propagation of uncertainty jake blanchard spring 2010 uncertainty analysis for engineers1

49
Propagation of Uncertainty Jake Blanchard Spring 2010 Uncertainty Analysis for Engineers 1

Upload: barnard-snow

Post on 21-Dec-2015

223 views

Category:

Documents


2 download

TRANSCRIPT

Uncertainty Analysis for Engineers 1

Propagation of UncertaintyJake BlanchardSpring 2010

Uncertainty Analysis for Engineers 2

IntroductionWe’ve discussed single-variable

probability distributionsThis lets us represent uncertain

inputsBut what of variables that

depend on these inputs? How do we represent their uncertainty?

Some problems can be done analytically; others can only be done numerically

These slides discuss analytical approaches

Uncertainty Analysis for Engineers 3

Functions of 1 Random VariableSuppose we have Y=g(X) where

X is a random input variableAssume the pdf of X is

represented by fx.If this pdf is discrete, then we can

just map pdf of X onto YIn other words X=g-1(Y)So fy(Y)=fx[g-1(y)]

Uncertainty Analysis for Engineers 4

ExampleConsider Y=X2.Also, assume discrete pdf of X is

as shown belowWhen X=1, Y=1; X=2, Y=4; X=3,

Y=9

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Uncertainty Analysis for Engineers 5

Discrete Variables

Example:◦Manufacturer incurs warranty charges

for system breakdowns◦Charge is C for the first breakdown, C2

for the second failure, and Cx for the xth breakdown (C>1)

◦Time between failures is exponentially distributed (parameter ), so number of failures in period T is Poisson variate with parameter T

◦What is distribution for warranty cost for T=1 year

Uncertainty Analysis for Engineers 6

Formulation

...,,!)ln(

)ln(

0

)(

...,,)ln(

)ln(

00

...,2,1

00)(

...,2,1,0!

)(

2)ln(

)ln(

2

CCw

Cw

e

we

wp

CCwC

w

w

x

xC

xxhw

xx

exf

Cw

x

x

Uncertainty Analysis for Engineers 7

Plots

C=2=1

1 1.5 2 2.5 3 3.5 4 4.5 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

0 5 10 15 20 25 30 350

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

w

Uncertainty Analysis for Engineers 8

CDF For Discrete DistributionsIf g(x) monotonically increases,

then P(Y<y)=P[X<g-1(y)]If g(x) monotonically decreases,

then P(Y<y)=P[X>g-1(y)]…and, formally,

)(

1

1

)()()(ygx

ixXY

i

xpygFyF

x

y

x

y

Uncertainty Analysis for Engineers 9

Another ExampleSuppose Y=X2 and X is Poisson

with parameter

,...9,4,1,0

!

,...3,2,1,0!

)(

)(1

2

yey

tp

xex

tp

YXYg

XgXY

ty

y

tx

x

Uncertainty Analysis for Engineers 10

Continuous DistributionsIf fx is continuous, it takes a bit

more work

dy

dggf

dy

dFyf

or

dydy

ydgygfyF

dydy

ydgdx

ygx

dxxfdxxfyF

xy

y

xY

yg

x

ygx

xY

11

11

1

1

)(

)(

)(

)()(

)(

)()()(

1

1

Uncertainty Analysis for Engineers 11

Example

2exp

2

1

2exp

2

1

2

1exp

2

1

)(

2

2

2

1

1

yf

yf

Xf

imagine

dy

dg

YygX

XY

y

y

x

Normal distribution

Mean=0, =1

Uncertainty Analysis for Engineers 12

Example

X is lognormal

2

2

2

1

1

2

1exp

2

1

)exp(2

1exp)exp(2

1

)ln(

2

1exp

2

1

)exp(

)exp()(

)ln(

yf

yy

yf

x

xf

imagine

Ydy

dg

YygX

XY

y

y

x

Normal distributi

on

Uncertainty Analysis for Engineers 13

If g-1(y) is multi-valued…

),(

2

1

2

1

)(

2

1

11

ognormallS

cuc

uf

c

uff

cudu

dS

c

uS

cSU

Example

dy

dggfyf

ssu

k

iixY

Uncertainty Analysis for Engineers 14

Example (continued)

2

2ln

2

2lnln

2

1exp

22

1

2

1ln

2

1exp

2

1

)ln(

2

1exp

2

1

2

2

2

u

u

u

u

s

c

cu

uf

cu

cu

cu

f

s

sf

lognormal

Uncertainty Analysis for Engineers 15

Example

00

00

22

exp1

2

1

2

1

2

1

2

1

0exp1

1400

vaz

vaz

aza

zf

aza

zf

a

zff

azdz

dV

a

Zv

vv

v

vf

imagine

aVd

FVZ

vvvz

v

Uncertainty Analysis for Engineers 16

A second exampleSuppose we are making strips of

sheet metalIf there is a flaw in the sheet, we

must discard some materialWe want an assessment of how

much waste we expectAssume flaws lie in line segments (of

constant length L) making an angle with the sides of the sheet

is uniformly distributed from 0 to

Uncertainty Analysis for Engineers 17

Schematic

L

w

Uncertainty Analysis for Engineers 18

Example (continued)Whenever a flaw is found, we

must cut out a segment of width w

22

2/12

1

11

1

sin

,0

sin

wLL

w

Ldw

d

L

ww

Uf

Lhw

Uncertainty Analysis for Engineers 19

Example (continued)

g-1 is multi-valued

2221

222

221

2

01

01

wLwfwff

LwwL

wf

LwwL

wf

w

</2

>/2

Uncertainty Analysis for Engineers 20

Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.5

1

1.5

2

2.5

3

3.5

4

4.5

5

wL=1

cdf

pdf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w

Uncertainty Analysis for Engineers 21

Functions of Multiple Random VariablesZ=g(X,Y)For discrete variables

If we have the sum of random variables

Z=X+Y iji xall

iiyxzyx

jiyxz xzxfyxff ,),( ,,

zyxg

jiyxz

ji

yxff),(

, ),(

Uncertainty Analysis for Engineers 22

ExampleZ=X+Y

0.5 1 1.5 2 2.5 3 3.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

fx

5 10 15 20 25 30 350

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

y

fy

Uncertainty Analysis for Engineers 23

AnalysisX Y Z P Z-rank

1 10 11 .08 1

1 20 21 .04 4

1 30 31 .08 7

2 10 12 .24 2

2 20 22 .12 5

2 30 32 .24 8

3 10 13 .08 3

3 20 23 .04 6

3 30 33 .08 9

Uncertainty Analysis for Engineers 24

Result

5 10 15 20 25 30 350

0.05

0.1

0.15

0.2

0.25

0.3

Z

fz

Uncertainty Analysis for Engineers 25

ExampleZ=X+Y

0.5 1 1.5 2 2.5 3 3.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

fx

1.5 2 2.5 3 3.5 4 4.50

0.050.1

0.150.2

0.250.3

0.350.4

0.45

fy

y

Uncertainty Analysis for Engineers 26

AnalysisX Y Z P Z-rank

1 2 3 .08 1

1 3 4 .04 2

1 4 5 .08 3

2 2 4 .24 2

2 3 5 .12 3

2 4 6 .24 4

3 2 5 .08 3

3 3 6 .04 4

3 4 7 .08 5

Uncertainty Analysis for Engineers 27

Compiled Dataz fz

3 .08

4 .28

5 .28

6 .28

7 .08

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.50

0.05

0.1

0.15

0.2

0.25

0.3

fz

z

Uncertainty Analysis for Engineers 28

Example

allx

xzxz

z

allx

xzx

xallyxz

y

y

x

x

xzx

vtvtf

tvxzx

tvtxzfxff

ty

tf

vtx

vtf

YXZ

)!(!exp

exp)!(!

)()(

)exp(!

)exp(!

x and y are integers

Uncertainty Analysis for Engineers 29

Example (continued)

tvz

tvf

zxzx

v

z

z

z

allx

xzx

exp!

!)!(!

The sum of n independent Poisson processes is Poisson

Uncertainty Analysis for Engineers 30

Continuous Variables

z

yxz

z

yxz

g

yxz

zyxg

yxz

dydzdz

dgygfzF

dzdydz

dgygfzF

gyzgx

dxdyyxfzF

dxdyyxfzF

YXgZ

11

,

11

,

11

,

),(

,

),()(

),()(

),(

),()(

),()(

),(

1

Uncertainty Analysis for Engineers 31

Continuous Variables

dYYa

bYZf

af

adz

dg

a

bYZX

bYaXZ

if

dXdz

dggXf

dYdz

dgYgfzf

yxz

yx

yxz

),(1

1

),(

),()(

,

1

11

,

11

,

Uncertainty Analysis for Engineers 32

Continuous Variables (cont.)

dyYfa

bYZf

af

tindependenyx

dXb

aXZXf

bf

dYYa

bYZf

af

yxz

yxz

yxz

)()(1

,

),(1

),(1

,

,

Uncertainty Analysis for Engineers 33

Example

m

w

mf

uwu

du

m

w

mf

duuwum

w

mf

dum

uw

uwmm

u

muduuwfuff

m

v

mvf

m

u

muf

VUVUW

w

w

w

w

vuw

v

u

2exp

2

1

)(2exp

2

1

11

2exp

2

1

2

)(exp)(2

1

2exp

2

1)()(

2exp

2

1

2exp

2

1

0,;

0

Uncertainty Analysis for Engineers 34

In General…If Z=X+Y and X and Y are normal

dist.

Then Z is also normal with 222yxz

yxz

2

2222

22

22

2

1exp

2

1

2

1

2

1exp

2

1

2

1exp

2

1

2

1exp

2

1

)()(

yx

yx

yx

z

y

y

x

x

yxz

y

y

yx

x

x

z

yxz

zf

dyyyz

f

dyyyz

f

dyyfyzff

Uncertainty Analysis for Engineers 35

Products

n

iXZ

n

iXZ

n

ii

n

ii

i

YXz

i

i

XZ

XZ

andognormallallXimagine

dyyy

zf

YZf

YZ

XY

ZX

XYZ

1

22

1

1

1

,

)ln()ln(

),(1

)(

1

Uncertainty Analysis for Engineers 36

ExampleW, F, E are lognormal

2222

2

1

2

1

)ln(2

1)ln()ln()ln(

EFWC

EFWC

EFWC

E

WFC

Uncertainty Analysis for Engineers 37

Central Limit TheoremThe sum of a large number of

individual random components, none of which is dominant, tends to the Gaussian distribution (for large n)

Uncertainty Analysis for Engineers 38

GeneralizationMore than two variables…

nnxxZ

n

dxdxdxz

gxxxgfzf

xxxxgZ

n...,...,,,...)(

),...,,,(

32

1

321

,...,

321

1

Uncertainty Analysis for Engineers 39

MomentsSuppose Z=g(X1, X2, …,Xn)

bXaEdxxfbdxxfxaYE

dxxfbaxdyyfYYE

baXY

imagine

dXdXdXXXXfXXXgZE

dXdXdXXXXfzZE

xx

xy

nnXXXn

nnXXX

n

n

)()()()(

)()()()(

...),...,,(),...,,(...)(

...),...,,(...)(

2121,...,,21

2121,...,,

21

21

Uncertainty Analysis for Engineers 40

Moments

)()(

)()()(

)()()(

)()(

2

22

2

22

XVaraYVar

dxxfxExaYVar

dxxfbxaEbaxYVar

dxxfbaxYEYVar

x

x

xYY

Uncertainty Analysis for Engineers 41

Moments

)()()(),(

),(2)()()(

),(2

),(

),()(

),()(

),()(

)()()(

21212121

2122

12

2121,21

2121,2

22

2121,2

12

2121,2

21

2121,2

21

21

21

2121

212

211

2121

21

XEXEXXEXXEXXCov

XXabCovXVarbXVaraYVar

dxdxxxfxxab

dxdxxxfxb

dxdxxxfxaYVar

dxdxxxfbabxaxYVar

dxdxxxfyYVar

XbEXaEYE

bXaXY

imagine

XX

xxxx

xxx

xxx

xxxx

xxy

Uncertainty Analysis for Engineers 42

Approximation

)()(

)()()()(

)()()()(

)()()(

)()(

)()()(

)(

x

xxxx

xxxx

xxx

xx

x

gYE

dXXfXdx

dgdXXfgYE

dXXfdx

dgXdXXfgYE

dXXfdx

dgXgYE

dx

dgXgXg

dXXfXgYE

XgY

Uncertainty Analysis for Engineers 43

Approximation

2

22

2

2

2

)(

)()(

)()(

)()()(

)()(

)()()(

xx

xx

xx

xyxx

xx

xy

dx

dgXVarYVar

dXXfXdx

dgYVar

dXXfdx

dgXYVar

dXXfdx

dgXgYVar

dx

dgXgXg

dXXfXgYVar

Uncertainty Analysis for Engineers 44

Second Order Approximation

)(2

1)()(

)(2

1)()(

)(2

1)()(

2

1)()(

)()()(

)(

2

2

2

2

2

2

22

2

22

xVardx

gdgYE

dXXfXdx

gdgYE

dXXfdx

gdXgYE

dx

gdX

dx

dgXgXg

dXXfXgYE

XgY

xx

x

xxx

xxx

xxx

x

Uncertainty Analysis for Engineers 45

Approximation for Multiple Inputs

n

i iX

i

n

ixXXXX

n

X

gYVar

x

ggYE

XXXXgY

i

in

1

2

2

2

2

1

2

321

)(

2

1,...,,,)(

),...,,,(

321

Uncertainty Analysis for Engineers 46

ExampleExample 4.13Do exact and then use

approximation and compareWaste Treatment Plant – C=cost,

W=weight of waste, F=unit cost factor, E=efficiency coefficient

median cov

W 2000 ton/y .2

F $20/ton .15

E 1.6 .125

E

WFC

Uncertainty Analysis for Engineers 47

Solving…

84771exp

620,322

1exp

25563.04

1

36.102

1ln

ln2

1lnlnln

124516.0cov1ln

149166.0cov1ln

19804.0cov1ln

4700.0ln

9957.2ln

6009.7ln

2

2

222

2

2

2

CCC

CCC

EFWC

EFWC

EE

FF

WW

medianE

medianF

medianW

CE

EFWC

E

F

W

Uncertainty Analysis for Engineers 48

Approximation

%16.032620

3262032673

326732

1

4

3

0

%4.032620

3248332620;483,32

2016.0;033.3;915.407

6124.1;223.20;6.2039

,,

2

1

2

1

2

1,,)(

2

22

2/52

2

2

2

2

2

2

22

2

22

2

22

error

E

g

E

g

F

g

W

g

error

g

E

g

F

g

W

ggCE

E

E

FW

E

FW

E

FW

EFW

EFW

E

FWEFW

EFWEFW

Uncertainty Analysis for Engineers 49

Variance

%3.18477

83708477

8370

2)(

)(

2

2/32

2

2

2

2

22

22

22

error

CVar

E

g

F

g

W

gCVar

C

E

FWE

E

WF

E

FW

EFW