proopt saab aerosystems¶nköping 2010-10-07... · content background gripen spacecraft adapter...

39
Optimeringsdriven design vid Saab Aerosystems Jönköping, 7 Oktober, 2010 Torsten Bråmå

Upload: phamdat

Post on 18-May-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Optimeringsdriven design vid Saab Aerosystems

Jönköping, 7 Oktober, 2010Torsten Bråmå

Page 2: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Content

� Background

� Gripen

� Spacecraft adapter

� Aerodynamic optimization

2010-10-07

Opimeringsdriven Design, Torsten Bråmå2

� Aerodynamic optimization

� Airbus A380

� Clean Sky – Smart Fixed wing aircraft

� Gripen NG

� Role of optimization in the design process

Page 3: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Complete aircraft responsibility

Gripen – multi-role fighter

Neuron – unmanned demonstrator in European cooperation, Dassault et al.

2010-10-07

Opimeringsdriven Design, Torsten Bråmå3

Page 4: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Complete aircraft responsibility

Saab 2000 FE model

Saab 2000 AEW&C

2010-10-07

Opimeringsdriven Design, Torsten Bråmå4

Saab 2000 FE model

Page 5: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

FE model Gripen one and two seater versions

2010-10-07

Opimeringsdriven Design, Torsten Bråmå5

Page 6: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Bakgrundverktyg för optimering av kompositvingar

För att utnyttja potentialen som finns i användningen av komposit i vingstrukturer behövs datorbaserade stöd för att klara jobbet.

Under perioden 1975-90 utvecklades sådana av flera tillverkare:• USA – TSO, ASTROS m.fl. (F16, F18, F22, F35 etc)• Storbritannien – Stars, ECLIPS (Eurofighter, Gripen vinge)• Frankrike – ELFINI (Mirage, Rafale, Neuron)• Tyskland – Lagrange (Eurofighter)

2010-10-07

Opimeringsdriven Design, Torsten Bråmå6

• Tyskland – Lagrange (Eurofighter)• Sovjet – Argon (?)• Sverige – OPTSYS (Gripen vinge, fena, roder mm)

Under 90-talet började kommersiella verktyg utvecklas.

Idag finns Nastran Sol 200 som kan hantera en hel del av det ovanstående program klarar.

Page 7: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Bakgrundverktyg för strukturanalys och optimering på Saab

Omkring 1980 valdes FE-systemet ASKA för användning i projekten Gripen och Saab 340.

1983 påbörjades utvecklingen av OPTSYS (Saab, KTH, FFA), ett system för strukturoptimering integrerat med ASKA.

Under 1990-talet introducerades FE-systemet UAI-Nastran på Saab parallellt med ASKA. Nastran blir nära nog standard inom flygindustrin (undantag Dassault). Optsys integrerades med UAI-Nastran.

2010-10-07

Opimeringsdriven Design, Torsten Bråmå7

Optsys integrerades med UAI-Nastran.

Saab går över till MSC-Nastran (Gripen Demo, Airbus, Boeing). (MSC köper upp UAI)

MSC-Nastran kan inte integreras med Optsys men har utvecklat egen optimering i form av Sol 200.

2007-2008 genomförs utvecklingsprojekt för att kunna använda Nastran Sol 200t.ex i projekten Gripen NG och Clean Sky.

Page 8: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Objective: Minimum weight

Constraints:• Free from flutter within flight envelope

• Control surface efficiency to assure aircraft performance

• Strain in carbon fibres

Gripen wing: Problem formulation

2010-10-07

Opimeringsdriven Design, Torsten Bråmå8

• Panel buckling

• Design rules

Design variables:• Number of 0, 90 and +-45 degree composite layers

Page 9: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Composite material design variables:

90o � x2

0o � x1

+45o � x3

-45o � x3Total thickness

2010-10-07

Opimeringsdriven Design, Torsten Bråmå9

� 3 design variables controlling each layup

symmetric

thickness

Page 10: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Composite material design rules included as constraints:

• Layer thickness treated as a discrete or continuous variable.

• Stack assumed to be well mixed, no explicit layup treated.

• Each layer direction between 10% and 70% of total panel thickness.

• Minimum / maximum total panel thickness

• Fiber strain < 0.43%

• Panel buckling criteria:

2010-10-07

Opimeringsdriven Design, Torsten Bråmå10

• Panel buckling criteria:

Using in-house software integrated into Nastran.Panel layup and boundary loads received from Nastran.Additional input of panel size and boundary conditions required.

Page 11: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

• Inner elevon deflected to achieve roll moment, Mx, at Mach 0.9

• Mx is reduced due to aeroelastic wing deformation

Gripen wing, control surface efficiency

2010-10-07

Opimeringsdriven Design, Torsten Bråmå11

wing deformation

• Efficiency=Mx(elastic) / Mx(rigid)

• A to flexible wing can result in zero or negative efficiency

Page 12: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Structural analysis

MassFibre strain

Panel buckling

g(X) , dg/dX

Minimize Objective(X)

Gradient based optimization

2010-10-07

Opimeringsdriven Design, Torsten Bråmå12

Flutter damping

Control efficiency

g(X) < gmax

Xmin < X < Xmax

Xn+1

Page 13: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

2010-10-07

Opimeringsdriven Design, Torsten Bråmå13

Page 14: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

2010-10-07

Opimeringsdriven Design, Torsten Bråmå14

Page 15: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Objective: Minimum weight

Constraints:• Frequencies of first lateral and axial mode

• Static axial load distribution in lower joint

• Strain in carbon fibres

Spacecraft adapter: Problem formulation

2010-10-07

Opimeringsdriven Design, Torsten Bråmå15

• Strain in carbon fibres

• Stress in upper aluminum ring

Design variables:• Thickness in upper aluminum ring (29 variables)

• Number of 0 and +-45 degree composite layers (96 variables)

Page 16: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

2010-10-07

Opimeringsdriven Design, Torsten Bråmå16

Page 17: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

2010-10-07

Opimeringsdriven Design, Torsten Bråmå17

Page 18: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

2010-10-07

Opimeringsdriven Design, Torsten Bråmå18

Page 19: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

2010-10-07

Opimeringsdriven Design, Torsten Bråmå19

Page 20: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Event Date

Concept study Aug-Sep 1998

Request for proposal Oct 1998

Opt. Iteration #1 Oct 1998 (~ 3 weeks)

Contract awarded Dec 1998

Opt. Iteration #2 Jan 1999 (~ 4 weeks)

Spacecraft adapter: Schedule / Milestones

2010-10-07

Opimeringsdriven Design, Torsten Bråmå20

Opt. Iteration #2 Jan 1999 (~ 4 weeks)

Hardware manufacturing May-Aug 1999

Test activities Oct 1999

Delivery to customer Nov 1999

Page 21: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Lift

Moment

• Objective function: minimize Drag

• Physical Constraints: - Constant Lift- Constant Pitching Moment- Flow Equations (transonic flow)

Aerodynamic shape optimizationIn-house progran Cadsos, ref. Per Weinerfelt

2010-10-07

Opimeringsdriven Design, Torsten Bråmå21

Drag

Moment- Flow Equations (transonic flow)

• Geometrical Constraints:- Prescribed volume- Given wing thickness at specified locations

Page 22: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Aerodynamic Shape OptimizationAerodynamic Shape Optimization

XXX

KkMXCMXC

KkMXCMXC

MXCMin

kMkM

kLkL

kD

K

kk

≤≤=≥

=≥∗

=∑

,...,1),,(),(

,...,1),,(),(

),(

maxmin

1

λ

Drag minimization under lift, moment and geometrical constraints

original

2010-10-07

Opimeringsdriven Design, Torsten Bråmå22

equationsflowStokesNavierEuler

XXX

−≤≤

/maxmin

λk are weights, X design parameters and Mkdifferent Mach numbers

Saab has participated in the EU-projectAeroshape.(Aerodynamic Shape Optimization)

Pressure distr. over an original and optimized SCT

optimized

Page 23: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Coupled Structure/Aerodynamic OptimizationCoupled Structure/Aerodynamic Optimization

)()( 21 XCXwMin Dλλ +

StructureFE-models

FlutterUnsteady aero

model

Drag and weight minimization under physical and geometrical constraints

Design variables X:•Wing thickness•Wing twist •Wing profile •Structural dimensions

Steady

2010-10-07

Opimeringsdriven Design, Torsten Bråmå23

X

ff

∂∂

,

Static aeroelasticityNeutral model

Redesign1+nX

Saab has experience from the EU-projectsMDO and MOB. Also applied for internal military aircraft wing studies.

•Structural dimensions

Constraints:•Lift and moment•Stress, panel buckling•Flutter, control surface efficiency•Manufacturing requirements•Geometry

Steady Aerodynamics

Page 24: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

AIRBUS A380

2010-10-07

Opimeringsdriven Design, Torsten Bråmå24

Page 25: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

AIRBUS A380

2010-10-07

Opimeringsdriven Design, Torsten Bråmå25

Page 26: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Optimization study: Track Rib 10 (A380-800)

2010-10-07

Opimeringsdriven Design, Torsten Bråmå26

Page 27: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Programvara: Altair HyperWorks

HyperMesh• Geometrimodifiering, uppstädning

• Meshning och meshmodifiering (2D, tet, hex mm.)

• Översättning av indatafiler mellan program

• Definition av optimeringsproblem för exekvering i OptiStruct (målfunktion, bivillkor etc.)

• Applicering av formvariabler (Mesh Morphing)

• Postprocessor (mest HyperView)

2010-10-07

Opimeringsdriven Design, Torsten Bråmå27

• Postprocessor (mest HyperView)

OptiStruct• Inbyggd linjär Fe-lösare

• Bygger på Nastran kod

• Linjär statik, egenfrekvens, linjärbuckling, gap-element

• Inbyggd optimerare – gradientmetod med störningsvektor som opererar på styvhetsmatrisen

Page 28: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

ComparisonOriginal Track Rib 10 Topology optimized Track Rib 10

2010-10-07

Opimeringsdriven Design, Torsten Bråmå28

Page 29: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Size and shape optimizationResults, part 3

2010-10-07

Opimeringsdriven Design, Torsten Bråmå29

Page 30: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Clean Sky - Smart Fixed Wing Aircraft

2010-10-07

Opimeringsdriven Design, Torsten Bråmå30

Page 31: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Key Smart Fixed Wing Aircraft technologies

Innovative Powerplant Integration� Technology Integration

� Large Scale Flight Demonstration

Smart Wing Technologies�Technology Development

�Technology Integration

� Large Scale Flight Demonstration

� Natural Laminar Flow (NLF)

� Hybrid Laminar Flow (HLF)

� Active and passive load control

� Novel enabling materials

� Innovative manufacturing scheme

SAGE ITD – CROR engine

SGO – Systems for Green Operation

Input connecting to:

2010-10-07

Opimeringsdriven Design, Torsten Bråmå31

� Large Scale Flight Demonstration

� Impact of airframe flow field on Propeller design (acoustic, aerodynamic, vibration)

� Impact of open rotor configuration on airframe (Certification capabilities, structure, vibrations...)

� Innovative empennage design

TE– SFWA technologies for a Green ATS

Output providing data to:

ICAS conference Nice, 19.-24.Sept. 2010

Page 32: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

SFWASFWA-- High Speed Demonstrator Passive High Speed Demonstrator Passive (HSDP)(HSDP)

Smart Passive Laminar Flow Wing� Design of an all new natural laminar wing

� Proof of natural laminar wing concept in wind tunnel tests

� Use of novel materials and structural concepts

� Exploitation of structural and system integration together with tight tolerance / high qualitymanufacturing methods in a large scale ground test demonstrator

� Large scale flight test demonstration of the laminar wing in operational conditions

2010-10-07

Opimeringsdriven Design, Torsten Bråmå32

Port wing

Laminar wing structure concept option 2

Starboard wing

Laminar wing structure concept option 1

ICAS conference Nice, 19.-24.Sept. 2010

Page 33: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Worksharing to design and build the “HSDP” Smart Wing demonstrator

Wing Tip: Aernnova

2010-10-07

Opimeringsdriven Design, Torsten Bråmå33

Aileron structure (INCAS)

Integrated upper cover (SAAB)

Integrated upper cover with structural concept (SAAB)

ICAS conference Nice, 19.-24.Sept. 2010

Page 34: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Clean Sky SFWA: FE model (Nastran)

2010-10-07

Opimeringsdriven Design, Torsten Bråmå34

Page 35: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Clean Sky SFWA, Nastran SOL200 results,thickness distribution in composite upper panel and rear spar

2010-10-07

Opimeringsdriven Design, Torsten Bråmå35

Page 36: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Gripen Demo

2010-10-07

Opimeringsdriven Design, Torsten Bråmå36

Page 37: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

Problem formulation

Parametric design

Role of optimization in the design process

2010-10-07

Opimeringsdriven Design, Torsten Bråmå37

Analyses

OptimizationObjective function – to maximize

Constraints – to satisfy

Variables – parameters to modify

WeightCostSafety

Performance

Page 38: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

• Weight reduction

• Finding feasible designs

• Evaluating and comparing design concepts

Role of optimization in the design process

2010-10-07

Opimeringsdriven Design, Torsten Bråmå38

• Investigation of Cost–Performance relation

• Model updating with respect to test results

Examples of engineering tasks where optimization tools have proved to be useful

Page 39: ProOpt Saab Aerosystems¶nköping 2010-10-07... · Content Background Gripen Spacecraft adapter Aerodynamic optimization 2010-10-07 2 Opimeringsdriven Design, Torsten Bråmå Airbus

www.saabgroup.com

2010-10-07

Opimeringsdriven Design, Torsten Bråmå39