 3.71 3.37 880 318.6 1.26 12 1.43 12 3 -.571 -0.89 125.2 287.4 2988 3.63 3.35 880 318.6 1.26 12 1.44 12 3 -.478 -0.99 126.2 287.2 2937 3.60 3.35 880 318.6 1.26 12 1.43 12 3 -.413 -0.64 127.1 287.1 2885 3.59 3.37 880 318.6 1.26 12 1.43 12 3 -.379 -0.31 128.1 287.3 2939 3.58 3.32 880 318.6 1.26 12 1.43 12 3 -.433 -0.66 129.1 287.4 2987 3.54 3.27 880 318.6 1.26 12 1.44 12 3 -.452 -1.03 130.1 287.3 2990 3.51 3.25 880 318.6 1.26 12 1.44 12 3 -.428 -1.15 131.1 287.4 2996 3.49 3.23 880 318.6 1.26 12 1.45 12 3 -.442 -1.27 132.1 287.4 2997 3.47 3.21 880 318.6 1.26 12 1.45 12 3 -.454 -1.35 133.1 287.4 2998 3.44 3.19 880 318.6 1.26 12 1.45 12 3 -.435 -1.42 134.1 287.4 2998 3.43 3.17 880 318.6 1.26 12 1.45 12 3 -.445 -1.50 135.1 287.4 2995 3.41 3.15 880 318.6 1.26 12 1.45 12 3 -.452 -1.55 136.1 287.4 2998 3.40 3.12 880 318.6 1.27 12 1.45 12 3 -.466 -1.64 137.1 287.4 3000 3.38 3.10 880 318.6 1.27 12 1.46 12 3 -.481 -1.75 138.1 287.4 3000 3.36 3.08 880 318.6 1.27 12 1.46 12 3 -.461 -1.75 139.1 287.4 2996 3.34 3.06 880 318.6 1.27 12 1.46 12 3 -.468 -1.75 140.1 287.5 2995 3.33 3.05 880 318.6 1.27 12 1.46 12 3 -.472 -1.77 141.1 287.4 2995 3.31 3.03 880 318.6 1.27 12 1.46 12 3 -.480 -1.80 142.1 287.4 2990 3.30 3.01 880 318.6 1.27 12 1.46 12 3 -.487 -1.81 143.1 287.4 2990 3.28 2.99 880 318.6 1.27 12 1.46 12 3 -.490 -1.83 144.1 287.4 2993 3.28 2.97 880 318.6 1.27 12 1.46 12 3 -.527 -1.88 145.1 287.4 2990 3.26 2.95 880 318.6 1.27 12 1.46 12 3 -.523 -1.89 146.1 287.5 2970 3.23 2.94 880 318.6 1.27 12 1.46 12 3 -.494 -1.76 147.1 287.6 2933 3.22 2.93 880 318.6 1.27 12 1.46 12 3 -.487 -1.48 148.0 287.6 2916 3.20 2.92 880 318.6 1.27 12 1.46 12 3 -.470 -1.37 149.0 287.5 2948 3.18 2.89 880 318.6 1.27 12 1.46 12 3 -.487 -1.64 150.0 287.4 2978 3.16 2.86 880 318.6 1.27 12 1.47 12 3 -.517 -1.90 151.0 287.4 2981 3.13 2.84 880 318.6 1.27 12 1.47 12 3 -.501 -1.96 152.0 287.4 2992 3.12 2.82 880 318.6 1.28 12 1.47 12 3 -.514 -2.08 153.0 287.4 2992 3.12 2.80 880 318.6 1.28 12 1.47 12 3 -.543 -2.11 154.0 287.4 2984 3.11 2.78 880 318.6 1.28 12 1.47 12 3 -.548 -2.08 154.9 287.4 2989 3.08 2.77 880 318.6 1.28 12 1.47 12 3 -.526 -2.14 155.9 287.3 2995 3.05 2.74 880 318.6 1.28 12 1.47 12 3 -.513 -2.23 156.9 287.3 2995 3.02 2.73 880 318.6 1.28 12 1.48 12 3 -.491 -2.25 157.9 287.3 2998 3.00 2.71 880 318.6 1.28 12 1.48 12 3 -.502 -2.30

EFPD tin

°C Nt

MW Cbexp g/kg

Cbcalcg/kg

G *10-2m3/h

Н10 см

Kq NK Kv NK NZ RO %

Offset %

158.9 287.3 3000 2.98 2.68 880 318.6 1.28 12 1.48 12 3 -.512 -2.33 159.9 287.3 3001 2.95 2.67 880 318.6 1.28 12 1.48 12 3 -.490 -2.35 160.9 287.3 3001 2.94 2.65 880 318.6 1.28 12 1.48 12 3 -.497 -2.37 161.9 287.3 3000 2.92 2.63 880 318.6 1.28 12 1.48 12 3 -.504 -2.39 162.9 287.3 3000 2.91 2.61 880 318.6 1.28 12 1.48 12 3 -.511 -2.41 163.9 287.3 2998 2.89 2.59 880 318.6 1.28 12 1.48 12 3 -.510 -2.40 164.0 287.3 2998 2.89 2.59 880 318.6 1.28 12 1.48 12 3 -.510 -2.40 164.9 287.3 2998 2.87 2.57 880 318.6 1.28 12 1.48 12 3 -.505 -2.41165.9 286.3 2991 2.86 2.59 880 318.6 1.28 12 1.49 12 3 -.462 -2.61166.9 286.2 2990 2.84 2.57 880 318.6 1.29 12 1.49 12 3 -.464 -2.62167.9 287.3 2998 2.83 2.52 880 318.6 1.28 12 1.48 12 3 -.529 -2.46168.9 287.3 2999 2.80 2.49 880 318.6 1.28 12 1.48 12 3 -.513 -2.46169.9 287.4 3001 2.78 2.47 880 318.6 1.28 12 1.48 12 3 -.525 -2.46170.9 287.5 3001 2.75 2.45 880 318.6 1.28 12 1.48 12 3 -.511 -2.45171.9 287.5 2996 2.72 2.43 880 318.6 1.29 12 1.48 12 3 -.490 -2.42172.9 287.4 2996 2.72 2.42 880 318.6 1.29 12 1.48 12 3 -.518 -2.44173.9 287.4 3000 2.70 2.39 880 318.6 1.29 12 1.48 12 3 -.532 -2.51174.9 286.9 2754 2.70 2.52 880 318.6 1.29 12 1.46 12 3 -.319 -0.76175.9 286.1 2501 2.72 2.58 880 283.2 1.31 12 1.52 12 3 -.241 -4.47176.8 286.0 2501 2.66 2.56 880 283.2 1.32 12 1.52 12 3 -.178 -4.64177.7 285.7 2497 2.60 2.55 880 283.2 1.32 12 1.52 12 3 -.094 -4.72178.7 285.9 2510 2.60 2.52 880 283.2 1.32 12 1.53 12 3 -.142 -4.82179.6 286.1 2518 2.57 2.49 880 283.2 1.32 12 1.52 12 3 -.131 -4.81180.5 286.7 2749 2.56 2.41 880 318.6 1.29 12 1.46 12 3 -.266 -0.93181.5 287.3 2996 2.55 2.25 880 318.6 1.29 12 1.48 12 3 -.510 -2.42182.5 287.4 2998 2.48 2.23 880 318.6 1.29 12 1.48 12 3 -.431 -2.35183.5 287.4 2997 2.47 2.22 880 318.6 1.29 12 1.48 12 3 -.425 -2.31184.5 287.3 3000 2.45 2.21 880 318.6 1.29 12 1.48 12 3 -.425 -2.34185.5 287.3 3000 2.44 2.19 880 318.6 1.29 12 1.48 12 3 -.428 -2.35186.5 287.0 2895 2.42 2.23 880 318.6 1.29 12 1.47 12 3 -.332 -1.58187.5 287.0 2891 2.41 2.21 880 318.6 1.29 12 1.47 12 3 -.338 -1.53188.5 287.2 3001 2.39 2.13 880 318.6 1.29 12 1.47 12 3 -.458 -2.31189.5 287.3 3001 2.37 2.11 880 318.6 1.29 12 1.47 12 3 -.443 -2.34190.5 287.4 2999 2.34 2.09 880 318.6 1.29 12 1.47 12 3 -.422 -2.34191.5 287.3 3000 2.31 2.07 880 318.6 1.29 12 1.47 12 3 -.411 -2.43192.5 287.2 3000 2.29 2.05 880 318.6 1.29 12 1.47 12 3 -.417 -2.46193.5 287.2 2998 2.29 2.03 880 318.6 1.29 12 1.47 12 3 -.445 -2.43194.5 287.2 2999 2.27 2.01 880 318.6 1.29 12 1.47 12 3 -.446 -2.45195.5 287.2 3001 2.24 1.99 880 318.6 1.29 12 1.47 12 3 -.432 -2.46196.5 287.2 2999 2.21 1.97 880 318.6 1.29 12 1.47 12 3 -.412 -2.45197.5 287.3 2994 2.19 1.95 880 318.6 1.29 12 1.47 12 3 -.410 -2.42198.5 287.2 2996 2.17 1.93 880 318.6 1.29 12 1.47 12 3 -.417 -2.44199.5 287.2 3001 2.16 1.91 880 318.6 1.29 12 1.47 12 3 -.432 -2.50200.5 287.2 2999 2.14 1.89 880 318.6 1.29 12 1.47 12 3 -.437 -2.48201.5 287.1 2998 2.13 1.87 880 318.6 1.29 12 1.47 12 3 -.445 -2.48202.5 287.1 2996 2.12 1.86 880 318.6 1.29 12 1.47 12 3 -.448 -2.48203.5 287.1 2996 2.09 1.84 880 318.6 1.29 12 1.47 12 2 -.428 -2.47204.5 287.1 2997 2.07 1.82 880 318.6 1.29 12 1.47 12 2 -.435 -2.48205.5 287.1 2999 2.06 1.79 880 318.6 1.29 12 1.47 12 2 -.451 -2.49206.5 287.1 2999 2.03 1.78 880 318.6 1.29 12 1.47 12 2 -.430 -2.48207.5 287.1 2996 2.01 1.76 880 318.6 1.29 12 1.47 12 2 -.438 -2.46208.5 286.9 2915 2.00 1.78 880 318.6 1.29 12 1.46 12 3 -.365 -1.83209.5 286.3 2683 2.02 1.83 880 283.2 1.31 12 1.51 12 2 -.314 -5.57210.4 286.0 2575 2.08 1.88 880 283.2 1.32 12 1.51 12 3 -.342 -4.88211.2 286.6 2804 2.04 1.79 880 318.6 1.29 12 1.45 12 3 -.443 -1.15212.2 287.1 2992 1.95 1.65 880 318.6 1.29 12 1.46 12 2 -.512 -2.39

EFPD tin

°C Nt

MW Cbexp g/kg

Cbcalcg/kg

G *10-2m3/h

Н10 см

Kq NK Kv NK NZ RO %

Offset %

213.2 287.1 2997 1.92 1.64 880 318.6 1.29 12 1.46 12 2 -.490 -2.38214.2 287.1 3001 1.89 1.62 880 318.6 1.29 12 1.46 12 2 -.471 -2.37216.2 287.2 3000 1.84 1.58 880 318.6 1.29 12 1.46 12 2 -.446 -2.33217.2 287.2 2999 1.80 1.56 880 318.6 1.29 12 1.46 12 2 -.418 -2.29218.2 287.1 2997 1.79 1.55 880 318.6 1.29 12 1.46 12 2 -.424 -2.28218.4 287.1 2997 1.79 1.54 880 318.6 1.29 12 1.46 12 2 -.431 -2.28219.2 287.1 2999 1.76 1.53 880 318.6 1.29 12 1.46 12 2 -.408 -2.29220.2 287.2 3000 1.72 1.50 880 318.6 1.29 12 1.46 12 2 -.372 -2.31221.2 287.1 2999 1.70 1.48 880 318.6 1.29 12 1.46 12 2 -.378 -2.30222.2 287.1 2998 1.70 1.46 880 318.6 1.29 12 1.46 12 2 -.410 -2.29223.2 287.2 2999 1.67 1.44 880 318.6 1.29 12 1.46 12 2 -.397 -2.30224.2 287.1 2999 1.64 1.42 880 318.6 1.29 12 1.46 12 2 -.377 -2.30225.2 287.1 3000 1.63 1.40 880 318.6 1.29 12 1.46 12 2 -.386 -2.31226.2 287.1 2999 1.60 1.38 880 318.6 1.29 12 1.46 12 2 -.370 -2.30227.2 287.1 2999 1.58 1.36 880 318.6 1.29 12 1.46 12 2 -.378 -2.29228.2 287.2 3002 1.54 1.34 880 318.6 1.29 12 1.46 12 2 -.362 -2.31229.2 286.4 2083 1.51 1.79 880 283.2 1.32 12 1.43 12 7 0.483 -0.20230.0 284.5 1376 1.80 2.15 880 212.4 1.38 12 1.51 12 5 0.605 -2.54230.3 283.5 1663 2.24 2.00 880 247.8 1.36 12 1.48 12 6 -.428 -1.81230.9 285.6 2194 2.12 1.65 880 283.2 1.32 12 1.44 12 3 -.814 -1.26231.7 287.7 2795 1.70 1.24 880 283.2 1.30 12 1.51 12 2 -.807 -5.97232.7 287.8 2966 1.50 1.22 880 318.6 1.28 12 1.45 12 2 -.489 -2.10233.7 287.8 2996 1.45 1.20 880 318.6 1.28 12 1.45 12 2 -.432 -2.25234.7 287.7 3000 1.43 1.19 880 318.6 1.28 12 1.45 12 2 -.421 -2.22235.7 287.7 3000 1.40 1.18 880 318.6 1.28 12 1.45 12 2 -.391 -2.17236.7 287.7 3000 1.38 1.17 880 318.6 1.28 12 1.45 12 2 -.366 -2.14237.7 287.6 2999 1.33 1.15 880 318.6 1.28 12 1.45 12 2 -.320 -2.12238.7 287.5 3000 1.29 1.13 880 318.6 1.28 12 1.45 12 2 -.281 -2.12239.7 287.3 3000 1.27 1.12 880 318.6 1.28 12 1.45 12 2 -.270 -2.17242.7 287.0 3000 1.25 1.06 880 318.6 1.28 12 1.45 12 2 -.333 -2.22243.7 287.0 3000 1.23 1.04 880 318.6 1.28 12 1.45 12 2 -.330 -2.23244.7 287.0 3000 1.21 1.02 880 318.6 1.28 12 1.45 12 2 -.336 -2.23245.7 287.0 3000 1.18 1.00 880 318.6 1.28 12 1.45 12 2 -.333 -2.23246.7 287.0 3000 1.16 0.97 880 318.6 1.28 12 1.45 12 2 -.330 -2.23247.7 287.0 3000 1.14 0.95 880 318.6 1.28 12 1.45 12 2 -.328 -2.22248.7 287.0 3000 1.12 0.93 880 318.6 1.28 12 1.45 12 2 -.326 -2.21249.7 287.0 3000 1.10 0.91 880 318.6 1.28 12 1.45 12 2 -.330 -2.22250.7 287.0 3000 1.08 0.89 880 318.6 1.28 12 1.45 12 2 -.334 -2.21251.7 287.0 3000 1.06 0.87 880 318.6 1.28 12 1.45 12 2 -.338 -2.21252.7 287.0 3000 1.04 0.85 880 318.6 1.28 12 1.45 12 2 -.336 -2.20253.7 287.0 3000 1.01 0.83 880 318.6 1.28 12 1.45 12 2 -.325 -2.19254.7 287.0 3000 0.99 0.81 880 318.6 1.28 12 1.45 12 2 -.314 -2.18255.7 287.0 3000 0.97 0.79 880 318.6 1.28 12 1.45 12 2 -.320 -2.19256.7 287.0 3000 0.95 0.77 880 318.6 1.28 12 1.45 12 2 -.325 -2.18257.7 287.0 3000 0.93 0.75 880 318.6 1.28 12 1.45 12 2 -.324 -2.17258.7 287.0 3000 0.91 0.73 880 318.6 1.28 12 1.44 12 2 -.322 -2.16259.7 287.0 3000 0.89 0.71 880 318.6 1.27 12 1.44 12 2 -.321 -2.15260.7 287.0 3000 0.87 0.69 880 318.6 1.27 12 1.44 12 2 -.316 -2.16261.7 287.0 3000 0.84 0.66 880 318.6 1.27 12 1.44 12 2 -.311 -2.15262.7 287.0 3000 0.82 0.64 880 318.6 1.27 12 1.44 12 2 -.314 -2.15263.7 287.0 3000 0.80 0.62 880 318.6 1.27 12 1.44 12 2 -.311 -2.14264.7 287.0 3000 0.78 0.61 880 318.6 1.27 12 1.44 12 2 -.308 -2.13265.7 287.0 3000 0.76 0.58 880 318.6 1.27 12 1.44 12 2 -.311 -2.13266.7 287.0 3000 0.74 0.56 880 318.6 1.27 12 1.44 12 2 -.314 -2.13267.7 287.0 3000 0.71 0.54 880 318.6 1.27 12 1.44 12 2 -.308 -2.13268.7 287.0 3000 0.69 0.52 880 318.6 1.27 12 1.44 12 2 -.302 -2.12269.7 287.0 3000 0.67 0.50 880 318.6 1.27 12 1.44 12 2 -.298 -2.12270.7 287.0 3000 0.65 0.48 880 318.6 1.27 12 1.44 12 2 -.295 -2.11271.7 287.0 3000 0.63 0.46 880 318.6 1.27 12 1.44 12 2 -.298 -2.11

EFPD tin

°C Nt

MW Cbexp g/kg

Cbcalcg/kg

G *10-2m3/h

Н10 см

Kq NK Kv NK NZ RO %

Offset %

272.7 287.0 3000 0.61 0.44 880 318.6 1.27 12 1.44 12 2 -.301 -2.11273.7 287.0 3000 0.59 0.42 880 318.6 1.27 12 1.44 12 2 -.305 -2.11274.7 287.0 3000 0.57 0.40 880 318.6 1.27 12 1.44 12 2 -.302 -2.10275.7 287.0 3000 0.55 0.38 880 318.6 1.27 12 1.43 12 2 -.291 -2.10276.7 287.0 3000 0.52 0.36 880 318.6 1.27 12 1.43 12 2 -.284 -2.10277.7 287.0 3000 0.50 0.34 880 318.6 1.27 12 1.43 12 2 -.286 -2.10278.7 287.0 3000 0.48 0.32 880 318.6 1.27 12 1.43 12 2 -.289 -2.10279.7 287.0 3000 0.46 0.30 880 318.6 1.27 12 1.43 12 2 -.291 -2.10280.7 287.0 3000 0.44 0.28 880 318.6 1.27 12 1.43 12 2 -.288 -2.10281.7 287.0 3000 0.42 0.26 880 318.6 1.27 12 1.43 12 2 -.285 -2.09282.7 287.0 3000 0.40 0.24 880 318.6 1.27 12 1.43 12 2 -.279 -2.10283.7 287.0 3000 0.37 0.22 880 318.6 1.27 12 1.43 12 2 -.273 -2.10284.7 287.0 3000 0.35 0.20 880 318.6 1.27 12 1.43 12 2 -.276 -2.10285.7 287.0 3000 0.33 0.17 880 318.6 1.26 12 1.43 12 2 -.278 -2.10286.7 287.0 3000 0.50 0.16 880 318.6 1.26 12 1.43 12 2 -.613 -2.10287.7 287.0 3000 0.48 0.14 880 318.6 1.26 12 1.43 12 2 -.609 -2.10288.7 287.0 3000 0.27 0.12 880 318.6 1.26 12 1.43 12 2 -.274 -2.10289.7 287.0 3000 0.25 0.09 880 318.6 1.26 12 1.43 12 2 -.268 -2.10290.7 287.0 3000 0.22 0.07 880 318.6 1.26 12 1.43 12 2 -.262 -2.11291.7 287.0 3000 0.20 0.05 880 318.6 1.26 12 1.43 12 2 -.259 -2.10292.7 287.0 3000 0.18 0.04 880 318.6 1.26 12 1.43 12 2 -.257 -2.10293.7 287.0 3000 0.16 0.02 880 318.6 1.26 12 1.42 12 2 -.254 -2.10294.7 287.0 3000 0.14 0.00 880 318.6 1.26 8 1.42 12 2 -.250 -2.10295.7 287.0 3000 0.12 0.00 880 318.6 1.26 8 1.42 12 2 -.214 -2.07296.7 287.0 3000 0.10 0.00 880 318.6 1.26 12 1.42 12 2 -.179 -2.04297.7 287.0 3000 0.08 0.00 880 318.6 1.26 12 1.42 12 2 -.134 -2.01298.7 287.0 3000 0.05 0.00 880 318.6 1.26 12 1.42 12 2 -.089 -1.98299.7 287.0 3000 0.03 0.00 880 318.6 1.26 12 1.42 12 2 -.054 -1.95300.7 287.0 3000 0.01 0.00 880 318.6 1.26 12 1.42 12 2 -.018 -1.92301.3 287.0 3000 0.01 0.00 880 318.6 1.26 12 1.42 12 2 -.018 -1.90