proof of the nash-aronson estimate - springer978-3-642-84659-5/1.pdf · proof of the n ash-aronson...

37
Appendix A Proof of the Nash-Aronson Estimate Let A = div (AV), where A(x) is a symmetric matrix defined in JRm and satisfying the inequality 1/11 ::; A::; 1/21, with constants 1/11 1/2 > o. The solution of the Cauchy problem : = div (AVv), vlt=o = f , will be denoted by etA f. Set 'l/J = 'l/J(x) = x, E JRm, u(·,t) = e-'¢eAte'¢f, 1 f E Cg"(JR m ), f(x) 2: 0 , lIuli p = (JR m lu(x, t)IP dx r . Obviously Let us multiply this equation by U 2S - 1 (X, t)1]2(t) , where 8 2: 1, 1](t) is a smooth non-negative function defined in [0,00). Then { 1]2 au U 2s - 1 dx = -.!:.. i { 1]2U 2s dx _ ( d1] 1]U2s dx = JRm at 28 dt JRm 8 JRm dt = 1]2(t) { (- Vu . AVU 2s - 1 + . AVUU 2s - 1 - . AVU 2s - 1 + JR m + . dx = = 1]2(t) { (_ 28 - IVUs. AVus _ 2(8 - 1) AVuSu8 + dx. JRm 8 2 8 Setting here 8 = 1, 1](t) == 1, we obtain the following energy estimates :t < < The application of the inequality . AVu s ::; . + S-IVu s . AVu 8 , (A.l)

Upload: others

Post on 10-Feb-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

Appendix A

Proof of the Nash-Aronson Estimate

Let A = div (AV), where A(x) is a symmetric matrix defined in JRm and satisfying the inequality 1/11 ::; A::; 1/21, with constants 1/11 1/2 > o. The solution of the Cauchy problem

: = div (AVv), vlt=o = f ,

will be denoted by etA f. Set

'l/J = 'l/J(x) = ~. x, ~ E JRm, u(·,t) = e-'¢eAte'¢f, 1

f E Cg"(JRm), f(x) 2: 0 , lIulip = (JRm lu(x, t)IP dx r . Obviously

Let us multiply this equation by U2S- 1(X, t)1]2(t) , where 8 2: 1, 1](t) is a smooth non-negative function defined in [0,00). Then

{ 1]2 au U2s- 1 dx = -.!:.. i { 1]2U2s dx _ ~ ( d1] 1]U2s dx = JRm at 28 dt JRm 8 JRm dt

= 1]2(t) { (-Vu . AVU2s- 1 + ~ . AVUU2s- 1 - U~ . AVU2s- 1 + JRm

+ ~ . ~U2s) dx =

= 1]2(t) { (_ 28 - IVUs. AVus _ 2(8 - 1) ~. AVuSu8 + ~. ~U2S) dx. JRm 82 8

Setting here 8 = 1, 1](t) == 1, we obtain the following energy estimates

~ :t lIull~ < 1/21~12I1ull~,

lllu(T)II~dT < te21121{12tllfll~·

The application of the inequality

-2us~ . AVus ::; 8u2s~ . ~ + S-IVus . AVu8 ,

(A.l)

Page 2: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

Proof of the Nash-Aronson Estimate 537

yields

Let us assume that 7](0) = O. Then

r 7]2U2S dx + rT r 7]2 1V'us I2 dx dt ~ JRm Jo JRm

sup O$t$T

(A.2)

~ 4 ((VII + 1)v21~12s2 + sup 1 ~~ I) faT iRm 7]U2s dxdt.

We recall the well-known multiplicative inequality

2(m + 2) p= ,

m (A.3)

which implies that

(A.4)

Fix to > 0 and consider the intervals

k = 0,1,2, ... ,

together with smooth functions 7]k(t), k = 1,2, ... , such that 0 ~ 7]k ~ 1 on .10 =]0, tor,

7]k = 1 on .Jk, 7]k == 0 on jo \ .Jk-l ,

Set 7] = 7]k in (A.2). Then using the inequality (A.4) we get

IlusliLP(RmX.Jkl ~ 4 (cll~ls + t~~3k) IlusIILP(Rmx.Jk_,) =

=4(CII~ls+t~~3k) Ilul~~III+'Y , LP(Rmx.Jk_,)

k = 0,1, ....

(A.5)

Page 3: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

538 Appendix A

Then (A.5) can be rewritten in the form

k = 1,2, ... ;

the constant C2 in this inequality and the constants C3, C4, C5 in the subsequent ones depend only on Co in (A.3) and 1/1, 1/2. Hence, we conclude by induction that

Therefore

Since <1>6+' = Ilullu(lRmx[O,to))' it follows from (A.l) that

Thereby we have proved the estimate

(A.6)

as well as a similar estimate for e'l/! etA e-'I/! f. These estimates have been obtained under the assumption that f :::: 0; nevertheless, they hold for any f E L2(JRm ),

since the operator eAt is positive. Therefore we also have the dual estimate

which, being combined with (A.6), yields

2 'Y = -.

m

(A.7)

(A.S)

Let K(x, y, t) be the fundamental solution for the operator ! -A. Then it

follows from (A.8) (for details see Remark 1 below) that

(A.9)

Minimizing the last exponent, i.e., setting ~ = ~, we finally obtain

Page 4: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

Proof of the N ash-Aronson Estimate 539

Remark A.I. Let us consider more closely the transition from the estimate (A.8) to the estimate (A.9). First of all we verify that operator eAt for t > 0 is continuous from L2(JRm ) to Co(JRm ), where Co(JRm ) is the space of functions f such that f is continuous in JRm and f(x) ---- 0 as Ixl ---- 00. For a smooth matrix A(x) this result follows from the classical theory. Let Ae be a sequence of smooth matrices such that A e ---- A almost everywhere, v1I ::; 2Ae ::; 4v2I. For f E Cgo(JRm ) and ue = eA• t f we have (see Section 2.1)

Therefore the family ue(x, t) is compact in L2(JRm ) for any t > O. This family is also compact in Co(JRm ) because of the estimate (A.6). Passing to the limit as € ---- 0 we see that

Hence, by duality, we obtain

eAt : M ____ Co ,

where M is the space of all finite Borel measures on JRm . Here the operator eAt is weakly continuous, in particular, if J.Le, J.L E M, and

then eAtJ.Le ~ eAtJ.L in L2(JRm).

Moreover, the estimates (A.6), (A.7), (A.8) still hold if we take 1jJ(x) equal to ~Ixl, V~ E JRl). Therefore etAJ.Le ---- etAJ.L (in the sense of uniform convergence on compact sets of JRm ). These arguments allow us to consider the initial value f(x) = 8(x - y), instead of the initial values in Cgo(JRm ), and therefore, to infer the estimate (A. g) from (A.8).

Remark A.2. The above proof can be easily extended to the case of operators

of the form p ! - div (A'V) with a non-symmetrical matrix A

Page 5: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

Appendix B

Weak Convergence in L1 and Weak Convergence of Measures

Let Q be a bounded domain in lR,m, and W," Wo E L1(Q). The sequence of functions w" is weakly convergent to Wo in L1(Q) if

lim r w"cpdx = r wocpdx, 'icp E LOO(Q) . ,,~oJQ JQ

A sequence of functions WE E U(Q) is said to be equipotentially integrable if for any integer h > 0 there is a real 8 > 0 such that

for any € > 0 and any measurable set A c Q with IAI :S 8 (IAI stands for the Lebesgue measure of A).

A function h(t) (t 2: 0) is said to be coercive if it is non-negative, non­decreasing, and satisfies the condition

lim C 1h(t) = 00 . t~oo

Recall the following

Criterion of Weak Compactness in £1(Q). The following statements are equivalent:

a) the sequence w" is weakly compact in L1 (Q);

b) the sequence WE is equipotentiaUy integrable;

c) there exists a coercive function h(t) such that

sup r h(lwEI) dx < 00 ; E JQ

Generalized Lebesgue's Theorem. Let the sequence WE be equipotentially integrable and convergent to Wo almost everywhere on Q as € --+ O. Then Wo E

U(Q) and w" --+ Wo in U(Q).

The proof of the above statements can be found in: Dunford & Schwartz [1], Ekeland & Temam [1], Natanson [1].

Page 6: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

Weak Convergence in L1 and Weak Convergence of Measures 541

One of the useful implications of the condition c) is that for any w E £1 (Q), there exists a coercive function I.{J such that 1.{J(lwl) E £l(Q). Of course, this result is very simple and can be proved quite easily on the basis of the following observation: for any given numerical series

00

Lan<oo, an;:::O, n=1

there exists a sequence An --+ 00 such that

In what follows, we consider finite non-negative Borel measures f..l on IRm. If fIRm df..l = 1 then f..l is called probability measure.

Definition B.1. A sequence of probability measures f..le is weakly convergent to measure f..l, f..le ~ f..l, if

(B.l)

for any continuous bounded function I.{J defined on IRm (then f..l is a probability measure, too ).

The following simple result can be very helpful in some situations.

Proposition B.2. Let f..le and f..l be probability measures, and let the relation (B. 1) hold for any I.{J E Cij(IRm); then f..le ~ f..l.

The distribution of an m-dimensional random variable 7] is, by definition, a measure f..l given by

f..l(A) = P{7] E A}

for any Borel set A c IR m .

Let 7]e,7] be random variables in IRm with distributions f..le, f..l, respectively. If f..le ~ f..l, then 7]e is said to converge in distribution to 7],

D 7]e --+ 7] .

A detailed exposition of weak convergence of measures and its properties can be found in Billingly [1], as well as in many other manuals on the Theory of Probability.

Page 7: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

Appendix C

A Property of Bounded Lipschitz Domains

Let Q be a domain in IR m

Definition C.l. Q is said to be a Lipschitz domain in an open ball B, if there exist a vector v E IRm , Ivl = 1, and a constant c < 1 such that

v·(q-p):=;clq-pl, VqEBnQ, VpEB\Q. (C.1)

Definition C.2. Let Q be a bounded domain in IRm; then Q is said to be a Lipschitz domain, if its boundary can be covered by open balls such that the intersection of Q with each ball is a Lipschitz domain in that ball.

It can be easily verified that Definition C.2 is equivalent to the usual definition of Lipschitz domains in terms of epigraphs (see Ekeland & Temam [1]).

Let I be the identity mapping from IRm to IRm.

Lemma C.3. Let Q be a bounded Lipschitz domain in IRm. Then there exists a sequence of diffeomorphisms ej : IRm --+ IRm such that

ej(Q) c Q , lim Ilej - Illc2(JRm) = o. J~OO

(C.2)

Proof. Let us fix a system of balls covering the boundary of Q and such that Q is of Lipschitz type in each ball. Let B be anyone of these balls. Consider a function cp such that

cp E Cg'(IRm), cp > 0 III B, cp == 0 outside B .

Then the mapping 1

h(x) = x - --: cp(x)v J

is infinitely differentiable and satisfies the inequality

Ih(x) - h(y)1 2: Ix - yl (1 -} max Icp/l)

Therefore, the mapping h: IRm --+ IRm is injective, if j is sufficiently large. Taking into account the smoothness of h, we see that h is a diffeomorphism. Since h = I outside B, therefore h(B) = B.

Let us establish the inclusion

h(Q n B) c Q. (C.3)

Page 8: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

A Property of Bounded Lipschitz Domains 543

Assuming the contrary, we can find a vector q E Q \ B such that h( q) E JRm \ Q. Therefore h(q) E B\ Q, since h(B) C B. According to the definition of Lipschitz domains, we have

v· (q - h(q)) ~ clq - h(q)1 ,

or <p(q) ~ c<p(q), which is impossible, since c < 1, and q E B implies that o < <p(q). Thereby the inclusion (C.3) is proved.

Taking into account (C.3) and the fact that h coincides with the identity mapping outside B, we obtain the inclusion h(Q) C Q.

Now, let {Bkh=l, ... ,N denote the above system of balls covering the bound­ary of Q, and let hk be the respective diffeomorphisms constructed for the same sufficiently large j.

It is clear that, as j -+ 00, the diffeomorphisms

converge to I with respect to the norm in cn(JRm ), where n is an arbitrary positive integer.

It remains to verify that OJ(Q) C Q. If q E Q, then, because of the inclusions hk(Q) C Q, k = 1,2, ... , N, we have OJ(q) C Q. If q E 8Q, then there exists the smallest k E {I, 2, ... ,N} such that q E B k • Therefore, by virtue of (C.3), we have hk(q) E Q. Hence

Thereby Lemma C.3 is proved. o

Page 9: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References

Acerbi, E.; Chiado Piat, v.; Dal Maso, G.; Percivale, D. [1] An extension theorem from connected sets and homogenization in general pe­

riodical domains. Nonlinear Analysis 18:5 (1992) 481-496. Aizenman, M.; Kesten, H.; Newman, C.M.

[1] Uniqueness of the infinite cluster and continuity of connectivity functions for short long range percolations. Comm. Math. Phys. 111 (1987) 505-532.

Alexandrov, A.D. [1] Uniqueness conditions and estimates of solutions for the Dirichlet problem.

Vestnik Leningrad. Univ. Math. Mekh. Astron. 3 (1963) 5-29. Alexandrova, LA.

[1] Asymptotic behavior of a fundamental solution for a parabolic equation with periodic coefficients. Preprint. Vladimir Pedagogical Institute, Vladimir, 1990. Registered at VINITL

Allaire, G. [1] Homogeneisation et convergence it. deux echelles. Application it. un probleme

de convection-diffusion. C. R. Acad. Sci. Paris 312 (1991) 581-586. Ambrosio, L.; Dal Maso, G.

[1] On the relaxation in BV (f?, IR m) of quasi-convex integrals. Ref. SISSA. 96 M (July, 1991).

Angel, T. [1] A note on approximation of optimal solutions of free problems of the Calculus

of Variations. Rend. Circ. Mat. Palermo 28 (1979) 258-272. Anshelevich, V.V.; Khanin, K.M.; Sinai, Ya. G.

[1] Symmetric random walks in random environments. Comm. Math. Phys. 85 (1982) 449-470.

Anzellotti, G. [1] The Euler equation for functionals with linear growth. Trans. Am. Math. Soc.

290:2 (1985) 483-50l. Aronson

[1] Bounds for the fundamental solutions of a parabolic equation. Bull. Am. Math. Soc. 73 (1967) 890-896.

Artola, M.; Duvaut, G. [1] Homogeneisation d'une classe de problemes non lineaires. C.R. Acad. Sci. Paris

A288 (1979) 775-778. [2] Un result at d'homogeneisation pour une classe de problemes de diffusion non

lineaires stationaires. Ann. Fac. Sci. Toulouse Univ. 4 (1982) 1-28.

Page 10: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 545

Attouch, H. [1] Variational Convergence for Functions and Operators. Pitman, London, 1984. [2] Epi-convergence and duality convergence of sequences of marginal and La­

grangian functions. Applications to homogenization. In: Optimization and Re­lated Fields. Lecture Notes in Math. 1190 (1986) 21-56.

Avellaneda, M. [1] Iterated homogenization, differential effective medium theory and applications.

Comm. Pure Appl. Math. XL (1987) 527-554. Avellaneda, M.; Cherkaev, A.V.; Lurie, K.A.; Milton, G.W.

[1] On the effective conductivity of polycrystals and a three-dimensional phase­interchange inequality. J. Appl. Phys. 63 (1988) 4989-5003.

Bagirov, L.A.; Shubin, M.A. [1] Stabilization of solutions of the Cauchy problem for parabolic equations whose

coefficients are almost periodic in spatial variables. Diff. Uravnenia 11:12 (1975) 2205-2209. (English trans!.: Differ. Equations. 11:12 (1975) 1637-1640).

Bachvalov( =Bakhvalov), N.S. [1] Homogenized characteristics of bodies with a periodic structure. Doklady Akad.

Nauk SSSR 218:5 (1974) 1046-1048. [2] Homogenization of partial differential equations with rapidly oscillating coeffi­

cients. Doklady Akad. Nauk SSSR 221:3 (1975) 516-519. (English trans!.: Sov. Math., Dokl. 16 (1975) 351-355).

Bachvalov{=Bakhvalov), N.S.; Panasenko, G.P. [1] Homogenization of Processes in Periodic Media. Nauka, Moscow, 1984.

Ball, J. M. [1] Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Phil.

Trans. R. Soc. London, A, 306 (1982) 557-611. Ball, J.M.; Knowles, J.

[1] A numerical method for detecting singular minimizers. Numer. Math. 51 (1987) 181-197.

Ball, J.M.; Misel, V.J. [1] One-dimensional variational problems whose minimizers do not satisfy the

Euler-Lagrange equation. Arch. Rat. Mech. Anal. 90 (1985) 325-388. Ball, J.M.; Murat, F.

[1] W1'P-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253.

Barabanov, 0.0. [1] On the homogenization of functionals in plasticity, by the methods of the

theory of Sobolev-Orlicz spaces with variable exponents. In: VII School on the Theory of Operators in Functional Spaces, Part I, Riga, 1983, pp. 16-17.

[2] Equivalent formulations of the limit load problem in elasto-plasticity. Preprint. Vladimir Polytechnical Institute, Vladimir, 1986. VINITI reg. no. 7293-B86.

[3] On the coincidence of limit loads. Matem. Zametki 46:1 (1989) 11-19. [4] A formula extending an integral functional to spaces with a measure. Preprint.

Vladimir Poly technical Institute, Vladimir, 1987. VINITI reg. no. 440-B88. [5] Counter examples in plasticity. Preprint. Vladimir Poly technical Institute,

Vladimir, 1988. VINITI reg. no. 531-B88.

Page 11: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

546 References

[6] On the homogenization of elasto-plastic materials in the case of limit loads. Diff. Uravnenia 25:6 (1989) 1043-1045.

[7] On limit surface loads in the theory of plasticity. Prikladnaya Mat. Mekh. 53:5 (1989) 824-829. (English trans!.: J. Appl. Math. Mech. 53:5 (1989) 649-654).

[8] On the convergence of variational characteristics. Matem. Zametki 52:3 (1992) 3-9.

Barabanov, O.O.j Zhikov, V.V. [1] Sobolev-Orlicz spaces in the homogenization theory for variational problems.

Uspekhi Mat. Nauk 38:5 (1983) 142-143. [2] Limit load and homogenization. Izvest. RAN, Ser. Mat. 57:5 (1993) 15-43.

Beliaev( =Belyaev), A.Yu. [1] Homogenized description of vibrations in a one-dimensional random non­

stationary medium. Prikladnaya Mat. Mekh. 49:4 (1985) 696-700. (English trans!.: J. Appl. Math. Mech. 49 (1985) 537-540).

[2] On the Liapunov exponent for a one-dimensional wave equation with random coefficients. Vestnik Mosk. Univ. Ser. I 1 (1987) 92-94. (English trans!.: Mosc. Univ. Math. Bull. 42:1 (1987) 53-56).

Beliaev(=Belyaev), A.Yu.j Kozlov, S.M. [1] Hierarchical structures and bounds for effective coefficients. Russian Journ. of

Pure fj Applied Math. (1992) (to appear) Bensoussan, A.j Lions, J.-L.j Papanicolaou, G.

[1] Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam, 1978.

Berdichevski( =Berdichevskij), V.L. [1] Variational Principles in Continuum Mechanics. Nauka, Moscow, 1983. [2] Spatial homogenization of periodic structures. Doklady Akad. Nauk SSSR

222:3 (1975) 565-567. (English trans!.: Sov. Phys., Dokl. 20 (1975) 334-335). [3] On the homogenization of periodic structures. Prikladnaya Mat. Mekh. 41:6

(1977) 993-1006. (English trans!.: J. Appl. Math. Mech. 41 (1979) 1010-1023). Bergman, D.G.

[1] The dielectric constant of a composite material- a problem in classical physics. Phys. Rev. C43 (1978) 377-407.

[2] Rigorous bounds for the complex dielectric constant of a two component com­posite. Ann. Phys. 138 (1982) 78-114.

Berliand(=Berlyand), L.V. [1] Homogenization of the system of linear elasticity in domains with a fine grained

boundary. In: Theory of Functions, Functional Analysis and Their Applications 39, Kharkov State Univ., Kharkov, 1983, pp. 16-25.

[2] Asymptotic behavior of solutions of the first boundary value problem of elastic­ity in domains with a fine grained boundary. Uspekhi Mat. Nauk 38:6 (1983) 107-108. (English trans!.: Russ. Math. Sum 38:6 (1983) 111-112).

[3] Asymptotic description of a thin densely perforated plate. Doklady Akad. Nauk UkrSSR. Ser. A 10 (1983) 5-8.

[4] Density function for stress and strain distribution in a crystal with random defects. Preprint. Institute of Chemical Physics of the Academy of Sciences of the USSR, Moscow, 1988.

Page 12: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 547

Berliand(=Berlyand), L.V.; Dobrokhotov, S.Yu. [1] Homogenization and short wave asymptotics of the solution of the Cauchy

problem for the Schrodinger equation with rapidly oscillating potential. Us­pekhi Mat. Nauk 41:4 (1986) 195-196.

[2] "Separation of variables" for operators related to the problems of short wave asymptotics for differential equations with rapidly oscillating coefficients. Dok­lady Akad. Nauk SSSR 296:1 (1987) 80-84. (English transl.: Sov. Phys., Dokl. 32:9 (1987) 714-716).

Berliand(=Berlyand), L.V.; Kozlov, S.M. [1] Effective modula of elastic chess composites. Arch. Rat. Mech. Anal. (1992),

to appear. Berliand(=Berlyand), L.V.; Okhotsimski, A.D.

[1] A homogenized description of a random medium with a large number of small rigid inclusions. Doklady Akad. Nauk SSSR 268:2 (1983) 317-320. (English transl.: Sov. Phys., Dokl. 28 (1983) 81-83).

Bers, L.; John, P; Schechter, M. [1] Partial Differential Equations. Interscience Publishers, New York, London,

Sydney, 1964. Billingsly, P.

[1] Convergence of Probability Measures. Wiley, New-York, 1968. Bobilev( = Bobylev ), N .A.

[1] On the stability of classical solutions of the variational problems in mathemat­ical physics. Sib. Mat. Zh. 26:4 (1985) 11-21. (English transl.: Sib. Math. J. 26 (1986) 485-493).

[2] On a problem of Ulam. Doklady Akad. Nauk SSSR 225:6 (1980) 1292-1295. Bogoliubov(=Bogolyubov), N.N.

[1] Sur quelques methodes nouvelles dans calculus des variations. Ann. Math. Pure Appl., Ser. 4, 7 (1930) 249-271.

Bogoliubov(=Bogolyubov), N.N.; Mitropolski, Yu.A. [1] Asymptotic Methods in the Theory of Nonlinear Vibrations. Nauka, Moscow,

1974. Boccardo, L.; Murat, T.

[1] Homogeneisation de problemes quasi-lineaires. Publ. IRMA, Lille, vol. 3 , no. 7, 1981, pp. 1-37.

Borovkov, A.A. [1] The Theory of Probability. Nauka, Moscow, 1986.

Bouchitte, G. [1] Homogeneisation sur BV(.l1) de fonctionnelles integrales a croissance lineaire.

Application a un probleme d'analyse limite en plasticite. C.R. Acad. Sci. Paris, Ser. 1 301:17 (1985) 785-788.

Bouchitte, G.; Dal Maso, G. [1] Integral representation and relaxation of convex local functionals on BV(.l1).

Ref. SISSA 50M (April, 1991). Bouchitte, G.; Valadier, M.

[1] Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80 (1988) 398-420.

Page 13: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

548 References

Bouchitte, G.; Suquet, P. [1] Charges limites, plasticite et homogeneisation: la cas d'un bord charge. C.R.

Acad. Sci. Paris, Ser. 1, 305 (1987) 441-444. Bourbaki, N.

[1] Integration. Livre VI. Hermann et Cie. Bourgeat, A.; Mikelic, A.

[1] Note on the homogenization of Bingham flow through porous medium. J. de Mat. et Appl. (to appear)

[2] Homogenization of a polymer flow through porous medium. Preprint. Equipe d'Analyse Numerique, Lion-St.-Etienne. CNRF-URA 740, No. 132, Mars 1992.

Bruggemann, D.A.G. [1] Berechnung verschiedener physikalischer Konstanten von heterogenen Sub­

stanzen. Ann. Physik 24 (1935) 634-652. Buttazo, G.

[1] Semicontinuity, relaxation and integral representaion in the calculus of varia­tions. In: Pitman Research Notes in Mathematics. London, Harlow, 1989.

Buttazo, G.; Dal Maso, G. [1] r-limits of integral functionals. J. Analyse Math. 37 (1980) 145-185. [2] Integral representation and relaxation of local functionals. Nonlinear Anal. 9

(1985) 515-532. Carbone, L.; Sbordone, S.

[1] Some properties of r-limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1-60.

Cesari, L.; Angell, T.S. [1] On the Lavrentiev phenomenon. Calcolo 25:1 (1985) 17-29.

Christensen, R. [1] An Introduction to Mechanics of Composite Materials. Wiley, New-York, 1979.

Ciarlet, P. [1] Mathematical Elasticity, Vol. I. North-Holland, Amsterdam, 1988.

Cioranescu, D.; Murat, F. [1] Un terme etranger venu d'ailleurs, 1 & 2. In: Nonlinear Partial Differential

Equations and Their Application. College de France Seminar, vol. II & III. Ed. by H.Brezis & J.-L. Lions. Research in Math., 60 & 70. Pitman, 1982, 98-138, 154-178.

Cioranescu, D.; Saint Jean Paulin, J. [1] Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (1979) 590-

607. Clarke, F.H.

[1] Tonelli's regularity theory: recent progress. In: Optimization and Related Fields. Lecture Notes in Math. 1190 (1986) 163-180.

Courant, R.; Hilbert, D. [1] Methods of Mathematical Physics. Wiley, New York, 1966.

Dacorogna, B. [1] Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, 1989.

Dal Maso, G. [1] Integral representation on BV(n) of r-limits of variational integrals. Manusc­

ripta Math. 30 (1980) 387-416.

Page 14: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 549

Davie, A.M. [1] Singular minimizers in the Calculus of Variations. In: Proc. Intern. Congr.

Math., Berkeley, USA, 1986, 900-905. De Arcangelis, R

[1] Some remarks on the identity between a variational integral and its related functional. Ann. Univ. Ferrara, Ser VII, Sc. Mat. XXXV (1989) 135-145.

[2] Compactness and convegence of minimum points for a class of nonlinear nonequicoercive functionals. Nonlinear Anal. 15:4 (1990) 363-380.

De Giorgi, E. [1] Sulla convergenza di alcune successioni di integrali del tipo dell'area. Rend.

Mat. Roma 12 (1975) 277-294. [2] G-operators and r-convergence. In: Proc. Intern. Congr. Math., Warszawa,

PWN, vol. 2, North Holland, 1984, pp. 1175-1191. [3] Convergence problems for functionals and operators. In: Proc. Int. Meeting on

Recent Methods in Nonlinear Analysis, Rome, May 2-12, 1978. Pitagora ed., Bologna, 1979.

De Giorgi, E.; Ambrosio, L.; Buttazzo, G. [1] Integral representation and relaxation for functionals defined on measures. Atti

Accad. Naz. Lincei, Ser. 8,81:1 (1987) 7-13. De Giorgi, E.; Franzoni, T.

[1] Su un tipo di convergenza variazionale. Rend. Accad. Naz. Lincei, Roma LV, III (1975) 842-850.

De Giorgi, E.; Spagnolo, S. [1] Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo

ordine. Boll. Unione Mat. Ital. 8 (1973) 391-411. Dell'Antonio, G.F.; Figari, R; Orlandi, E.

[1] An approach through orthogonal projections to the study of inhomogeneous or random media with linear response. Ann. Inst. Poincare 44:1 (1986) 1-28.

De Masi, A.; Ferrari, P.A.; Goldstein, S.; Wick, W.D. [1] An invariance principle for reversible Markov processes. Applications to ran­

dom motions in random environments. J. Stat. Phys. 55: 3/4 (1989) 787-855. Demengel, F.; Temam, R

[1] Convex functions of a measure and applications. Indiana Univ. Math. J. 33:5 (1984) 673-709.

Demengel, F.; Qi Tang. [1] Homogeneisation en plasticite. C.R. Acad. Sci. Paris, Ser 1, 303:8 (1986)

339-341. Demidov, V.V.

[1] On boundary value problems in perforated domains. Preprint. Vladimir State Pedagogical Institute, Vladimir, 1989. VlNITI reg. no. 6849-B89.

Denisov, V.N.; Zhikov, V.V. [1] On the stabilization of solutions of the Cauchy problem for parabolic equations.

Matem. Zametki 37:6 (1985) 834-850. (English transl.: Math. Notes 37 (1985) 456-466).

Dunford, N.; Schwartz, J.T. [1] Linear Operators. Wiley, New York, 1957.

Page 15: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

550 References

Duvaut, G. [1] Comportement macroscopique d'une plaque perforee periodiquement. Lecture

Notes in Math. 594 (1977) 131-145. Duvaut, G.; Lions, J.-L.

[1] Les Inequations en Mecanique et en Physique. Dunod, Paris (English transla­tion: Springer-Verlag, Berlin, 1976).

Dychne, A.M. [1] Conductivity of a two-phase two-dimensional system. J. Exper. and Theor.

Phys. 59:1 (1970) 110-115. Ene, H.I.; Pasa, G.1.

[1] Metoda omogenizarii. Aplicatii la teoria materialelor composite. Editura Acad. Republ. Soc. Romania, Bucuresti, 1987.

Eidelman, S.D. [1] Pambolic Systems. Nauka, Moscow, 1964.

Ekeland, I.; Temam, R. [1] Convex Analysis and Variational Problems. North Holland, Amsterdam, 1975.

Efros, A.L. [1] Physics and Geometry of Disorder. Nauka, Moscow, 1982.

Esposito, A.C.; De Arcangelis, R. [1] Comparison results for some types of relaxation of variational integral func­

tionals. Annali di Mat. Pum e Appl. (To appear) [2] The Lavrentieff Phenomenon and different processes of homogenization.

Comm. in Part. Diff. Eqs. (To appear) Fan Xianling

[1] r -convergence of nonstandard Lagrangians of the form f (x, s, ~). M atem. Sbornik (to appear).

Feller, W. [1] An Introduction to the Theory of Probability and its Applications, Vol. II.

Wiley, New-York, 1971. Fenchenko, V.N.

[1] On some problems of electrostatics in domains with a fine grained boundary. In: Mathematical Physics and Functional Analysis. Vol. 3. FTINT AN USSR, Kharkov, 1972, pp. 88-95.

[2] A boundary value problem for the Maxwell system in domains with a fine grained boundary. Mathematical Physics and Functional Analysis. Vol. 4. FTINT AN USSR, Kharkov, 1973, pp. 74-94.

Francfort, G.; Murat, F. [1] Homogenization and optimal bounds in linear elasticity. Arch. Rational Mech.

Anal. 94 (1986) 307-334. Franzoni, T.

[1] Abstract r-convergence. In: Optimization and Related Fields. Lecture Notes in Math. 1190 (1986) 229-242.

Fichera, G. [1] Existence Theorems in Elasticity. In: Handbuch der Physik, Band VI a/2.

Springer-Verlag, 1972. Freidlin, M.1.

[1] The Dirichlet problem for equations with periodic coefficients depending on a small parameter. Teor. Veroyatn. Primen. 9:2 (1964) 133-139.

Page 16: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 551

Friedman, A. [1] Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood

Cliffs, N.J., 1964. Fusco, N.j Moscariello, G.

[1] An application of duality to homogenization of integral functionals. Lincei Mem. Sci. Fisiche, ecc. Ser. VIII, 17 (1984) 361-372.

Germain, P. [1] Mecanique des Milieux Continus, Tome I, Masson, Paris, 1972.

Giusti, E. [1] Minimal Surfaces and Functions of Bounded Variation. Birkhiiuser, Boston,

1984. Golden, Kj Papanicolaou, G.

[1] Bounds for effective parameters of heterogeneous media by analytic continua­tion. Comm. Math. Phys. 30 (1983) 473-491.

Goffman, C.j Serrin, J. [1] Sublinear functions of measures and variational integrals. Duke Math. J. 31

(1964) 159-178. Grigoliuk, E.I.(=Grigolyuk, Eh,!)j Filshtinski, L.A.

[1] Perforated Plates and Shells. Nauka, Moscow, 1970. Grimmet, G.R., Marstand, H.

[1] The supercritical phase of percolation is well behaved. In: School of Mathe­matics, University of Bristol, Report S-89-08.

Gusev, A.1. [1] State density and other spectral invariants of elliptic operators with random

coefficients. Matem. Sbornik 104:2 (1977) 207-226. (English transl.: Math. USSR, Sb. 33 (1977) 185-202).

Gushchin, A.K [1] On the uniform stabilization of solutions of the second boundary value problem

for a parabolic equation. Matem. Sbornik 119:4 (1982) 451-508. (English transl.: Math. USSR, Sb. 47 (1984) 439-498).

[2] Stabilization of the solution of the Cauchy problem for a parabolic equation. Diff. Uravnenia 7 (1971) 297-311. (English transl.: Differ. Equations 7 (1971) 232-242).

Gushchin, A.Kj Michailov(=Mikhailov), V.P. [1] On the stabilization of solutions of the Cauchy problem for a one-dimensional

parabolic equation. In: Trudy Mat. Inst. Steklova 112 (1971) 181-202. Gushchin, A.Kj Michailov(=Mikhailov), V.P.j Michailov(=Mikhailov), D.A.

[1] On uniform stabilisation of solutions of the mixed boundary value problem for a second order parabolic equation. Matem. Sbornik 128:2 (1985) 147-168. (English transl.: Math. USSR, Sb. 56 (1987) 141-162).

Hammersley, J.M. [1] Mesoadditive processes and the specific conductivity of lattices. J. Appl.

Probab. 25A (1988) 347-358. Hashin, Z.

[1] The elastic moduli of heterogeneous materials. J. Appl. Mech. 29 (1962) 143-150.

[2] Analysis of composite materials, a survey. J. Appl. Mech. 50 (1983) 481-505.

Page 17: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

552 References

Hashin, Z.; Shtrikman, S. [1) A variational approach to the theory of effective magnetic permeability of

multipase materials. J. Appl. Phys. 33 (1962) 3125-3131. [2) A variational approach to the theory of the elastic behavior of multi phase

materials. J. Mech. Phys. Solids 11 (1963) 127-140. Hornung, U.; Jager, W.; Mikelic, A.

[1) Reactive transport through an array of cells with semi-permeable membranes. Preprint SFB 123, Universitat Heidelberg, 1992.

Ioffe, A.D.; Tichomirov, V.M. [1) The Theory of Extremal Problems. Moscow, Nauka, 1974.

Kalamkarov, A.L.; Kudriavtsev(=Kudryavtsev), B.A.; Parton, V.Z. [1) An asymptotic homogenization method in mechanics of composites with reg­

ular structure. In: Mechanics of Deformable Solids, Itogi Nauki i Tekhniki, VINITI AN SSSR, vo!' 19, pp. 78-147.

Kalugin,O.Yu. [1) Homogenization of boundary value problems of elasticity in perforated do­

mains. Doklady Akad. Nauk SSSR 266:5 (1982) 1097-1100. (English trans!': Sov. Phys., Dokl. 27 (1982) 810-811).

Kamenyarge( =Kamenyarzh), Ya.A. [1) On dual problems in the theory of limit loads for ideally plastic bodies. Doklady

Akad. Nauk SSSR 245:1 (1979) 51-54. (English trans!.: Sov. Phys., Dokl. 24 (1979) 177-179).

[2) Conditions on the surfaces of discontinuity in the analysis of rigidly plastic bodies. Doklady Akad. Nauk SSSR 286:3 (1986) 574-578. (English trans!.: Sov. Phys., Dok/. 31 (1986) 38-40).

[3) On discontinuous solutions in the theory of limit load. Doklady Akad. Nauk SSSR 280:3 (1985) 205-210.

Kamin, S. [1) On stabilization of solution of the Cauchy problem for a parabolic equation.

Proc. Roy. Soc. Edinburgh 7:1 (1976) 43-53. Kantor, Y.; Bergman, D.

[1) Improved rigorous bounds on the effective elastic module of composite mate­rial. J. Mech. and Phys. Sol. 32 (1984) 41-62.

Kantorovich, L.V.; Akilov, G.P. [1) Functional Analysis. Nauka, Moscow, 1976.

Karam Sab. [1) Principe de Hill et homogeneisation des mareriaux aleatoires. C.R. Acad. Sci.

Paris. 312 (1991) 1-5 [2) Homogenization of nonlinear random media by a duality method. Application

to plasticity (to appear). Kato, T.

[1) Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1966. Keller, J.B.

[1) A theorem on the conductivity of composite medium. J.Math. Phys. 5 (1964) 548-549.

Kesavan, S. [1) Homogenization of elliptic eigenvalue problems. Appl. Math. and Optim. 5

(1979), Part I, pp. 153-167; Part II, pp.197-216.

Page 18: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 553

Kesten, H. [IJ Percolation Theory for Mathematicians. Birkhauser, Basel, Boston, 1982.

Khruslov, E.Ya. [IJ Asymptotic behavior of solutions of the second boundary value problem in a

domain with a fine graind boundary. Matem. Sbornik 106:4 (1978) 604-62l. [2J On the convergence of solutions of the second boundary value problem in

weakly connected domains. In: The Theory of Operators in Functional Spaces and its Applications. Naukova Dumka, Kiev, 1981, pp. 129-174.

[3J Homogenized models of strongly inhomogeneous media with memory. Usp. Mat. Nauk 45:1 (1990) 197-198. (English transl.: Russian Math. Surveys 45:1 (1990) 211-212).

Kinderlehrer, D.; Stampacchia, G. [IJ An Introduction to Variational Inequalities and their Applications. Academic

Press, New York, London, 1980. Kohn, R.V.; Milton, G.W.

[IJ On bounding the effective conductivity of anisotropic composites. In: Homog­enization and Effective Moduli of Materials and Media (ed. by J.L. Ericksen, D. Kinderlehrer, R. Kohn, J.L. Lions), Springer-Verlag, New York, 1986, pp. 97-125.

Kohn, R.V.; Strang, G. [IJ Optimal design and relaxation of variational problems. Comm. Pure Appl.

Math. 39 (1986) Part I: pp. 113-137; Part II: pp. 165-182; Part III: 353-377. Kondratiev, V.A.; Oleinik, O.A.

[IJ On Korn's inequalities. C.R. Acad. Sci. Paris, Ser. 1, 308 (1989) 483-487. [2J Boundary value problems for the system of elasticity in unbounded domains.

Korn's inequalities. Uspekhi Mat. Nauk. 43:5 (1988) 55-98. (English transl.: Russ. Math. Sum 43:5 (1988) 65-119).

[3J On the dependence of the constants in the Korn inequality on the parameters characterizing the geometry of the domain. Uspekhi Mat. Nauk 44:6 (1989) 153-160. (English transl.: Russ. Math. Sum 44:6 (1989) 187-195).

[4J Hardy's and Korn's inequalities and their applications. Rendiconti. Mat. e Appl., ser VII 10:3 (1990) 641-666.

Kornfeld, I.P.; Sinai, Ya.G.; Fomin, S.V. [IJ Ergodic Theory. Nauka, Moscow, 1980.

Kosarev, A.Yu. [1 J Asymptotics for the homogenized characteristics of periodic elastic media with

rapidly varying properties. Doklady Akad. Nauk SSSR 267:1 (1983) 38-42. Kotlyarov, V.P.

[IJ The first boundary value problem for the elasticity equations in a domain with a boundary of intricate shape. Theory of Functions, Functional Analysis and their Applications 15:1 (1972), Part I: pp. 1-141; Part II: pp. 189-203.

Kovalevski( =Kovalevskij), A.A.; Skrypnik, I.V.; Lamonov, S.A. [IJ Homogenization of non-linear boundary value problems. Preprint no. 8440, In­

stitute of Mathematics, Academy of Sciences of the UkrSSR, Kiev, 1982. Kozlov, S.M.

[IJ Averaging differential equations with almost periodic rapidly oscillating coeffi­cients. Matem. Sbornik 107:2 (1978) 199-217. (English transl.: Math. USSR, Sb. 35:4 (1979) 481-498).

Page 19: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

554 References

[2] Homogenization of random operators. Matem. Sbornik 109(151) (1979) 188-202. (English trans!.: Math. USSR, Sb. 37:2 (1980) 167-180).

[3] Reducibility of quasiperiodic operators and averaging. Trudy Mosk. Mat. 0.­va 46 (1983) 99-123. (English trans!.: Trans. Moscow Math. Soc. 2 (1984) 101-126).

[4] Conductivity of two-dimensional random media. Uspekhi Mat. Nauk 34:4 (1979) 193-194. (English trans!': Russ. Math. Sum 34:4 (1979) 168-169).

[5] On duality of a class of variational problems. Funkt. Anal. Prilozh. 17:3 (1983) 9-14.

[6] The method of averaging and random walks in inhomogeneous environments. Uspekhi Mat. Nauk 40:2(242) (1985) 61-120. (English trans!.: Russian Math. Surveys, 40:2 (1985) 73-145).

[7] Asymptotics of fundamental solutions for divergent second order differen­tial equations. Matem. Sbornik 113:2(155) (1980) 302-323. (English trans!.: Math. USSR, Sbornik 41:2 (1982) 249-267).

[8] Averaging of difference schemes. Matem. Sbornik., Nov. Ser. 126(171):3 (1986) 338-357. (English trans!': Math. USSR Sbornik, 57:2 (1987) 351-369).

[9J Spectral asymptotics for random operators. Mat. Zametki 43:3 (1988) 407-423. (English trans!.: Math. Notes Acad. Sc. USSR 43:3 (1988) 234-243).

[10] A criterion of non-stability of linear operators. Funkt. Anal. Prilozh. 21:3 (1987) 81-82. (English trans!.: Funct. Anal. Appl. 21 (1987) 241-243).

[l1J Extremal properties of periodic structures. Uspekhi Mat. Nauk 42:4 (1987) 165.

[12] Geometric aspects of homogenization. Uspekhi Mat. Nauk 44:2 (1989) 79-120. (English trans!.: Russian Math. Surveys. 44:2 (1989) 91-144).

[13] Effective diffusion in the Fokker-Plank equation. Mat. Zametki 45:5 (1989) 19-31. (English trans!.: Math. Notes Acad. Sc. USSR 45:5 (1989) 360-368).

[14J Asymptotics of the Laplace-Dirichlet integrals. Funkt. Anal. Prilozh. 24:2 (1990) 37-49. (English trans!.: Funct. Anal. Appl. 24:2 (1990) 115-125).

[15J Added masses, polarization and bounds in composite media. J. Appl. Math. Mech. (1992) (to appear).

Kozlov, S.M.; Malozemov, L.A. [1] Hierarchical lattice structures. Math. Notes of Acad. of Sc. USSR 51:2 (1992)

53-58. Kozlov, S.M.; Pyatnitsky, A.L.

[lJ Homogenization with vanishing viscosity. Matem. Sbornik 181:6 (1990) 813-832. (English trans!.: Math. USSR, Sb. 70 (1991) 241-261).

Krasnoselski, M.A.; Rutitski, Ya.B. [lJ Convex Functions and Orlicz Spaces. Fizmatgiz, Moscow, 1958.

Krivenko, E.V. [1 J Homogenization of singularly perturbed parabolic operators and stabilization

of solutions of the Cauchy problem. Doklady Akad. Nauk SSSR 266:5 (1982) 1044-1048. (English trans!.: Sov. Math., Dokl. 26 (1982) 447-451).

Kruzhkov, S.N.; Kamynin, V.L. [1] On passing to the limit in quasilinear parabolic equations. Trudy Mat. [nst.

Steklova 167 (1985) 183-206.

Page 20: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 555

Krylov, N.V. [1] Nonlinear Second Order Elliptic and Parabolic Equations. Nauka, Moscow,

1985. (English transl.: Mathematics and its Applications ( Soviet Series) 7. D. Reidel Publishing Co., 1987).

[2] On G-convergence of non-divergent elliptic operators. Matem. Zametki 37:4 (1985) 522-527. (English transl.: Math. Notes 37 (1985) 290-292).

Kuratowski, C. Topology. Vol. 1. Academic Press, New York, London. 1966. Ladyzhenskaya, O.A.; Solonnikov, V.A.; Uraltseva, N.N.

[1] Linear and Quasilinear Parabolic Equations. Nauka, Moscow. 1967. Ladyzhenskaya, O.A.; Uraltseva, N.N.

[1] Linear and Quasilinear Elliptic Equations. Academic Press, New York, 1968. Landau, L.D.; Lifshitz, E.M.

[1] Electrodynamics of Continua. Moscow, Nauka, 1959. Lavrentiev, M.

[1] Sur quelques problemes du calcul des variations. Ann. Math. Pure Appl. 4 (1926) 2-28.

Levin, V.L. [1] Convex Analysis in Spaces of Measurable Functions and its Applications in

Mathematics and Economics. Nauka, Moscow, 1985. Levitan, B.M.

[1] Almost Periodic Functions. Gostekhizdat, Moscow, 1953. Levitan, B.M.; Zhikov, V.V.

[1] Almost Periodic Functions and Differential Equations. Moscow Univ. Press, Moscow, 1978.

Lifshitz, 1.M.; Gredescul, S.A.; Pastur, L.A. [1] An Introduction to the Theory of Disordered Systems. Nauka, Moscow, 1982.

Lions, J.-L. [1] Asymptotic expansions in perforated media with a periodic structure. The

Rocky Mountain J. Math. 10:1 (1980) 125-140. [2] Some Methods in the Mathematical Analysis of Systems and their Control.

Science Press, Beijing, China. Gordon & Breach, New York, 1981. [3] Remarques sur l'homogeneisation. In: Computing Methods in Applied Sciences

and Engineering, VI, INRIA, North Holland, Amsterdam, 1984, pp. 299-315. Lions, J.-L.; Magenes, E.

[1] Non-Homogeneous Boundary Value Problems and Applications. Springer-Ver­lag, Berlin, 1972.

Lurie, K.A.; Cherkaev, A.V. [1] G-closure of the set of anisotropic conducting media in the case of two dimen­

sions. Doklady Akad. Nauk SSSR 259:2 (1981) 328-331. [2] Exact bounds for the conductivity of composites formed by two isotropic ally

conducting media taken in prescribed proportion. Proc. R. Soc. Edinb., Sect. A 99 (1984) 71-87.

[3] Exact estimates of the conductivity of a binary mixture of isotropic compo­nents. Proc. R. Soc. Edinb. 104A (1986) 21-38.

[4] The effective properties of composites and problems of optimal design of con­structions. Uspekhi Mekhaniki 2 (1987) 3-81.

[5] The problem of formation of an optimal isotropic multicomponent composite. J. Opt. Th. Appl. 46 (1985) 571.

Page 21: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

556 References

Lvov, V.A. [1] The limit case of a boundary value problem in a domain with a multi-layered

boundary. In: Mathematical Physics and Functional Analysis. FTINT AN USSR, vol. 1, Kharkov, 1969, pp. 84-99.

Mania, B. [1] Soppa un esempio di Lavrentieff. Boll. Unione Mat. ftal., 13 (1934) 147-153.

Marcellini, P. [1] Periodic solutions and homogenization of nonlinear variational problems. Ann.

di Matematica 117 (1978) 139-152. [2] Convergence in energy for elliptic operators. Boll. Un. Mat. ftal., Ser. V, vol.

16-B, no. 1 (1979) 278-290. [3] On the definition and lower semi continuity of certain quasiconvex integrals.

Ann. fnst. Poincare 3 (1986) 391-409. Marchenko, V.A.; Khruslov, E.Ya.

[1] Boundary Value Problems in Domains with a Fine Grained Boundary. Naukova Dumka, Kiev, 1974.

Markov, V.G.; Oleinik, O.A. [1] On heat propagation in non-homogeneous disperse media. Prikl. Mat. Mekh.

39:6 (1975) 1073-1081. (English transl.: J. Appl. Math. Mech. 37 (1975) 836-848).

Mathron, G. [1] Probleme de Milieux Poreux. Masson, Paris, 1967.

Maxwell, J.C. [1] A Treatise on Electricity and Magnetism. 3rd Ed., Clarendon Press, Oxford,

1881. Maxwell-Garnett, J.C.

[1] Phil. Trans. Roy. Soc. London A203 (1904) 385-420. [2] Phil. Trans. Roy. Soc. London A205 (1906) 238-288.

Mayers, N.G. [1] An V-estimate for the gradient of solutions of second order elliptic divergent

equations. Ann. Sc. Norm. Sup. Pisa. 17 (1963) 189-206. Mazya, V.G.

[1] Sobolev Spaces. Leningrad Univ. Press, Leningrad, 1986. (English transl.: Springer-Verlag, Berlin, 1985).

Melnik, T.A. [1] On asymptotic expansions of eigenvalues and eigenfunctions for elliptic bound­

ary value problems with rapidly oscillating coefficients. Uspekhi Mat. Nauk 42:4 (1987) 167.

Menshikov, M.V.; Molchanov, S.A.; Sidorenko, A.F. [1] Percolation Theory and its Applications. In: Probability Theory, Mathematical

Statistics, Theoretical Cybernetics. ftogi Nauki i Tekhniki, vol. 24 (1986) VINITI, pp. 55-110.

Mikelic, A. [1] Homogenization of non-stationary Navier-Stokes equations in a domain with a

grained boundary. Annali di Mat. Pura e Appl. (IV) eLVIII (1991) 167-179. Mikhailov, V.P.

[1] Partial Differential Equations. Nauka, Moscow, 1976.

Page 22: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 557

Milton, G.W. [IJ A proof that laminates generate all possible effective conductivity functions

of two-dimensional two-phase media. In: Advances in Multiphase Flow and Related Problems (ed. by G. Papanicolaou) Philadelphia, SIAM, 1986, pp. 136-146.

[2J Bounds on the complex dielectric constant of a composite material. Appl. Phys. Lett. 37 (1980) 300-320.

[3J Modelling the properties of composites by laminates. In: Homogenization and Effective Moduli of Materials and Media (ed. by J.L. Ericksen, D. Kinderlehrer, R. Kohn, J.L. Lions). Springer-Verlag, New-York, 1986, pp.150-174.

[4J On characterizing the set of possible effective tensors of composites: variational method and the translation method. Comm. Pure Appl. Math. 43 (1990) 63-125.

Milton, G.W.; Golden, K. [IJ Representations for the conductivity function of multicomponent composites.

Comm. Pure Appl. Math. 43 (1990) 647-671. Milton, G.W.; Kohn, R.V.

[IJ Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 824-837.

Mitropolski, Yu.A. [IJ The Method of Homogenization in Nonlinear Mechanics. Naukova Dumka,

Kiev, 1976. Modica, L.

[1 J Stochastic homogenization and ergodic theory. In: Optimization and Related Fields. Lecture Notes in Math. 1190 (1986) 359-180.

Molchanov, S.A.; Stepanov, A.K. [IJ Percolation of random fields, I. TMF 55:2 (1983) 246-256. [2J Percolation of random fields, II. TMF 55:3 (1983) 419-430.

Moren, K. [IJ Hilbert Space Methods. Mir, Moscow, 1965.

Morozovski, A.E.; Snarski, A.A. [IJ Effective conductivity of non-homogeneous media. Ukr. Phys. J.28:8 (1983)

1203-1208. Morrey, C.B.

[1 J Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin, 1966. Mosolov, P.P.; Miasnikov(=Myasnikov), V.P.

[IJ Mechanics of Rigidly Plastic Media. Nauka, Moscow, 1981. Murat, F.

[IJ Compacite par compensation. Ann. Sc. Norm. Sup. Pisa 5 (1978) 489-507. [2J H-convergence. In: Seminaire d'Analyse Fonctionnelle et Numerique de l'Uni­

versite d'Alger, 1978, p.34. Murat, F.; Tartar, L.

[IJ Calcul des variations et homogeneisation. Univ. Pierre et Marie Curie, Publ. du Laboratoire d'Analyse Numerique, no. 84012 .

Miiller, S. [1 J Homogenization of non-convex integral functionals and cellular elastic materi­

als. Arch. Rat. Mech. Anal. 99 (1987) 189-212.

Page 23: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

558 References

Nadirashvili, N.S. [1] On the oblique derivative boundary value problem. Mat. Sbornik 127:3 (1984)

398-416. (English transl.: Math. USSR, Sb. 55 (1986) 397-414). Natanson, I.P.

[1] Theory of Functions of a Real Variable, Vall. Revised edition. New York, Frederick Unger, 1964.

Nazarov, S.A. [1] Asymptotics of solutions of the Dirichlet problem in a rectangle for an equation

with rapidly oscillating coefficients. Uspekhi Mat. Nauk 40:5 (1985) 219-220. Nazarova, O.A.

[1] On a homogenization problem for Maxwell equations. Mat. Zametki 44:2 (1988) 279-281.

[2] The problem of an "artificial dielectric" for the stationary Maxwell system. Preprint. Vladimir State Pedagogical Institute, Vladimir, 1988. VINITI reg. no. 5675-B88.

Nayroles, B. [1] Essai de theorie fonctionelle des structures rigides plastiques parfaites. J. de

Mec. 9:3 (1970) 491-506. Nash, I.

[1] Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80:4 (1958) 931-934.

Neumann, J. von. [1] Uber einen Satz von Herrn M.H.Stone. Ann. Math. 33:2 (1932) 567-563.

Norris, A.N. . [1] A differential scheme for the effective moduli of composites. Mechanics of Ma­

terials 4 (1985) 1-16. Oleinik, O.A.

[1] On heat propagation in multi-dimensional disperse media. In:Problems in Me­chanics and Mathematical Physics, Nauka, 1976, pp. 224-236. (English transl.: Sel. Math. Sov. 2 (1983) 65-79).

[2] On the convergence of solutions of elliptic and parabolic equations with weakly convergent coefficients. Uspekhi Mat. Nauk 30:4 (1975) 257-260.

[3] On some mathematical problems in mechanics of strongly non-homogeneous media. In: Mathematical Methods in Mechanics of Deformable Solids, 1st All­Union Symposium, 1984. Nauka, Moscow, 1986, pp. 149-152.

[4] On homogenization problems for partial differential equations. Uspekhi Mat. Nauk 41:4 (1986) 149-152.

[5] On the homogenization of differential operators. In: Partial Differential Equa­tions. Proc. Int. Conf. Nauka, Novosibirsk, 1986, pp. 150-159.

[6] On the homogenization of differential equations with rapidly oscillating coeffi­cients. In: IX International Conference on Nonlinear Vibrations. Vol. 1, 1981. Kiev, 1984, pp. 286-289.

[7] On homogenization problems. In: Trends and Applications of Pure Mathemat­ics to Mechanics. Lecture Notes in Phys. 195 (1984) 248-272.

[8] Homogenization of differential operators. In: Equadiff 5, Proc. of Conf. in Bratislava. Teubner, Leipzig, Teubner Texte Math. 47, 1982, pp. 284-287.

Page 24: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 559

[9] Asymptotic expansion and boundary layers in homogenization problems for differential operators. In: BAIL IV. Proc. of the 4th Intern. Conf. on Boundary and Interior Layers. Boole Press, Dublin, 1987, pp. 145-156.

[10] Homogenization problems in elasticity. Spectrum of singularly perturbed op­erators. In: Non-Classical Continuum Mechanics/ Lecture Notes Series 122, Cambridge University Press, 1987, pp.188-205.

[11] Korn's type inequalities and applications to elasticity. Atti dei Convegni Lincei 92, Roma (1992) 183-209.

[12] Some mathematical problems of elasticity and Korn's inequalities. In: Research Notes in Mathematics Series, Longman, 273 (1992) 163-179.

Oleinik, O.A.; Panasenko, G.P.; Yosifian, G.A. [1] Asymptotic expansion of solutions of the elasticity system in perforated do­

mains. Mat. Sbornik 120:1 (1983) 22-41. (English trans!.: Math. USSR, Sb. 48 (1984) 19-39).

[2] Homogenization and asymptotic expansions for solutions of the elasticity sys­tem with rapidly oscillating periodic coefficients. Applicable Anal. 15:1 (1983) 15-32.

Oleinik, O.A.; Shamaev, A.S. [1] Some homogenization problems in mechanics of composite materials and

porous media. In: Mechanics of Non-Homogeneous Structures. Naukova Dumka, Kiev, 1986, pp. 185-190.

Oleinik, O.A.; Shamaev, A.S.; Yosifian, G.A. [1] On homogenization problems for the elasticity system with non-uniformly

oscillating coefficients. In: Mathematical Analysis. Teubner Texte Math. 79 (1985) 192-202.

[2] On the homogenization of stratified structures. In: Mathematique et Applica­tions. Gauthier-Villars, Paris, 1988, pp. 401-419.

[3] On the convergence of the energy, stress tensors, and eigenvalues in homoge­nization problems of elasticity. Z. Angew. Math. Mech. 65:1 (1985) 13-17.

[4] Problemes d'homogeneisation pour Ie systeme de I'elasticite lineaire a coef­ficients oscillant non-uniformement. C.R. Acad. Sci. Paris A298:12 (1984) 273-276.

[5] Homogenization of eigenvalues and eigenfunctions of the boundary value prob­lems in perforated domains for elliptic equations with non-uniformly oscillating coefficients. In: Current Topics in Partial Differential Equations. Kinokuniya Co., Tokyo, 1986, pp. 187-216.

[6] Mathematical Problems in the Theory of Strongly Nonhomogeneous Elastic Media. Moscow Univ. Press, 1990.

[7] Mathematical Problems in Elasticity and Homogenization. North-Holland, Am­sterdam, 1992.

[8] Homogenization of the first boundary value problem and the eigenvalue prob­lem for the system of elasticity with discontinuous periodic rapidly oscillating coefficients in a perforated domain. In: Trudy Tbilisskogo Univ. Mat., Mech., Astron. 259 (1986) 77-92.

[9] The Neumann problem for a second order elliptic equation with rapidly os­cillating periodic coefficients in a perforated domain. In: Partial Differential Equations and the Calculus of Variations Vol. II, Birkhiiuser, Boston, 1989, pp. 879-904.

Page 25: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

560 References

[lOJ On asymptotic expansions of solutions of the Dirichlet problem for elliptic equations in a perforated domain. In: Nonlinear Partial Differential Equations and Their Applications. College de Hnnce Seminar, vo!' 8, 1988, 141~175.

Oleinik, O.A.; Yosifian, G.A. [1 J On the homogenization of the system of elasticity with rapidly oscillating co­

efficients in perforated domains. In: N.E. Kochin and Advances in Mechanics. Nauka, Moscow, 1984, pp. 237~249.

[2J Estimate for the difference between the solution of the system of elasticity in a perforated domain and the solution of the homogenized system. Uspekhi Mat. Nauk 37:5 (1982) 195~ 196. (English trans!.: Russ. Math. Surveys 37:5 (1982) 188~189).

Orlicz, W. [1] Uber eine gewisse Klasse von Riiumen yom Types B. Bull. Intern. de I 'A cad.

Pol. Serie. A. Cracovie (1932) 207~220. [2] Uber Riiume (L M ). Types B. Bull. Intern. de l'Acad. Pol. Serie. A. Cracovie

(1936) 1~14. Pankov, A.A.

[1] On homogenization and G-convergence of nonlinear elliptic operators. Doklady Akad. Nauk SSSR 278:1 (1984) 37~41. (English trans!.: Sov. Math., Dokl. 30 (1984) 328~332).

[2] Homogenization of nonlinear almost periodic elliptic operators. Doklady Akad. Nauk SSSR Ser. A, 5 (1985) 19~22.

Papanicolaou, G. [1] Diffusion and random walks in random media. In: Mathematics and Physics

of Disordered Media. Ed. by B.D.Auges fj B. Niham. Lecture Notes in Math. 1035 (1983) p. 391.

Papanicolaou, G.; Varadhan, S.R.S. [1] Diffusions with random coefficients. In: Statistics and Probability. Essays in

Honour of C.R. Rao. North-Holland, Amsterdam, 1982, pp.547~552. Pastur, L.A.

[1] Spectra of random self-adjoint operators. Uspekhi Mat. Nauk 28:1 (1973) 3~64. (English trans!.: Russ. Math. SUTV. 28:1 (1973) 1~67).

Petrov, Yu.N. [1] Physics of Small Particles. Nauka, Moscow, 1982.

Pobedrya, B.E. [1] Mechanics of Composite Materials. Moscow Univ. Press, Moscow, 1984.

P6lya, G.; Szego, G. [1] Isoperimetric Inequalities in Mathematical Physics. Princeton Univ. Press,

Princeton, 1951. Porper, F.O.; Eidelman, S.D.

[1] Asymptotic behavior of classical and weak solutions of one-dimensional second order parabolic equations. Trudy Mosk. Mat. D.-va 36 (1978) 85~130.

[2] Theorems about the proximity of solutions of parabolic equations and the stabilization of solutions of the Cauchy problem. Doklady Akad. Nauk SSSR 221:1 (1975) 32~35. (English trans!.: Sov. Math., Dokl. 16 (1975) 288~292).

[3] Two-sided estimates for fundamental solutions of second order parabolic equa­tions and their applications. Uspekhi Mat. Nauk 39:3 (1984) 107~ 156. (English trans!.: Russ. Math. SUTV. 39:3 (1984) 119~ 178).

Page 26: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 561

Pozhidaev, A.V.; Yurinsky(=Yurinskij), V.V. [1] On the error of homogenization of symmetric elliptic systems. Izvestiya Acad.

Nauk SSSR, Ser. Mat. 53:4 (1989) 851-868. (English transl.: Math. USSR, Izv. 35 (1990) 183-201).

Pyatnitski( =Pyatnitskij), A.L. [1] The problem of dispersion in stratified media. Matem. Sbornik 115:3 (1981)

478-492. (English transl.: Math. USSR, Sb. 43:3 (1982) 427-441). [2] Parabolic equations with rapidly oscillating coefficients. Vestnik Moscow Univ.

Math., Mech. 3 (1980) 33-39. [3] On the limit behavior of the domain of dependence for a hyperbolic equation

with rapidly oscillating coefficents. Matem. Sbornik 115:1 (1981) 131-145. (English transl.: Math. USSR, Sb. 43 (1982) 117-131).

[4] Homogenization of a singularly perturbed equation with rapidly oscillating coefficients in a layer. Matem. Sbornik 121:1 (1983) 18-39. (English transl.: Math. USSR, Sb. 49 (1984) 19-40).

Pyatnitski(=Pyatnitskij), A.L.; Kozlov, S.M. [1] Homogenization and vanishing viscosity. Proceedings of the 5th Vilnius Confer­

renee on Probability. Theory and Mathematical Statistics V.2, VSP Mokslas, 1990, pp.330-339.

Raitum, U.E. [1] On L2-closure of the set of solutions of a class of nonlinear elliptic equations.

Diff. Uravnenia 16:3 (1980) 501-506. (English transl.: Differ. Equations 16 (1980) 319-322).

[2] Extremal problems for a linear elliptic second order equation. Latvian Math. Annals. 19 (1976) 198-213.

[3] An extension of extremal problems connected with linear elliptic equations. Doklady Akad. Nauk SSSR 243:2 (1978) 304-309. (English transl.: Sov. Math., Dokl. 19 (1978) 1342-1345).

Rayleigh, J.W. [1] On the influence of obstacles arranged in rectangular order upon the properties

of a medium. Phil. Mag. 32 (1892) 481-491. Repnikov, V.D.; Eidelman, S.D.

[1] A necessary and sufficient condition of stabilization for the Cauchy problem. Doklady Akad. Nauk SSSR 167:2 (1966) 298-301.

Reshetnyak, Yu.G. [1] Stability Theorems in Geometry and Analysis. Nauka, Novosibirsk, 1982. [2] General theorems on semicontinuity and convergence of functionals. Sib. Mat.

Zh. 8:5 (1967) 1051-1069. (English transl.: Siber. Math. J.8 (1967) 801-816). Reed, M.; Simon, B.

[1] Methods of Modern Mathematical Physics. Vol. 1 & 4, Academic Press, New York, 1975.

Rockafellar, R.T. [1] Integrals which are convex functionals, II. Pacific J. Math. 39 (1971) 439--469.

Sanchez-Palencia, E. [1] Nonhomogeneous Media and Vibration Theory. Lecture Notes in Physics 127

(1980). [2] Comportement local et macroscopique d'un type de milieux physiques Mteroge­

nes. J. Engin. Sci. 12 (1974) 331-351.

Page 27: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

562 References

Sbordone, G. [1] Su alcune applicazioni di un tipo convergenza variazionale. Ann. Scuola Norm.

Sup. Pisa 2 (1975) 617-618. Schulgasser, K.

[1] Bounds on the conductivity of statistically isotropic polycrystals. J. Phys. C10 (1977) 407-417.

Seregin, G.A. [1] An extension of the variational formulation of the problem for a rigidly plastic

medium to the velocity fields with discontinuities of sliding type. Prikl. Mat. Mekh. 47:6 (1983) 1030-1037. (English transl.: J. Appl. Math. Mech. 47 (1985) 820-827).

Serrin, J. [1] On the definition and properties of certain variational integrals. Trans. Amer.

Math. Soc. 101 (1961) 139-167. [2] A new definition of the integral for non-parametric problems in the calculus

of variations. Acta Math. 102 (1959) 23-32. Sevostianova( =Sevostyanova), E. V.

[1] Asymptotic expansion of a solution of a second order elliptic equation with rapidly oscillating periodic coefficients. Matem. Sbornik 115:2 (1981) 204-222. (English transl.: Math. USSR, Sb 43 (1982) 181-198).

Sheng, P.; Kohn, R.V. [1] Geometric effect in continuous percolation. Phys. Rew. 26:3 (1982) 1331-1335.

Shermergor, T.D. [1] The Theory of Elasticity for Micro-Nonhomogeneous Media. Nauka, Moscow,

1977. Shubin, M.A.

[1] Spectral theory and index of elliptic operators with random coefficients. Us­pekhi Mat. Nauk 34:2 (1979) 95-135. (English transl.: Russ. Math. Surv. 34:2 (1979) 109-157).

Sinai, Ya.G. [1] Limit behavior of one-dimensional random walk in a random medium. Teor.

Veroyatn. Prilozh. 27:2 (1982) 247-258. Sirazhudinov, M.M.

[1] G-convergence and homogenization of some non-divergent elliptic operators of higher order. Diff. Uravnenia 19:11 (1983) 1949-1956. (English transl.: Differ. Equations 19 (1983) 1429-1435).

[2] Homogenization of elliptic systems consisting of two first order equations with almost periodic coefficients. Preprint. Vladimir Poly technical Institute, Vladimir, 1987. VlNITI reg. no. 1473-B87.

[3] Some questions concerning the homogenization of Bellmann equations. Pre­print. Vladimir Poly technical Institute, Vladimir, 1987. VlNITI reg. no. 2466-B87.

[4] On the geometry of a G-compact set consisting of non-divergent second order elliptic operators. In: Studies on the Qualitative Characteristics of Solutions of Boundary Value Problems. Voronezh Univ. Press, Voronezh, 1990, pp. 75-82.

Page 28: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 563

Skrypnik, LV. [1] On the convergence of solutions of a nonlinear Dirichlet problem in a domain

with a fine grained boundary. Zapiski Nauchnykh Seminarov LOMI 115 (1982) 236-250. (English trans!.: J. Sov. Math. 28 (1985) 782-791).

Smirnov, V.L [1] A Course in Higher Mathematics. Gostekhizdat, Moscow, 1947.

Sobolev, S.L. [1] Some Applications of Functional Analysis in Mathematical Physics. Moscow,

Nauka, 1988. (English trans!.: AMS Translation of Mathematical Monographs, Vo!' 10, 1991).

Sorokina, A.G. [1] On G-convergence in domains with holes. Uspekhi Mat. Nauk 38:1 (1983)

210-211. (English trans!.: Russ. Math. SUTV. 38:1 (1983) 223-224). [2] Homogenization of the problems of elasticity in domains with holes. In: Me­

chanics of Non-homogeneous Structures. Naukova Dumka, Kiev, 1983, pp. 210-211.

[3] On the proximity of solutions of the Cauchy problem for second order parabolic equations. Matem. Zametki 34:1 (1983) 113-121. (English trans!.: Math. Notes 34 (1984) 541-546).

Spagnolo, S. [1] SuI limite delle soluzioni di problemi di Cauchy relativi all'equazione del

calore.Ann. Scuola Norm. Sup. Pisa 21 (1967) 637-699. [2] Sulla convergenza di soluzioni di equazioni paraboliche ed elittiche. Ann.

Scuola Norm. Sup. Pisa 22 (1968) 577-597. Stein, E.M.

[1] Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, 1970.

Sukretny( =Sukrentyj), V.1. [1] Homogenization of boundary value problems for elliptic equations in perfo­

rated domains. Uspekhi Mat. Nauk 38:6 (1983) 125-126. (English trans!.: Russ. Math. SUTV. 38:6 (1983) 133-134).

Suquet, P. [1] Analyse limite et homogeneisation. C.R. Acad. Sci. Paris, Ser 1, 296 (1983)

1355-1358. Tartar, L.

[1] Problemes de controle des coefficients dans des equations aux derivees par­tielles. In: Lecture Notes in Economics and Mathematical Systems 107 (1974) 420-426.

[2] Estimation des coefficients homogeneises. In: Lecture Notes in Mathematics 704 (1977) 364-373.

[3] Homogeneisation. Cours Peccot au College de France, Paris, 1977. [4] Estimations fines de coefficients homogeneises. In:Ennio De Giorgi's Collo­

quium. Ed. by P.Kree. Pitman Research Notes in Math., London, 1985. Temam, R.

[1] Navier-Stokes Equations. North Holland, Amsterdam, 1979. [2] Problemes mathematiques en plasticitti. Gauthier-Villars, Paris, 1983. [3] Approximation de fonctions convexes sur un espace de mesures et applications.

Can. Math. Bull. 25 (1982) 392-413.

Page 29: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

564 References

Temam, R.; Strang, G. [1] Duality and relaxation in the variational problems of plasticity. J. Mech. 19:3

(1980) 493-527. [2] Functions of bounded deformation. Arch. Rat. Mech. Anal. 75 (1980) 6-2l.

Tikhonov, A.N.; Samarski, A.A. [1] Equations of Mathematical Physics. Nauka, Moscow, 1977.

Tonelli, L. [1] Sur une methode directe du calcul des variations. Rend. Circ. Mat. Palermo

39 (1915) 233-264. [2] Fondamenti di Calcolo delle Variazioni. Zanichelli, 1921-1923.

Tsarkova, E.V. [1] On some asymptotic problems for the diffusion equation. Uspekhi Mat. Nauk

42:2 (1987) 249-250. (English trans!.: Russ. Math. Sum 42:2 (1987) 305-306). Ulam, S.M.

[1] A Collection of Mathematical Problems. Los Alamos Scientific Laboratory. New Mexico.

Valadier, M. [1] Closeness in the weak topology of the dual pair Ll, C. J. Math. Anal. and

Appl. 69 (1979) 17-34. [2] Fonctions et operateurs sur les mesures. C.R. Acad. Sci. Paris, Ser. 1, 304:5

(1987) 135-137. Valikov, K.V.

[1] On the stabilization of solutions of the Cauchy problem for second order parabolic equations with terms of lower order. Diff. Uravnenia 17:9 (1981) 1641-1655. (English trans!.: Differ. Equations 17 (1982) 1048-1059).

[2] On the proximity of solutions of the Cauchy problem for some second order parabolic equations. Diff. Uravnenia 23:4 (1987) 686-695. (English trans!.: Differ. Equations 23 (1987) 476-484).

[3] On a generalization of the notion of uniform stabilization and uniform closeness of solutions of the Cauchy problem. Diff. Uravnenia 26:2 (1990) 279-288. (English trans!.: Differ. Equations 26 (1990) 213-220).

Valitski, Yu.N.(=Valickij, J.N.); Eidelman, S.D. [1] A necessary and sufficient condition for the stabilization of positive solutions

of the heat equation. Sibir. Mat. Zh. 17:4 (1976) 744-756. (English trans!.: Sib. Math. J. 17 (1977) 564-572).

Vanninathan, M. [1] Homogeneization des valeurs propres dans les milieux perforees. C.R. Acad.

Sci. Paris A287, Part I, pp. 405-406; Part II, pp. 823-825. Vladimirov, V.S.

[1] Equations of Mathematical Physics. Nauka, Moscow, 1976. Willis, J .R.

[1] The overall elastic responce of composite materials. J. Appl. Mech. 50 (1983) 1202-1209.

Yosifian(=Iosif'yan), G.A.; Oleinik, O.A.; Shamaev, A.S. [1] Homogenization of eigenvalues of the boundary value problem of elasticity

with rapidly oscillating periodic coefficients. Sibir. Mat. Zh. 24:5 (1983) 50-58. (English trans!.: Sib. Math. J. 24 (1983) 687-694).

Page 30: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 565

[2] On the asymptotic expansion of solutions of the Dirichlet problem for elliptic equations and the system of elasticity in a perforated domain. Doklady Akad. Nauk SSSR 284:5 (1985) 1062-1066. (English trans!.: Sov. Math., Dokl. 32 (1985) 542-546).

[3] On the homogenization of elliptic equations describing processes in stratified media. Uspekhi Mat. Nauk 41:3 (1986) 185-186. (English trans!.: Russ. Math. Surv. 41:3 (1986) 209-210).

[4] Asymptotic expansion of eigenvalues and eigenfunctions for the Sturm-Liou­ville problem with rapidly oscillating coefficients. Vestnik Moscow Univ. Mat., Mekh. 6 (1985) 37-46. (English trans!.: Mosc. Univ. Math. Bull. 40:6 (1985) 43-53).

[5J On eigenvalues of boundary value problems in perforated domains for the sys­tem of elasticity with rapidly oscillating coefficients. Matem. Sbornik 132:4 (1987) 517-531. (English trans!.: Math. USSR, Sb. 60:2 (1988) 505-519).

[6] Homogenization of eigenvalues and eigenfunctions for the boundary value prob­lem of elasticity in a perforated domain. Vestnik Mosc. Univ. Mat., Mekh. 4 (1983) 53-63.

[7J On homogenization problems for stratified media. In: Asymptotic Methods in Mathematical Physics, Naukova Dumka, Kiev, 1988, pp. 73-83.

[8J An estimate for the deviation of the solution of the elasticity system in a perforated domain and the solusion of the homogenized system. Uspekhi Mat. Nauk 37:5 (1982) 195-196. (English trans!.: Russ. Math. Sum 37:5 (1982) 188-189).

[9] On the convergence of the energies, stress tensors, and frequencies of free vi­brations in homogenization problems arising in elasticity. Doklady Akad. Nauk SSSR 274:6 (1984) 1329-1333. (English trans!.: Sov. Math., Dokl. 29 (1984) 157-159).

[10J On the homogenization of stratified elastic composites. Mekhanika Tverdogo Tela 1 (1988) 118-125.

[11] On the homogenization of solutions of the Neumann problem in a perforated domain for a second order elliptic equation and the system of elasticity. Uspekhi Mat. Nauk 42:6 (1987) 195-196. (English trans!.: Russ. Math. Sum 42:6 (1987) 237-238).

[12] On the limit behavior of the spectrum for a sequence of operators defined in different spaces. Uspekhi Mat. Nauk 44:3 (1989) 157-158. (English trans!.: Russ. Math. Sum 44:3 (1989) 195-196).

Yurinski(Yurinskij), V.V. [1] On the homogenization of boundary value problems with random coefficients.

Sibir. Matem. Zh. 21:3 (1980) 209-223. (English trans!.: Siber. Math. J. 21 (1981) 470-482).

[2J On the homogenization of non-divergent second order equations with random coefficients. Sibir. Matem. Zh. 23:2 (1982) 176-188. (English trans!.: Siber. Math. J. 23 (1982) 276-287).

Zeldovich, Ya.B. [lJ Exact solution of the problem of diffusion in a periodic velocity field; turbulent

diffusion. Doklady Akad. Nauk SSSR 226:4 (1982) 821-826. (English trans!.: Sov. Phys., Dokl. 27 (1982) 797-799).

Page 31: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

566 References

[2] Global properties of a random vector field and its associated mapping. Uspekhi Mat. Nauk 39:5 (1983) 229.

Zhikov, V.V. [1] On the stabilization of solution of parabolic equations. Math. USSR, Sbornik

4 (1977) 519-537. [2] A criterion of pointwise stabilisation for second order parabolic equations with

almost-periodic coefficients. Matem. Sbornik 110:2 (1979) 304-318. (English trans!.: Math. USSR, Sb. 38 (1981) 279-292).

[3] On G-convergence of elliptic operators. Matem. Zametki 33:3 (1983) 345-356. (English trans!.: Math. Notes 33 (1983) 174-181).

[4] Questions of convergence, duality, and averaging for a class of functionals in the variational calculus. Dokl. Akad Nauk SSSR 267 (1982) 524-528). (English trans!.: Soviet Math., Dokl. 26:3 (1982) 627-630).

[5] Questions of convergence, duality, and homogenization of functionals in the calculus of variations. Izv. Akad. Nauk SSSR, Ser. Mat. 47:5 (1983) 961-998). (English trans!.: Math. USSR, Izvestiya 23:2 (1984) 243-276).

[6] Asymptotic behavior and stabilisation of solutions of a second order parabolic equation with terms of lower order. Trudy Mosk. Mat. D.-va 46 (1983) 70-98. (English trans!.: Trans. Mosc. Math. Soc. 2 (1984) 69-99).

[7] Homogenization and limit load. Uspekhi Mat. Nauk 40:5 (1985) 221. [8] On the estimates for the trace of a homogenized matrix. Matem. Zametki 40:2

(1986) 226-237. (English trans!.: Math. Notes 40 (1986) 628-634). [9] On setting the boundary value problems for the integrands of type 1~1"'(x).

Uspekhi Mat. Nauk 41:4 (1986) 187-188. [10] Averaging of functionals in the calculus of variations and elasticity. Math.

USSR, Izvestiya 29 (1987) 33-66. [11] On the estimates for the trace of an averaged tensor. Dokl. Akad. Nauk SSSR

299:4 (1988) 796-800. (English trans!.: Soviet Math., Dokl. 37:2 (1988) 456-459).

[12] Duality methods in the theory of homogenization. In: Mechanics of Deformable Solids, 1st All-Union Symposium, Nauka, Moscow, 1984, pp. 72-84.

[13] Remarks on the problem of residual diffusion. Uspekhi Mat. Nauk 44:6 (1989) 155-156. (English trans!.: Russ. Math. Surv. 44:6 (1989) 194-195).

[14] On the effective conductivity of homogeneous random sets. Matem. Zametki 45:4 (1989) 34-45. (English trans!.: Math. Notes 45:4 (1989) 288-296).

[15] A spectral approach to the asymptotic problems of diffusion. Diff. Uravnenia 25:1 (1989) 44-55. (English trans!.: Differ. Equations 25:1 (1989) 33-39).

[16] Some problems of extension of functions arising in connection with the homog­enization theory. Diff. Uravnenia 26:1 (1990) 39-51. (English trans!.: Differ. Equations 26 (1990) 34-44).

[17] Asymptotic problems connected with the heat equation in perforated domains. Math. USSR, Sbornik 71:1 (1992) 125-147.

[18] The Lavrentiev phenomenon and homogenization of nonlinear variational problems. Diff. Uravnenia 27:1 (1991) 42-50. (English trans!': Differ. Equa­tions 27:1 (1991) 32-39).

[19] Estimates for the homogenized matrix and the homogenized tensor. Uspekhi Mat. Nauk. 46:3 (1991) 49-109. (English trans!.: Russ. Math. Surv. 46:3 (1991) 65-136).

Page 32: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

References 567

[20] Estimates for the trace of a homogenized tensor. Ukrainski Mat. Zh. 43:6 (1991) 745-755.

[21] Asymptotic problems related to the non-divergent second order parabolic equa­tion with random coefficients. Diff. Uravnenia (1992) (to appear).

[22] On passing to the limit in nonlinear variational problems. Mat. Sbomik 138:8 (1992) 47-84

[23] On the conductivity threshold of a random cubic structure. Mat. Zametki 52:6 (1992) 15-24.

[24] The Lavrentiev phenomenon and homogenization of variational problems. C. R. Acad. Sci., Paris (to appear).

[25] On homogenization in random perforated domains of general type. Matem. Zametki 53:1 (1993) 41-58.

Zhikov, V.V.; Barabanov, 0.0. [1] On the limit load theory for elasto-plastic materials. In: Mechanics of Non­

Homogeneous Structures, vol. 2, Theses of II All-Union Conference, Lvov, 1987, pp. 127-128.

Zhikov, V.V.; Kozlov, S.M. [1] Homogenization and percolation. Uspekhi Mat. Nauk 43:4 (1988) 169-170.

Zhikov, V.V.; Kozlov, S.M.; Oleinik, O.A. [1] Homogenization and G-convergence of differential operators. Uspekhi Mat.

Nauk 34:5 (1979) 65-133. (English transl.: Russ. Math. Surv. 34 (1979) 65-147).

[2] Homogenization and G-convergence of parabolic operators. Uspekhi Mat. Nauk 35:4 (1980) 150-15l.

[3] On G-convergence of parabolic operators. Uspekhi Mat. Nauk 36:1 (1981) 11-58. (English transl.: Russ. Math. Surv. 36 (1981) 9-60).

[4] Homogenization theorems for parabolic operators. Doklady Akad. Nauk SSSR 260:3 (1981) 521-525. (English transl.: Sov. Math., Dokl. 24 (1981) 285-289).

[5] Homogenization of parabolic operators. Trudy Mosk. Mat. O.-va 45 (1982) 182-236. (English transl.: Trans. Mosc. Math. Soc. 1 (1984) 189-241).

[6] Homogenization of parabolic operators with almost periodic coefficients. Mat. Sbomik 117:1 (1982) 69-85. (English transl.: Math. USSR, Sb. 45 (1983) 73-90).

[7] Sur l'homogeneisation d'operateurs differentiells paraboliques it coefficients presque periodiques. C.R. Acad. Sci. Paris, Ser. 1, 293 (1981) 245-248.

Zhikov, V.V.; Krivenko, E.V. [1] Homogenization of singularly perturbed elliptic operators. Matem. Zametki

33:4 (1983) 571-582. (English transl.: Math. Notes. 33 (1983) 294-300). Zhikov, V.V.; Nazarova, O.A.

[1] The problem of an artificial dielectric. In: Qualitative Analysis of Boundary Value Problems, Voronezh Univ., Voronezh, 1990, pp. 15-26.

Zhikov, V.V.; Oleinik, O.A. [1] On the homogenization of the system of elasticity with almost periodic coef­

ficients. Vestnik Moscow Univ. Mat., Mekh. 6 (1982) 62-70. (English transl.: Mosc. Univ. Math. Bull. 37:6 (1982) 74-82).

[2] On the homogenization of elliptic operators with almost periodic coefficients. Rend. del Seminario Mat. Fis. di Milano 52 (1982) 149-166.

Page 33: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

568 References

Zhikov, V.V.; Sirazhudinov, M.M. [1] Homogenization of non-divergent second order elliptic and parabolic opera­

tors and the stabilization of solutions of the Cauchy problem. Matern. Sbomik 116:2 (1981) 166-186. (English trans!.: Math. USSR, Sb. 44 (1983) 149-166).

[2] On G-compactness of a class of non-divergent second order elliptic operators. Isvestiya Akad. Nauk SSSR, Ser. Mat. 45 (1981) 718-733. (English trans!.: Math. USSR, Izv. 19 (1982) 27-40).

[3] Homogenization of the Beltrami system. Diff. Uravnenia 24:1 (1988) 64-73. (English trans!.: Differ. Equations 24 (1988) 50-56).

Page 34: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

Subject Index

abstract energy criterion, 162 almost-periodic function, 238 auxiliary - equation, 228, 325 - periodic problem, 17, 89, 100 - variational problem, 440

Barry-Essen estimate, 78 Bloch representation for the fundamen­

tal solution, 79 bulk modulus, 369 BVo(Q) space, 507, 521

Caratheodory condition, 420 central limit theorem, 61, 78, 269, 319,

324 - on the average, 270 chess Lagrangian, 438 closeness theorem, 65, 283, 335 compensated compactness, 3, 138, 230,

373 condition of cubic symmetry, 39 conductivity threshold, 313 convergence - in distribution, 61, 541 - of arbitrary solutions, 14, 151, 181 convex function, 415 conjugate function, 416 complementary energy, 428 critical probability, 304, 316

density of states, 357 deviatoric trace, 391 Dirichlet problems of type I and type II,

424 disperse media, 86, 279, 407 dual - analogue of r-convergence, 167

- boundary value problems, 428 duality - formula, 428 - principle, 430 Dychne formula, 455

effect of compressibility, 126 effective - conductivity, 93, 299, 443 - homogeneous medium, 12 elasticity tensor, 368 ergodic algebra, 243, 247 equivalence principle, 509 Euler equation, 8, 18, 40 extension - condition, 271 - property, 113, 117, 265 extremal relation, 431

Friedrichs inequality, 2

G-convergence, 149, 160, 180 r-convergence, 162 - of Lagrangians, 461 - of integral functionals, 499

Hashin-Strikman bounds, 187 Hashin structure, 195, 403 Hill material, 379 homogenization rule, 14 homogenized - differential equation, 12 - Lagrangian, 438, 440 - matrix, 12

incompressible elasticity, 382 infinite - conducting cluster, 314 - superconducting cluster, 318

Page 35: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

570

Lavrentiev phenomenon, 423 Lax-Milgram lemma, 7, 180 L1-closedness, 482 limit load, 503, 508

Marchenko-Khruslov problem, 124 micro-nonhomogeneous medium, 12

Nash-Aronson estimate, 63, 272, 536 non-defective Lagrangian, 510 null-Lagrangian, 214

optimality criterion, 192

phase interchange equality, 213, 237 Poincare inequality, 3, 153 polarization tensor, 108 P6lya-Schiffer theorem, 109, 189 principle of periodic localization, 155,

206 property of the mean value, 5

quasi-convex function, 490 quasi-periodic function, 226

random - Lagrangian, 438 - motion, 61 - set, 250

Subject Index

Rayleigh-Maxwell formula, 45 regular Lagrangian, 424 relaxation principle, 488 residual diffusion, 23, 36 resistence threshold, 318

spherical trace, 391 shear modulus, 369 Sobolev space, 1 Sobolev-Orlicz space, 425 stabilization criterion, 67, 282, 324 standard Lagrangian, 421 stationary random field, 222 stratified media, 15, 168, 209, 355, 377 Sturm-Liouville problem, 349 surface - limit load, 518 - of fluidity, 508

theorem on conjugate functionals, 422

variational - criterion of r-convergence, 497 - method, 202, 395 virtual mass tensor, 108

*-weak convergence, 4

Page 36: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

Encyclopaedia of Mathematical Sciences Editor-in-Chief: R. V. Gamkrelidze

Partial Differential Equations

Volume 30: Yu. V.Egorov, M.A. Shubin (Eds.)

Partial Differential Equations I Foundations of the Classical Theory

1991. ISBN 3-540-52002-3

Volume 31: Yu. V.Egorov, M.A.Shubin (Eds.)

Partial Differential Equations II 1992. ISBN 3-540-52001-5

Volume 32: Yu. V.Egorov, M.A.Shubin (Eds.)

Partial Differential Equations III The Cauchy Problem. Qualitative Theory of Partial Differential Equations

With contrihutions hy S. G. Gindikin. V. A. Kondrat'ev. E. M. Landis, L. R. Volevich

Translated from the Russian hy M. Grinfeld

1991. ISBN 3-540-52003-1

Volume 33: Yu. V.Egorov, M.A.Shubin (Eds.)

Partial Differential Equations IV Microlocal Analysis and Hyperbolic Equations

Translated from the Russian hy P. C. Sinha 1993. ISBN 3-540-53363-X

Volume 63: Yu. V.Egorov, M.A. Shubin

Partial Differential Equations VI Elliptic and Parabolic Operators

1994. ISBN 3-540-5467/1-2

Springer

Page 37: Proof of the Nash-Aronson Estimate - Springer978-3-642-84659-5/1.pdf · Proof of the N ash-Aronson Estimate 539 Remark A.I. Let us consider more closely the transition from the estimate

D.Revuz, M. Yor

Continuous Martingales and Brownian Motion 1991. (Grundlehren del' mathematischen Wissenschaften, Bd. 293) ISB~ 3-540-52167-4

M. Ledoux, M. Talagrand

Probability in Banach Spaces Isoperimetry and Processes

1991. (Ergebnisse del' Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 23) ISB~ 3-540-52013-9

Ya. G. Sinai

Probability Theory An Introductory Course

Translated from the Russian by D. Haughton

1992. (Springer Textbook) ISBN 3-540-53348-6

M. V. Fedoryuk

Asymptotic Analysis Linear Ordinary Differential Equations

Translated from the Russian by A. Rodick

1993. ISB~ 3-540-54810-6

Springer